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Spectral Domain Fast Multipole Method for Solving Integral
Equations of Electromagnetic Wave Scattering

Mohammad Ahmad* and Dayalan Kasilingam

Abstract—In this paper, a spectral domain implementation of the fast multipole method is presented.
It is shown that the aggregation, translation, and disaggregation stages of the fast multipole method
(FMM) can be performed using spectral domain (SD) analysis. The spectral domain fast multipole
method (SD-FMM) has the advantage of eliminating the near field/far field classification used in
conventional FMM formulation. The goal of this study is to investigate the similarities and differences
between the spectral domain analysis and conventional FMM formulation. The benefit of the spectral
domain analysis such as transforming the convolutional form of the Green’s function to a multiplicative
form is incorporated in the SD-FMM method. The study focuses on the application of SD-FMM to
one-, two-, and three-dimensional electric field integral equation (EFIE). The cases of perfectly electric
conducting (PEC) strips, circular perfectly conducting cylinders, and perfectly conductor spheres are
analyzed. The results from the SD-FMM method are compared with the results from the conventional
FMM and the direct application of Method of Moments (MoM). The SD-FMM results agree well with
results from the direct application of MoM.

1. INTRODUCTION

In electromagnetic scattering, many problems can be solved by using boundary-integral methods.
For the past several decades, the method of moments (MoM) [1] has been a very popular numerical
technique used to solve these integral equations which can be described as linear systems represented
by dense matrices. For large scale problems, direct matrix inversion methods are impractical, due
to the high computational cost of matrix factorization. In such cases, iterative algorithms are
found to be computationally more efficient [2]. Generally, at each iteration step, matrix-vector
multiplications cost O(N2) operations, where N is the number of unknowns in the problem. The
corresponding computer memory requirement is O(N2). In recent years, significant research has
been conducted into developing techniques and algorithms to reduce the computational demands of
matrix-vector multiplication and associated memory requirements. For surface scatterers such as
perfect conductors, the conjugate gradient-fast Fourier transform (CG-FFT) method was shown to
enhance the computational performance [3]. It remains as the most efficient fast solver because of
its relative simplicity, and it reduces the computational complexity to O(N logN) operations and
memory requirements to O(N). Unfortunately, the necessity of using staircase approximations for
geometrical modeling severely restricted its applications [4]. This approximation was later eliminated by
the development of pre-corrected fast Fourier transform (PFFT) algorithm (also known as the adaptive
integral method (AIM)) which reduces the complexity to O(N3/2 logN) operations and the memory
requirements to O(N3/2) [5, 6]. These methods use arbitrary basis functions, which are projected on a
uniform grid to enable the use of FFT. The Fast Multipole Method proposed by Rokhlin [7, 8] reduces the
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computational complexity to O(N3/2) operations and the required memory to O(N3/2). Its recursive,
multi-level extension, namely the multi-level fast multipole method (MLFMM), further reduces the
complexity of MoM and memory requirements to O(N logN) [9].

Due to its inherent advantages, the SD approach has been applied to a variety of different
computational applications [10–13]. This is because the solution of the problem in the original domain,
if at all possible, may be difficult. When transformed into the new domain, the solution of the problem
becomes more tractable. In addition, the use of the FFT algorithm in the SD approach makes it very
appealing. The goal of this paper is to apply SD-FMM with MoM to solve electromagnetic scattering
problems over perfectly conductor surfaces and compare the results with standard MoM and FMM.

2. FORMULATION OF THE PROBLEM

2.1. One- and Two-Dimensional Analyses

2.1.1. Formulation of the Conventional FMM

The zeroth order Hankel function is the Green’s function for one- (1D) and two- (2D) dimensional
electromagnetic wave scattering [9]. The basic three steps; aggregation, translation, and disaggregation,
that is required to be used in the FMM, can be carried out only if we can factorize the Hankel function
into a product of three functions: one containing ρq − ρ′n, another containing ρp− ρq, and the third one
containing ρm − ρp, where ρm is the observation point on the scatterer; ρ′n is any source point on the
scatterer; ρp is the center of source points belong to the group Gp; and ρq is the center of the observation
points belonging to another group Gq. Using the addition theorem for the Hankel function [9], one can
compute a sum of the Green’s functions evaluated at the field point ρm due to many source points ρ′n
located in side Gq as [9]

