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Electromagnetic Scattering and Emission by Ocean Surfaces Based

on Neighborhood Impedance Boundary Condition (NIBC) with
Dense Grid: Accurate Emissivity and Sensitivity to Salinity

Tai Qiao1, Yanlei Du1, 2, and Leung Tsang1, *

Abstract—In order to have the required accuracies in method of moments (MoM) for numerical
simulations of ocean scattering at microwave frequencies, we need to account for the much larger
wavenumber of sea water relative to that of air. This paper presents simulation results of 2D ocean
surface scattering with the required accuracies and that energy conservation is obeyed to 0.01%. A
dense grid is required to discretize the MoM dual surface integral equation with up to 240 surface
unknowns (120 surface electric field unknowns and 120 surface magnetic field unknowns) per free space
wavelength. To solve the matrix equation efficiently, we develop a neighborhood impedance boundary
condition (NIBC) technique to solve the matrix equation. We next calculate the emissivities of ocean
surfaces using NIBC on surface integral equations using pulse basis/point matching and the Nystrom
method. Results are illustrated for L-band and show that emissivities using NIBC combined with
Nystrom are accurate to 2 × 10−4 for vertical polarization and 10−4 for the horizontal polarization.
This means that the new method can meet the accuracy goal of 0.2 psu salinity retrieval for the NASA
Aquarius mission. Results of surface fields and emissivities are also compared to that of impedance
boundary condition (IBC) which requires only 10 unknowns per free space wavelength.

1. INTRODUCTION

The studies of electromagnetic scattering and emission by ocean surfaces are important for remote
sensing of ocean dynamic parameters, e.g., sea surface wind (SSW) and sea surface salinity (SSS) [1].
For ocean scattering, analytical methods include the small perturbation method (SPM), first and second
order (SPM2) [2–6], the advanced integral equation model (AIEM) [7], the small slope approximation
(SSA) [8–12] and the two scale model (TSM) [13–15]. The challenges are to obtain accurate results.
These are particular difficult for cross polarization which are much smaller than co-polarization. The
other difficult case is the study of emissivity which has only small changes due to small changes of
salinity. For the Aquarius mission [16–19], the accuracy requirement of measuring salinity is 0.2 psu
(practical salinity unit) which requires that the emissivity to be within 4.9×10−4 for vertical polarization
and 3.4 × 10−4 for horizontal polarization.

With the advances of computers and computational electromagnetics, ocean scattering and emission
have been studied with numerical solutions of Maxwell equations [20–25]. The surface integral equations
with Method of Moments (MoM) solution is the most common method [26]. However, accuracy issue
is a major concern for numerical methods particularly for the convergence of emissivity with surface
samplings in MoM implementation. The accuracies of emissivities are related to energy conservation
requirement in numerical simulations. Prior simulations of ocean scattering, based on MoM, satisfy
energy conservation to within 0.5% at best. For ocean surfaces, sea water with a salinity of 35 psu at a

Received 7 May 2018, Accepted 25 June 2018, Scheduled 9 July 2018
* Corresponding author: Leung Tsang (leutsang@umich.edu).
1 Radiation Laboratory, Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor,
MI 48109-2122, USA. 2 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese
Academy of Sciences, Beijing 100101, China.



142 Qiao, Du, and Tsang

water temperature of 10◦C at L band has a relative permittivity of 75+61i with corresponding complex
refractive index 9.26 + 3.29i.

In such cases of large ocean wavenumber relative to air for the dual surface integral equations,
there are two Green’s functions g and g1 with respective wave numbers of k and k1 where k is the air
wavenumber, and k1 is the sea water wavenumber. The dual surface integral equations are computational
expensive because: (i) The number of unknowns is twice that of a single surface integral equation using
only g. (ii) The discretization of surface based on g1 has to be much denser than that of g. The usual
discretization of g, the air Green’s function, is 10 points per wavelength λ. The interval of discretization
Δx is 1/10 of a wavelength. Because k1 for ocean surface is 9.3 times larger, the discretization of the
surface should be 93 points per wavelength [27]. Thus the number of unknowns for the dual surface
integral equations is many time larger than that of the perfect electric conductor (PEC) or impedance
boundary condition (IBC) approach. This increase is even more serious for 3D problems. In addition,
it is found that the condition number with such a dense grid and large number of unknowns is much
higher creating convergence issues for an iterative solver. Thus surface discretization with more than
32 points per free space wavelength has not been used before.