N∑
n=1

H
(2)
0

(
k0

∣∣ρm − ρ′n
∣∣) =

1
2π

2π∫
0

e−jk·(ρm−ρp)α̃pq(α)
N∑
n=1

e−jk·(ρq−ρ′n)dα, (1)

where α̃pq(α) ≈
L∑

l=−L
H

(2)
l (βρpq)ejl(ϕpq−α−π/2) in which ϕpq denotes the angle that ρpq makes with the

x-axis, H(2)
0 (·) the zeroth order Hankel function of the second kind, k = k0(cosαax + sinαay), and k0

the propagation constant. Equation (1) is valid only if ρpq > |(ρm − ρp) + (ρq − ρ′n)|.

2.1.2. Formulation of the SD-FMM

In SD analysis, the Hankel function can be represented as [14]

H
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0

(
k0

∣∣ρm − ρ′n
∣∣) =

1
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e−jky|ym−y′n|

ky
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where ky =
√
k2

0 − k2
x, x′n, y′n denote the source coordinates, and xm, ym denotes the observation

coordinates. Replacing, xm = ρm cos θ, x′n = ρ′n cos θ′, ym = ρm sin θ, and y′n = ρ′n sin θ′, Eq. (2)
can be written as
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Defining ρ′n = ρ′n cos θ′ax + ρ′n sin θ′ay, k∓ = kxax∓ kyay, and ρm = ρm cos θax + ρm sin θay, Eq. (3) can
be written as
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The formulation given in Eq. (4) is what allows one to compute a matrix-vector product using SD-
FMM with the advantage of eliminating the near field/far field classification used in conventional FMM
formulation. One can now compute a sum of the Green’s functions evaluated at the field point ρm due
to many source points ρ′n

N∑
n=1

H
(2)
0

(
k0

∣∣ρm − ρ′n
∣∣) =

1
π

∞∫
−∞

ejk
∓·ρm

ky

N∑
n=1

e−jk
∓·ρ′ndkx. (5)

Equation (5) represents the 1D and 2D SD-FMM where
∑N

n=1 exp(−jk∓ · ρ′n) describes the aggregation
component, 1/ky the translation component, and exp(jk∓ · ρm) the disaggregation component. Table 1
shows a comparison between the conventional FMM and SD-FMM. The first point to note is that the
integration limits for the FMM are fixed. However, for the SD-FMM the limits are from −∞ to +∞.
This kind of integration over improper limits needs to be truncated. Hence, one must replace the ±∞ to
the proper Kmax that will lead to the required accuracy. Second, the translation term in the SD-FMM
is easier to find and evaluate than FMM. Moreover, the singularity in the translation term in SD-FMM
has to be taken care of to get accurate results. Finally, each of the two groups in FMM has a separate
translation term. On the other hand, the translation term in SD-FMM is fixed.

Table 1. A comparison between FMM and SD-FMM for 1D and 2D cases.

FMM SD-FMM
Integration limits 0 to 2π −∞ to ∞

Translation
L∑

l=−L
H

(2)
l (βρpq)ejl(ϕpq−α−π/2) 1/ky

Translation Each 2 groups have their own translator (not constant) Fixed
Restriction Valid only if ρpq > |(ρm − ρp) + (ρq − ρ′n)| No

2.1.3. The Electric Field Integral Equation for Electromagnetic Scattering from 1D and 2D Perfectly
Conductor Surfaces

The solution of electric field integral equation (EFIE) for electromagnetic scattering of TMz polarized
plane waves from 1D and 2D perfectly conductor surfaces in free space using MoM with pulse basis
functions and the Dirac delta testing function is given by [15]

Eincz (ρm) =
k0η0

4

N∑
n=1

αn

∫
wn

H
(2)
0

(
k0

∣∣ρm−ρ′n∣∣) dρ′, (6)

where H(2)
0 (·) is the zeroth order Hankel function of the second kind, k0 the propagation constant, η0 the

free space wave impedance of the free space, αn ithe unknown surface current density on segment n, wn
the size of the nth segment, and Eincz (ρm) the known incident electric fields on the conductor surface,
which is given by E0 exp(jk(xm cosϕi+ym sinϕi)), where E0 is a constant, and ϕi is the incident angle.
Equation (6) will lead to a set of simultaneous equations that can be written in matrix form as

E = ZI, (7)

where E is a vector filled with the known incident electric field over each segment (Eincz (ρm)), I a vector
filled with the approximated unknown current density (αn), and Z the impedance matrix which is filled
by [14]
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In the conventional FMM, the impedance matrix in Eq. (7) is broken into near and far field components
as [4]

E = ZnearInear + ZfarIfar. (9)

In the SD-FMM approach, the impedance matrix is broken into

E = Z+I+ + Z−I−. (10)

Equation (10) is populated by the terms in Eq. (4), where (+) represents the k+ terms and (−)k− terms
in Eq. (4). Taking advantage of Eq. (4) to find Eq. (2), the implementation of Eq. (9) is done as follows:
(i) first, divide the source points into two groups — one corresponding to k+ and the other to k−, (ii)
second, the aggregation stage is done by multiplying the unknown current with its source point. For
the first observation point, multiply the result from the second step with the translation component,
which is fixed for all points and the disaggregation, (iii) third, for the next observation point, adjust the
aggregation component that has been found in the previous step to accommodate the new observation
point and then multiply it with the translation component and the disaggregation component. Some
components which were in the first group may now be in the second group and vice versa. Finally, for
each new observation point, keep adjusting the previous aggregation components and then multiplying
them with the translation component and the disaggregation.

2.1.4. Dealing with the Singularity and Integration Method

As seen in Eq. (4), the transform of Hankel function has a singularity in the ky term located at
k = ±kx. This difficulty, though, can be avoided by introducing a small loss in the medium. This
may be implemented by assuming that k = k′ − jk′′, where k′′ → 0+. In addition, a change of variable
around the singularity has been made, where kx = k cos(t). The integration has been done using the
Clenshaw-Curtis quadrature method [16] and the ± infinity limits of integration replaced by ±Kmax.

2.2. Three-Dimensional Analyses

2.2.1. Formulation of the Conventional FMM

Similar to 1D and 2D cases, the basic three steps, in FMM, can be carried out only if one can factorize
the Green’s function into a product of three functions: one containing rq−r′, another containing rp−rq,
and the third one containing r − rp, where r is the observation point on the scatterer; r′ is any source
point on the scatterer; rp is the center of source points belong to the group Gp; and rq is the center of the
observation points belong to another group Gq. Using the addition theorem for the three-dimensional
(3D) Green’s function to compute the sum of the Green’s functions evaluated at the field point rm due
to many source points r′n located inside group Gq as [9]

N∑
n=1

exp(−jk0|rm − r′n|)
|rm − r′n| =

−jk0

4π

2π∫
0

π∫
0

e(−jk·(rm−rp))TL(k · rpq)
N∑
n=1

e(−jk·(rq−r
′
n)) sin(α)dαdβ, (11)

where Tl(k · rpq) =
L∑
l=0

(−j)l(2l + 1)h(2)
1 (k0rpq)Pl(k · rpq), Pl(x) is the Legendre polynomial of order

l, h(2)
1 (x) is the spherical Hankel function of the second kind. The integral is performed over a

unit sphere and k = k0(cos(β) sin(α)ax + sin(β) sin(α)ay + cos(α)az). Equation (11) is valid only if
rpq > |(r − rp) + (rq − r′)|.