In the past, researchers in ocean scattering have adopted two simplifying approaches. The first
approach is assuming that the ocean is a perfect electric conductor (PEC) with tangential electric field
equal to zero [20]. This gives a single surface integral equation with only g. Thus for a 100 wavelengths
surface, the total number of unknowns is only 1000. This approach ignores the finite value of the relative
permittivity of ocean. In the second approach, known as impedance boundary condition (IBC) [22, 23]
states that the tangential electric field of the surface is equal to the wave impedance of the dielectric
medium times the tangential magnetic field. This approximation is exact for a flat surface and may be
valid when the radius of curvature of the surface at a point is much larger than the wavelength. The
approach also requires only a single surface integral equation with 10 points per wavelength. For a 100
wavelength surface, the number of unknowns for IBC is also 1000.

In this paper, we address the accuracy issue by using the dual surface integral equations. We use
two methods: (i) the pulse basis function with point matching of dense grid with up to 120 points
per wavelength, so that Δx = λ/120 and (ii) using Nystrom method with 5th order basis function,
with the same number of surface field unknowns as (i). Both (i) and (ii) are using the same surface
profile but simulation is conducted under fair comparison so that (i) and (ii) have the same number
unknowns. To accelerate the computations, we use a novel method that takes advantage that the sea
surface is heavily attenuative so that using the wavenumber k1 gives the fast decaying property of
Green’s function in lower medium along with the propagating distance. This means that if one excite
one point on the surface, only nearby points are being influenced due to the fast decaying property
of waves in a lossy medium. In 2D problem, this means the impedance matrix is a banded matrix
for the lower medium integral equation. The band nature relating fields to each other is utilized
and is further found to lead to a much smaller conditioner number and a fast convergence. This
new method exploits the band nature of Green’s function and formulates the correct relationship of
surface tangential electric field and tangential magnetic fields. We name this method the Neighborhood
Impedance Boundary Condition (NIBC). There is a significant difference between the proposed NIBC
and existed fast methods, for instance, Physics-Based Two-Grid (PBTG) Method [28]. PBTG solves
the dual surface integral equations directly. As discussed in the paper, solving the dual surface integral
equations directly has poor conditioner number that becomes worse when the number of points are
increased to 64 points per wavelength. NIBC first solves the lower equation with the Green’s function
of sea water. Then the solution is substituted into the air equation. That gives much lower conditioner
number even when the number of points is increased to 120 points per wavelength as shown in this
paper. The compliance of energy conservation is achieved first time with NIBC. This is analogous to
SPM2 which has been shown to obey energy conservation [5, 6].

The organization of this paper is as follows. In Section 2, the surface integral equations are
discussed with the number of points and the number of unknowns. The ocean profiles used in the
numerical simulations are also described. Section 3 describes the proposed NIBC method. In Section 4,
the surface fields of various methods are compared. In Section 5, comparisons of emissivity are made
showing the accuracies. The sensitivities to salinity are also shown. The Nystrom method is described
in Appendix A.
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2. SURFACE INTEGRAL EQUATIONS

In this section, we describe the formulations used in Dual SIE and IBC. Also tapered wave incidence
and the ocean profiles used in the numerical simulations are described in this section.

2.1. Dual Surface Integral Equations

For the 2D rough surface scattering problem, the governing Dual surface integral equations (SIE) derived
from extinction theorem from both air and medium are [26]
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where ω is the angular frequency of incident wave. μ, ε and μ1, ε1 are the permeability and permittivity
of the air and the lower medium, respectively.

Other parameters shown in Dual SIE are defined as follows: ψ is the electric field if it is TE
polarization and is magnetic field if it is TM polarization. u is proportional to magnetic field for TE
case and is proportional to electric field for TM case. z = f(x) is the rough ocean surface profile and
f ′(x) is the slope of the surface. n̂ is the normal vector of the surface. ρ is an indicator of TE and TM
incidence which is μ

μ1
for TE case and ε

ε1
for TM case. ψinc is the incidence wave.

Based on the method of moment (MoM), we perform point matching to the surface integral
Equations (1) and (2), and get
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For matrix elements in Equation (5), we have
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For matrix elements in Equation (6), we have

A(1)
mn = g1 (xm, zm;xn, zn)Δx for m �= n (11)
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For the sake of simplicity, we can express Equations (5) and (6) in matrix notations as⎡
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2.2. Impedance Boundary Condition

In above surface integral equations, for usual perfect electric conductor (PEC) scattering problem,
discretization of surface with 10 points per free space wavelength is usually enough to get correct results.
However, for dielectric medium with a large permittivity, 10 points per wavelength is far from enough.
A usual criterion is to discretize the gird so that there are around 10 points per medium wavelength.
This will dramatically increase the number of unknowns. To avoid this, impedance boundary condition
(IBC) has been introduced in the SIE [22].

The IBC is based on the assumption that the surface electric field and surface magnetic field is
related through the following relationship

Ē|tan = η1 · �
n × H̄ (16)

where Ē|tan is tangential electric field and η1 is the impedance of the lower medium.
For the 2D problem, based on Equation (16), we can derive
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Combining Equations (17), (18) and (3), we have
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Thus for either TM or TE polarization we can substitute Equation (19) into Equation (1) to get a
simplified equation which only has either electric fields or magnetic fields as the unknowns.

2.3. Tapered Incidence Wave

In numerical simulations based on SIE, the infinite rough surface has to be truncated to a finite length
of L. Thus, to avoid the artificial edge reflections created by the truncation, a tapered incident wave is
used in our simulations which is defined as [26]
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where ψinc(x, z) is the incident field which is the function of position (x, z). θi is the wave incident
angle. g is the tapering parameter which is often chosen as L/4, where L is the length of surface. The
w function is introduced so that ψinc obeys wave equation which is defined as

w =
2
(x+ z tan θi)2

g2
− 1

(kg cos θi)
2 (22)

2.4. Surface Profiles and Point’s Number Discussion

In our studies, besides the IBC, we also use method of moment (MoM) with different basis functions to
solve the SIE. We take two approaches based on MoM. The first approach uses the pulse basis function
with point matching with up to 120 points per wavelength. The second approach is based on Nystrom
method with 5th order basis function [29, 30]. The details of Nystrom method are described in Appendix
A. Since we are about to address the accuracy issue of rough ocean surface scattering and emission with
these methods, the impact of surface sampling on accuracy needs to be studied. For a fair comparison,
the number of surface field unknowns of different methods will be same.

For the ocean surface profiles used in the numerical simulations, the Elfouhaily’s unified ocean wave
spectrum is used [31]. Figure 1 shows the ocean surface profiles for different methods with different
samplings. The sparse sampling surfaces are obtained from the denser surface by resampling. The
surface length of simulation is 60 times of L-band (1.26 GHz) incident wavelength. Surface wind speed
is chosen as 5m/s. This surface profile is used for all cases except otherwise indicated. In Table 1, the
numbers of unknowns of different samplings for different methods on the rough surface are shown. It is
noted that, for each sampling case, pulse/point matching and Nystrom have twice unknowns of that of
IBC.

(a) (b)

Figure 1. Ocean surface profiles with different samplings used in numerical simulations. λ is the
wavelength of L-band incidence. (a) Profiles for IBC and MoM with pulse/point matching. (b) Profiles
for MoM with Nystrom method.

3. NEIGHBORHOOD IMPEDANCE BOUNDARY CONDITION

3.1. Formulations of NIBC

In this section we are describing the proposed novel method, neighborhood impedance boundary
condition (NIBC) [32], to accelerate the Dual SIE solving process for highly dielectric lossy surfaces [33].
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Table 1. Comparison of the number of unknowns of IBC, pulse/point matching and Nystrom.

Number of Unknowns for a 60λ long surface
Methods IBC pulse/point matching Nystrom

Unknown type either ψ or u ψ and u ψ and u

Δx

λ
30 1800 3600 3600
λ
60 3600 7200 7200
λ

120 7200 14400 14400

Different from usual method which solves Equation (15) directly, the proposed NIBC method is trying
to solve lower equation first and then the upper one. Thus, we have

u = −A−1

1ρ B1ψ = Mψ (23)

where M is the matrix relating ū and ψ̄ and

A1ρ =
1
ρ
· A1 (24)

Then substitute Equation (23) into the upper equation in Equation (15), gives(
−AA−1

1ρ B1 +B

)
ψ = ψinc (25)

Equation (25) becomes the final equation we are solving.
As mentioned earlier, since the permittivity of sea water has a large imaginary part, the waves will

decay fast with the travelling distance. Thus the matrix A1 and B1 are actually band matrix. Figure 2
shows a comparison of 2D Green’s function of air and sea water in terms of absolute value. It is easy
to see that the Green’s function in the sea water decays very fast. Even for a propagating distance of
one λ, the absolute value drops to 10−12 which is much lower than the Green’s function in the air. This
means that A1 and B1 actually behave like a band matrix. The matrix elements quickly decrease when
moving away from the diagonal line. Therefore, we can set up a bandwidth (BW ) of the matrices that
the matrix entries outside the BW are set to be zero. This means only matrix elements within the
BW are considered. Apparently, the selection of BW determines the accuracy. To test the accuracy of
proposed NIBC, the brute force solution to Equation (25) in the manuscript is set to be the benchmark,
which solves equation with the whole matrices B1, A1ρ. And we found that even a small bandwidth
can give quite accurate results to meet satellite accuracy requirement.