2.2.2. Formulation of the SD-FMM

As seen in Eq. (11), the Green’s function for 3D electromagnetic wave scattering is given by

G(r, r′) =
e−jk0|r−r′|

4π|r − r′| . (12)
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In SD analysis, the Green’s function for 3D case can be represented as [14]

e−jk0|r−r′|

|r − r′| =
−j
2π

∞∫
−∞

∞∫
−∞

e−jkz|z−z′|

kz
ej(kx(x−x′)+ky(y−y′))dkxdky, (13)

where kx, ky, kz are the Fourier or spectral variables with kz =
√
k2

0 − (k2
x + k2

y), and x′, y′, z′ and x, y, z
denote the source and observation coordinates, respectively. Rewriting Eq. (13) in polar coordinate in
terms of (ρ, ψ) by substituting kx = ρ cosψ, ky = ρ sinψ, and ρ2 = k2

x + k2
y , one gets

e−jk0|r−r′|

|r − r′| =
−j
2π
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0

2π∫
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e−jkρ|z−z′|

kρ
ej(ρ cosψ(x−x′)+ρ sinψ(y−y′))ρdψdρ, (14)

where kρ =
√
k2

0 − ρ2. Separating the source point from the observation point in Eq. (14) and taking
into account the absolute value term, |z − z′|, yields

e−jk|r−r′|

|r − r′| =
−j
2π

∞∫
0

2π∫
0

ej(∓kρz+ρ cosψx+ρ sinψy) 1
kρ
e−j(∓kρz′+ρ cosψx′+ρ sinψy′)ρdψdρ. (15)

In the ∓kρ term, the negative sign will be used if z > z′, and the positive sign will be used if z < z′.
One can now compute a sum of Green’s functions evaluated at the observation point rm due to many
source points r′n as

N∑
n=1

e−jk0|rm−r′n|

|rm − r′n|
=

−j
2π

∞∫
0

2π∫
0

ej(∓kρzm+ρ cosψxm+ρ sinψym) 1
kρ

N∑
n=1

e−j(∓kρz′n+ρ cosψx′n+ρ sinψy′n)ρdψdρ. (16)

The arrangement in Eq. (16) allows one to compute a matrix-vector product with advantage of
eliminating the near field/far field classification used in conventional FMM formulation. Equation (16)
represents the 3D SD-FMM where

∑N
n=1 exp(−j(∓kρz′n + ρ cosψx′n + ρ sinψy′n)) describes the

aggregation component; 1/kρ describes the translation component; and exp(j(∓kρzm + ρ cosψxm +
ρ sinψym)) describes the disaggregation component. Table 2 shows a comparison between the
conventional FMM and SD-FMM in 3D case. One notes from Table 2 that the same points that
have been identified in Table 1 are observed here.

Table 2. A comparison between FMM and SD-FMM for 3D case.

FMM SD-FMM

Integration limits
0 to π
0 to 2π

−∞ to ∞
−∞ to ∞

Translation
L∑
l=0

(−j)l(2l + 1)h(2)
1 (k0r)Pl(k̂ · r̂pq) 1/kρ

Translation Each 2 groups have their own translator (not constant) fixed
Restriction Valid only if rpq > |(r − rp) + (rq − r′)| No

2.2.3. The EFIE for Electromagnetic Scattering from 3D Perfectly Conducting Surfaces

The matrix form of N2 system of linear equations that are obtained by applying EFIE for
electromagnetic scattering of TMz polarized plane waves from 3D perfectly conductor shapes in free
space using MoM with RWG basis function is given by [17]

E = ZI, (17)
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where Z = [Zmn] is an N2 matrix, and I = [In] and E = [Em] are column vectors of length N . Elements
of Z and E are given by

Zmn = lm

[
jω

(
A+
mn ·

ρc+m
2

+A−
mn ·

ρc−m
2

)
+ Φ−

mn − Φ+
mn

]
(18)
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2
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, (19)
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n

ln
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(22)

where ρ+
n (r) is the vector from the vertex of T+

n opposite to ln and r; ρ−n (r) is the vector from r to the
vertex of T−

n opposite to ln; A±
n is the area of the triangle T±

n , and

Ei(r) =
(
Eθθ̂0 +Eϕϕ̂0

)
ejk·r (23)

where the propagation vector k is

k = k (sin θ0 cosϕ0x̂+ sin θ0 sinϕ0ŷ + cos θ0ẑ) (24)

where (θ̂0, ϕ̂0) defines the angle of arrival of the plane wave in terms of the usual spherical coordinate
convention. Unit vectors θ̂0 and ϕ̂0 are constant vectors which coincide with the usual spherical
coordinate unit vectors at points on the line from the origin in the direction of k.