In our numerical implementation, the BW is chosen to be λ
2 to meet our accuracy requirement.

Now the problems reduces to solve for the inverse matrix of a diagonal matrix with a bandwidth BW.
Here we propose a banded matrix solver for this matrix-inverse problem. The following is an expression
of the definition of inversion.

A1A
−1

1 = I (26)

According to the physical meaning of A
−1

1 , we further found that A
−1

1 is also band matrix. Then

in order to obtain the inverse of A1, we can solve for each column of A
−1

1 one at a time. That is each
time we are solving

A1an = en (27)

where ān is the nth column of the inverse of the matrix A1, and ēn is a column vector with all zero
elements except the nth element.

Figure 3 shows an example about how we invert the matrix. In this case, the BW is 3 grids and

the figure is showing a case to solve for the 4th column of the matrix A
−1

1 . Then we just need to
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Figure 2. Comparison of 2D Green’s function in the air and sea water as a function of propagating
distance.

Figure 3. Fast method for band matrix inversion.

solve an inversion problem of size 5 by 5. The ‘x’ and ‘d’ in the figure represent diagonal and off-
diagonal elements, respectively. Thus compared to usual method of inversing a matrix which is of the
computation complexity order O(N3), our method will only require O(N ·BW 3).

To further improve accuracy, we further use the Nystrom method for testing and basis functions.
The NIBC are also used in the Nystrom method formulation. The details are described in the
Appendix A.

3.2. NIBC for Alleviating Numerical Issues Brought by Dense Grid

As mentioned above, due to the much larger wavenumber in the lower SIE, a much denser discretization
is required to solve the Dual SIE accurately. Besides the huge consumption of memory due to more
number of unknowns, the slow convergence problems in iterations also arise. Figure 4 shows the residual
error along with iterative steps produced by generalized minimal residual method (GMRES) for two
kinds of surfaces: 60λ long surface with 60 points/λ and 60λ long surface with 10 points/λ for both
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(a) (b)

Figure 4. Residual error changing with iterations for two kinds of surfaces: 60λ long surface with 60
points/λ (blue curve) and 60 λ long surface with 10 points/λ (orange curve) for both (a) TM polarization
and (b) TE polarization.

Figure 5. Condition number comparison for IBC, NIBC, and benchmark method for ocean surfaces.

TM and TE incidence. Here the λ is the wavelength of incidence. It is seen that the dense grid case
converges much slower than the coarse grid case. This phenomenon has also been found in 3D problem
case: the dense grid always converge much slowly than coarse grid case.

The proposed NIBC can deal with this convergence problem efficiently. In Figure 5, we plot the
condition number comparison for IBC, NIBC, and benchmark method (Direct MoM) for ocean surfaces.
It is seen that the NIBC has a much smaller condition number than IBC and benchmark solution.
The benchmark solution is defined as the solution of solving Equation (15) directly. Thus NIBC has
actually changed the property of the impedance matrix. A small condition number means a good matrix
property and a fast convergence rate when using iterative solvers. A near field preconditioner was used
in a previous paper [34]. However, the conditioner number is still poor for 64 points per wavelength.
The energy conservation was only improved slightly.

In Table 2 we compare the CPU time for the iterations between direct MoM for solving
Equation (15) and NIBC for the same cases. We can see that since the impedance matrix of NIBC has
smaller condition number thus the iterations take less time to converge to a desired residual error.
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Table 2. Comparison of CPU time by direct MoM and MoM/NIBC.

Surface length is 60λ
Number of Unknowns Direct MoM MoM + NIBC Δx

7200 19.9 sec 1.7 sec λ
60

14400 96.7 sec 5.3 sec λ
120

4. RESULTS AND DISCUSSION OF SURFACE FIELDS

In this section we compare the surface fields among various methods. The rough ocean surface profiles
generated with Elfouhaily spectrum are described in Section 2.4. The relative permittivity of sea water
is calculated with K-S model based on Debye equation with sea surface temperature at 20◦, sea surface
salinity at 35 psu and frequency at 1.26 GHz [33]. The error of using Frobenius norm is used to calculate
the difference between two arrays. It is defined as

error% =
‖array1 − array2‖F

‖array1‖F
× 100% (28)

where ‖ ‖F is the Frobenius norm

‖Cn×1‖F =

√√√√ n∑
i=1

|ci|2 (29)

4.1. Comparison of Pulse/Point Matching with Coarse and Dense Grid

Figure 6 shows the comparison of surface fields calculated by MoM pulse/point matching for both TE
and TM case for different discretization density using the same surface profile. The x axis is the surface
length in wavelength. The y axis is the absolute values of surface fields on the surface. As is shown
in Figure 6, surface fields are closed to each other when the surface sampling densities are 30, 60, 120
points per wavelength, but they are quite different from the results with coarse grid which is 10 points
per wavelength. This means that for Dual SIE, sampling density with 10 points per wavelength is far
from enough to obtain accurate results. This validates our statement that dense grid is necessary for
medium with a large permittivity.

To quantitatively evaluate the numerical results of MoM pulse/point matching based on Dual SIE
for different discretization densities, the errors of surface fields are given in Table 3. The benchmark is
chosen as numerical results with 120 points per wavelength samplings. As the table shows, compared
to the quite large errors when sampling density is 10 points per wavelength, errors are relatively small
when samplings are denser than 30 points per wavelength. This indicates that the numerical results
begin to converge when grids are denser than 30 points per wavelength. Hence, to obtain accurate
enough emissivity of ocean surface, dense grids of surface are required.

Table 3. Errors of MoM pulse/point matching calculation results with different samplings on surfaces.
The benchmark is chosen as numerical results with 120 points per wavelength samplings.

Surface length is 60λ

Δx Error (%) of ψ Error (%) of u
TM TE TM TE

λ
10 10.56 121.5 55.91 9.951
λ
30 2.166 1.883 3.175 1.760
λ
60 1.166 0.4337 1.851 1.195
λ

120 benchmark benchmark benchmark benchmark
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(a)

(b)

A

Figure 6. Comparisons of surface fields calculated by using MoM pulse/point matching based on dual
SIE with different dense samplings on surfaces. (a) TM case (b) TE case; Left panels are ψ; Right
panels are u.

Table 4. Errors of surface fields and currents with IBC for both TE and TM polarization. The
benchmark is chosen as numerical results of Dual SIE with 120 points per wavelength samplings.

Surface length is 60λ

Method/Δx Error (%) of ψ Error (%) of u
TM TE TM TE

IBC/ λ
10 3.782 2.347 4.287 2.628

Dual SIE/ λ
120 benchmark benchmark benchmark benchmark

4.2. Comparisons between IBC and Dual SIE

The impedance boundary condition (IBC) [22, 23] was proposed by making the approximation that the
tangential electric field of the surface is equal to the wave impedance of the dielectric medium times the
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tangential magnetic field. Thus it reserves only the upper equation in Dual SIE with only half unknowns,
and the requirement of surface sampling is 10 points per wavelength since only green function of free
space is used.

In Table 4, the errors of surface fields with IBC for both TE and TM polarization are given. The
benchmark is chosen as numerical results of Dual SIE with 120 points per wavelength samplings. As
shown in the table, the errors are relatively large considering the high accuracy requirement of ocean
emissivity. Further accuracy analyses of IBC on emissivities are shown in the following section.

4.3. Comparisons among Direct MoM, IBC and NIBC

In Figure 7, we plot the error defined in Equation (28) of matrix M in terms of Frobenius norm
for TM polarization. M is relating surface magnetic field and surface electric field and is defined in
Equation (23). For IBC, the matrix M is simply a diagonal matrix due to the definition of IBC as
defined in Equation (19). The case is the ocean surfaces with different wind speeds. From Figure 7 we
see that the error of NIBC is less than 0.1% while the error norm for IBC is more than 80%.

Figure 7. Comparison of matrix M between
NIBC and IBC with direct MoM for ocean
surfaces under different wind speeds for TM
polarization.

Figure 8. Surface fields errors of IBC and NIBC
compared to direct MoM for ocean surface under
different wind speeds for TM polarization.

Figure 8 shows the comparison of surface fields errors of IBC and NIBC compared to benchmark
solutions (direct MoM) for TM polarization. The red lines are surface fields calculated by NIBC and
black lines are IBC. It is also observed that the error norm of NIBC is less than 0.1% for ocean surfaces
under different winds speeds while IBC has an error norm of more than 1%.