3. RESULTS AND DISCUSSION

This section presents numerical results for the validation of the SD-FMM method by comparing the
results obtained from the left side of Eq. (5) with that from the right side of the same equation for
1D and 2D cases, and the left side of Eq. (11) with the right side of the same equation for 3D case.
Also, the SD-FMM method is validated by solving canonical 1D, 2D, and 3D scattering problems and
comparing these results with results from MoM and FMM.

Table 3 shows the comparison for the 1D case. The source and receiver points are assumed to be
distributed over 1D axis for different lengths. To assess how the SD-FMM approach will work with
MoM, the root mean square error (RMSE) between the left hand side and right hand side of Eq. (5)
is calculated for all observation points, and the average of total RMSE (ARMSE) is computed for this
error. The number of the observation and source points is 64 for all sizes. The original integral has
integration limits truncated at Kmax. The results demonstrate excellent accuracy for the selected Kmax.

Table 3. The ARMSE for the 1D case for different lengths and the appropriate Kmax.

Length 2λ 5λ 10λ 15λ
ARMSE × 10−6 2.6285 4.7716 7.6989 9.7772

Kmax 15079 15079 3216 2412
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Also, the initial results show that SD-FMM can be performed on different sizes without sacrificing
accuracy. Moreover, one notes that as the source and observation points are distributed over wider
strips, the truncation limit, Kmax, is reduced significantly.

Table 4 shows the comparison for 2D case. The source and observation points are assumed to be
distributed on circular cylinders with different radii. The same procedure used for 1D case is repeated
for 2D case. The number of the receiver and source points is 33 for all sizes. The results demonstrate
excellent accuracy for all tested radii with appropriate Kmax. Also, one notes that as the radius gets
larger, Kmax is reduced significantly.

Table 4. The ARMSE for the 2D case for different radii and the appropriate Kmax.

Radius λ 5λ 10λ 15λ
ARMSE × 10−6 3.9612 5.7342 8.7680 9.2467

Kmax 700 100 70 45

Table 5 shows the comparison for the 3D case. The source and observation points are assumed to
be distributed over a sphere with different radii. The same procedure used for 1D case is used for the
3D case. The number of the receiver and source points is 44 for all sizes. The results demonstrate good
accuracy for all tested radii with appropriate Kmax. Also, one notes that as the sphere gets larger, the
value of Kmax is reduced significantly.

The first example of electromagnetic wave scattering is from a conducting strip. Fig. 1 shows the
induced current density that has been found using 1D SD-FMM and compared for accuracy with MoM

Table 5. The average RMSE for the 3D case for different radii and the appropriate Kmax.

Radius λ 5λ 10λ 15λ
ARMSE 4.3174 × 10−5 4.4129 × 10−6 4.5252 × 10−6 6.8937 × 10−6

Kmax 725 161 80 53

Figure 1. The induced current density on a
conducting strip generated using SD-FMM and
the MoM.

Figure 2. RMSRE versus Kmax for the
conducting strip problem.
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and FMM. The results clearly indicate that the results produced by the proposed SD-FMM method
agree well with the MoM and FMM. Fig. 2 and Fig. 3 show the RMS relative error (RMSRE) for the
previous example as a function of Kmax and Nk, respectively, for the proposed SD-FMM where Nk is
the number of points required to perform the integration in Eq. (5). Fig. 4 shows the comparison of the
speed among the three methods.

Figure 3. RMSRE versus Nk for the conducting
strip problem.

Figure 4. CPU time per iteration for the
conducting strip.

For scattering from 2D objects, SD-FMM method is applied to electromagnetic wave scattering
from circular, perfectly conducting cylinders. The induced current for circular perfectly conducting
cylinder is shown in Fig. 5. A TMz plane wave is assumed to be incident at ϕ = 0◦. Fig. 6 and Fig. 7
show the RMSRE for the previous example as a function of Kmax and Nk, respectively, for the proposed
SD-FMM. Fig. 8 shows the comparison of the speed among the three methods. Table 6 shows the
number of operations and memory requirements for both FMM and SD-FMM for 1D and 2D cases.