In our numerical implementations, the NIBC is also used with MoM Nystrom. Table 5 gives the
errors of NIBC with pulse/point matching and Nystrom. From Table 5, it can be seen that the errors
of surface by using Nystrom + NIBC are quite small. However, the errors of pulse/point matching +
NIBC are relatively lager.

5. OCEAN EMISSIVITY AND SENSITIVITY TO SALINITY

5.1. Accuracies of Emissivity with Various MoM Methods

In this section, we apply the NIBC to calculate the emissivity of ocean surface. We have used the Klein
and Swift [33] model to convert PSU into dielectric constants. Then we simulate the emission of sea
surface using the different dielectric constant. For example, the retrieval goal of Aquarius mission is
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Table 5. Errors of NIBC with pulse/point matching and Nystrom. The benchmarks are MoM
pulse/point matching and MoM Nystrom, respectively.

Surface length is 60λ

Method/Δx Error (%) of ψ Error (%) of u
TM TE TM TE

Pulse/Point matching
+ NIBC/ λ

120

6.828 × 10−2 1.553 4.536 2.339

Nystrom + NIBC/ λ
120 7.200 × 10−6 3.475 × 10−5 3.966 × 10−5 1.166 × 10−5

0.2 PSU. Then we studied the emission of sea surface under two PSUs: 34 and 34.2. We can get two
dielectric constants for 34 and 34.2 psu respectively. Then we obtain the emission accuracies for both
TE and TM incidence. The computed results from the numerical method are the surface electric fields
(magnetic currents) and surface magnetic fields (electric currents). Through these two surface fields, we
compute the power absorbed by the lossy medium (absorption) and power scattered outside (reflected
power). The energy conservation is defined as follows:

energy conservation =
absorption + reflectivity

incident power
(30)

which should be equal to unity for energy conservation. Thus we have also checked energy conservation
to make sure that our results are physically correct.

We use the following methods to calculate the ocean emissivity and compare their accuracies: i)
IBC; ii) MoM pulse/point matching; iii) MoM pulse/point matching + NIBC; iv) MoM Nystrom; v)
MoM Nystrom + NIBC.

In Table 6, Table 7 and Table 8, the emissivities and the corresponding energy conservations from
various methods are given. Table 6 shows the numerical results of emissivity obtained by IBC. The
advantage of IBC is that there is only a single surface integral equation with only air green function
g. This eliminates the use of dense grid. Thus only 10 points per wavelength is used. As shown in
the table, energy conservation of IBC is satisfied to 50 × 10−4 for vertical polarization and 6.5 × 10−4

for horizontal polarization. Comparing to the Dual SIE results with dense grids shown in the following
tables, IBC does not give accurate enough ocean emissivities, especially for vertical polarization.

Table 6. Emissivity and energy conservation given by IBC with different surface sampling densities.

Surface length is 60λ

Number of Unknowns Emissivity Energy Conservation Δx
TM TE TM TE

600 0.394744 0.238267 0.994999 1.000647 λ
10

Table 7. Emissivity and energy conservation given by pulse/point matching and pulse/point matching
+ NIBC with different surface sampling densities.

Surface length is 60λ

Number of

Unknowns

Emissivity

(with/without NIBC)

Energy Conservation

(with/without NIBC) Δx

TM TE TM TE

3600 0.381721/0.381588 0.246651/0.246895 0.997049/0.997050 1.000271/1.000245 λ
30

7200 0.393640/0.393592 0.239148/0.239405 0.997487/0.997592 1.000077/1.000045 λ
60

14400 0.395614/0.395638 0.238299/0.238600 0.998235/0.998328 0.999977/0.999954 λ
120
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In Table 7, the emissivities are given by MoM pulse/point matching with and without NIBC for
different dense of profiles. For the emissivity of ocean surface with 120 points per wavelength density,
the accuracies of these two methods are 19.74 × 10−4 and 20.46 × 10−4 for TM case, and 2.44 × 10−4

and 8.05 × 10−4 for TE case. Energy conservations for horizontal polarization are better than that for
vertical polarization. Considering the Aquarius mission requirements, this means that MoM pulse/point
matching on Dual SIE of 120 points per wavelength dense grid does not satisfy its accuracy requirements.
For different dense samplings, the ocean surface emissivities calculated with pulse/point matching +
NIBC have 3 decimal places of accuracy.

Table 8 shows the ocean emissivities and corresponding energy conservations obtained by MoM
Nystrom with and without NIBC for different dense of profiles. The Nystrom method is described in
Appendix A. The Nystrom uses 5th order basis function. Thus to have the same number of unknowns,
here the surface sampling intervals are 5 times of those in pulse/point matching, i.e., Δx = λ

6 , λ
12 and

λ
24 , respectively. Compared to pulse/point matching and IBC, Nystrom gives more accurate energy
conservations on both vertical and horizontal polarizations for various surface sampling densities. For
the emissivity of ocean surface with interval Δx = λ

24 , namely, 240 surface unknowns per wavelength,
the accuracies of MoM Nystrom are 1.845×10−4 for vertical polarization and 1.045×10−4 for horizontal
polarization, respectively. These mean that MoM Nystrom with such dense discretization meets the
accuracy requirement of Aquarius mission. In addition, in terms of NIBC, it has 6 decimal places of
accuracy on emissivity and 8 decimal places of accuracy on energy conservation, which indicates NIBC
with Nystrom can accelerate the calculation speed and also keep high accuracy on emissivity calculation.

Table 8. Emissivity and energy conservation given by Nystrom and Nystrom + NIBC with different
surface sampling densities.

Surface length is 60λ

Number of

Unknowns

Emissivity

(with/without NIBC)

Energy Conservation

(with/without NIBC) Δx

TM TE TM TE

3600 0.39591010/0.39590992 0.23819768/0.23819780 0.99971876/0.99971876 0.99997406/0.99997406 λ
6

7200 0.39617730/0.39617724 0.23833828/0.23833832 0.99971938/0.99971938 0.99997417/0.99997417 λ
12

14400 0.39636175/0.39636171 0.23844277/0.23844279 0.99972281/0.99972281 0.99997432/0.99997432 λ
24

For the sake of intuitive comparison, the emissivities calculated by different methods for various
dense grids are plotted in Figure 9. The error bars denote the differences of energy conservations and
unit one for each. As shown in the figures, the method of MoM Nystrom + NIBC converges very well
and has best energy conservations. This indicates that it has high accuracy of computing the ocean
emissivity, which meets the accuracy requirement of Aquarius mission as demonstrated earlier. On the
other hand, MoM pulse/point matching + NIBC converges relatively slow and doesn’t give as high
accuracy as MoM Nystrom + NIBC. The IBC gives worst energy conservations among three methods,
which means its accuracy is lower than the other two methods.

5.2. Sensitivity of Emissivity to Salinity

One of NASA Aquarius mission objectives is to measure sea surface salinity (SSS) accurate to 0.2 psu.
Since Nystrom + NIBC has high accuracy and fast speed on ocean emissivity calculation, we use this
method to study the sensitivity of emissivity to sea surface salinity. In Figure 10, the ocean emissivities
in two different realizations are shown in terms of sea surface salinity from 34 psu to 35 psu with 0.2 psu
interval. These two different realizations correspond to two different ocean surface profiles. As the
figures show, with the increasing of SSS, the emissivities of both horizontal and vertical polarizations
decrease linearly. The changes of emissivities with the 0.2 psu SSS change are 4.9 × 10−4 for vertical
polarization and 3.4 × 10−4 for the horizontal polarization. This result is consistent with previous
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(a) (b)

Figure 9. Comparison of emissivities calculated by IBC, MoM pulse/point matching + NIBC and
MoM Nystrom + NIBC for different dense of profiles. The bars denote the differences of corresponding
energy conservations and unit one. (a) Vertical polarization. (b) Horizontal polarization.

(a) (b)

Figure 10. Emissivities calculated by Nystrom + NIBC in terms of sea surface salinity in two
realizations. (a) Vertical polarization. (b) Horizontal polarization.

studies [16, 17]. In our two realizations, the differences of ocean emissivities are 1.8 × 10−2 for vertical
polarization and 1.1 × 10−2 for the horizontal polarization, which are much larger the change due to
salinity change. It is also noted that the curves of the two different realizations are parallel to each
other, which means change of emissivity due to change of salinity is insensitive to different ocean surface
geometries. This indicates that the Monte Carlo simulations can be applied in the numerical simulations
for ocean emissivities utilizing our method. Although there are changes of emissivities due to realizations
of ocean surfaces, the changes of emissivities due to salinity remain the same because the emissivities
are calculated accurately for each realization.
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6. CONCLUSIONS