Figure 5. The induced current on a circular
cylinder generated by the proposed SD-FMM and
the MoM.

Figure 6. RMSRE versus Kmax for the circular
cylinder problem.
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Figure 7. RMSRE versus Nk for circular cylinder. Figure 8. CPU time per iteration for the
circular cylinder.

Figure 9. Distribution of current on a 0.2λ radius
conducting sphere.

Figure 10. RMSRE versus Kmax for the PEC
sphere.

Figure 11. RMSRE versus Nk for the PEC sphere
problem.

Figure 12. CPU time per iteration for the PEC
sphere problem.
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Table 6. Numerical comparison between the FMM and the SD-FMM: number of operations.

N : is the number of

total basis functions.

M : is the number basis

functions in each group.

R: number of points required in

α-domain for the FMM integral.

Nk: number of points required in

k-domain for the SD-FMM integral.

Number of operations

and memory require FMM

Number of operations and

memory require SD-FMM

Near-field interactions 3 (M × M) × (N/M) = 3MN 0

Aggregation R × N Nk × N

Translation R × (N/M)2 0

Disaggregation R × N Nk × N

Total number of operations

= (sum of all operation in column)
3RN + 3N3/2 (when M = N1/2) 2Nk × N

Total number of operations for

Nk = 128N to get an error 10−6

and R = M = N1/2 and to an error 10−6

6N3/2 (faster) 256N2

Figure 9 shows the computed current distribution along the principal cuts through a PEC sphere
with a radius of 0.2λ using SD-FMM. The incident field is assumed to be from the negative x-direction.
The plane wave has only one component in the z-direction, Ez = 1. The cases of axial and equatorial
incidence are both considered. The number of triangles used to represent the sphere is 1244. The
RMSRE for FMM and SD-FMM are 4.3278×10−6 and 9.0338×10−6, respectively. The selection of the
limit of the integral and the number of points required to perform the integration were Kmax = 4000 and
Nk = 1032, respectively. Fig. 10 and Fig. 11 show the RMSRE versusKmax and Nk, respectively. Fig. 12
shows the time required to do the multiplication between the impedance matrix and the unknown basis
functions. Table 7 shows the comparison of the number of operations between FMM and SD-FMM for
the 3D case.

Table 7. Numerical comparison between the FMM and the SD-FMM: number of operations and
memory requires for 3D case.

N : is the number of total basis functions,

M : is the number basis functions in each group,

(N/M): is the number of groups in the problem,

B: all nearby groups including itself,

K: is the number of points that is required

to do the integration K = 2L2,

where L is the number of points

for integration from 0 to pi.

Number of operations

and memory for FMM

Number of operations

and memory SD-FMM

Near-field interactions B(M × M) × (N/M) = BMN 0

Aggregation K × M × (N/M) = K × N Nk × N

Translation K × (N/M)2 0

Disaggregation K × N Nk × N

Total number of operations = BMN + KN + K × (N/M)2 + KN 2NkN

Total number of operations when M = L2

and (N/M) = N1/2. Nk = 0.25N
N3/2 0.5N2



Progress In Electromagnetics Research M, Vol. 80, 2019 131

4. CONCLUSIONS

In this paper, it has been shown that the aggregation, translation, and disaggregation stages of the
FMM can be performed using SD analysis. Also, the analytical comparison between the SD-FMM and
conventional FMM shows that the SD-FMM code is easier to build and eliminates the near field/far
field classification used in conventional FMM formulation. In addition, the new approach gives excellent
accuracy compared with the MoM solution for 1D, 2D, and 3D cases. The SD-FMM approach is applied
to solving electromagnetic wave scattering from 1D, 2D, and 3D perfectly conductor surfaces. Numerical
results from the analysis of scattering from conducting strips, circular cylinders, and spheres have been
presented. The numerical results indicate that the proposed method can estimate the induced current
densities with comparable accuracy as the conventional FMM and MoM.
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