In this paper, we have studied the electromagnetic scattering and emission from ocean surface by solving
dual surface integral equations (Dual SIE) with numerical methods. However, when applying moment
method on the Dual SIE to get accurate surface fields and emissivity, a dense discretization is required
for two reasons: i) the much larger wavenumber of sea water due to its high permittivity; ii) fine
scale feature of ocean surface geometry. A set of dense discretization will result in a large number of
unknowns and expensive computational consumptions. What is more the dense grid will always bring
up the slow convergence problems when the matrix equation is solved by iterative methods. To solve
the Dual SIE efficiently, a neighborhood impedance boundary condition (NIBC) technique is proposed.
In 2D problem, this method takes the impedance matrix as a banded matrix for the lower medium
integral equation, and can dramatically reduce the cost of memory and CPU consumption. It also
improves the property of impedance matrix so as to accelerate the convergence rate. The comparisons
of surface fields and CPU time between NIBC and normal methods have shown that NIBC is both
fast and accurate. We then use this method to calculate the ocean emissivity with MoM pulse/point
matching and Nystrom method on the L-band. The sensitivity of emissivity to sea surface salinity is
also investigated. Results show that, with the number of surface unknowns up to 240 per wavelength,
emissivities calculated by using NIBC combined by MoM Nystrom are accurate to 2× 10−4 for vertical
polarization and 10−4 for the horizontal polarization. The proposed method is the first time that energy
conservation is obeyed to 0.01%. Previous works were only within 0.5% [35, 36]. Such an accuracy meets
the NASA Aquarius mission requirement to measure ocean salinity within 0.2 psu RMS [17]. In addition,
through simulations using different profiles, we found that the changes of ocean emissivities due to SSS
change are not influenced by the ocean geometry. The changes of emissivities due to salinity in the
presence of ocean roughness remain a challenging problem in view of L-band missions of SMOS [37, 38],
Aquarius [17–19], and the proposed MICAP [39]. There are also proposed space borne mission using
P-band radiometers [40, 41].

Furthermore, the proposed NIBC in combination with Nystrom method should be rigorously
pursued for 3D simulations. The NIBC method is using the band nature of the lower impedance
matrices, which is based on physics. For the 3D case, NIBC will be a sparse matrix. We have not
compared with results of analytic methods, as the purpose of this paper is to demonstrate energy
conservation with the proposed new numerical method simulations of ocean scattering.

ACKNOWLEDGMENT

The high-performance computing facilities of FLUX at the University of Michigan, Ann Arbor, MI,
USA, was used.

APPENDIX A.

The appendix presents the derivation of Nystrom method for the Dual SIE shown in Equations (1)
and (2) [29, 30]. For the convenience of derivation, we change the independent variable from x to t.

For each interval, the 5 basis functions are 0th up to 4th order Legendre polynomials, which are
listed as

F1 = P0 = 1
F2 = P1 = t

F3 = P2 =
1
2
(
3t2 − 1

)
F4 = P3 =

1
2
(
5t3 − 3t

)
F5 = P4 =

1
8
(
35t4 − 30t2 + 3

)
(A1)

Thus to have a fair comparison with pulse basis functions, the interval Δx is 5 times larger.
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Thus the surface integral equations are rewritten as
1
2
ψ (t) +

∫
Spv

dt′
[
KN

(
t, t′
)
ψ
(
t′
)]

+
∫
S
dt′
[
KD

(
t, t′
)
u
(
t′
)]

= ψinc (x (t) , z (t)) (A2)

−1
2
ψ (t) +

∫
Spv

dt′
[
K1N

(
t, t′
)
ψ
(
t′
)]

+
∫
S
dt′
[
1
ρ
K1D

(
t, t′
)
u
(
t′
)]

= 0 (A3)

u
(
t′
)

=
√

1 + (f ′ (x (t′)))2�
n · ∇′ψ

(
t′
)

(A4)

where
KD

(
t, t′
)

= g
(
x (t) , z (t) ;x

(
t′
)
, z
(
t′
))

K1D

(
t, t′
)

= g1
(
x (t) , z (t) ;x

(
t′
)
, z
(
t′
))

KN

(
t, t′
)

= −
√

1 + (f ′ (x (t′)))2
[�
n · ∇′g

(
x (t) , z (t) ;x

(
t′
)
, z
(
t′
))]

K1N

(
t, t′
)

= −
√

1 + (f ′ (x (t′)))2
[

�
n · ∇′g1

(
x (t) , z (t) ;x

(
t′
)
, z
(
t′
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(A5)

Here the Green’s functions for upper and lower medium are defined as

g
(
t, t′
)

=
i

4
H

(1)
0

(
k

√
[x (t) − x (t′)]2 + [z (t) − z (t′)]2

)

g1
(
t, t′
)

=
i

4
H

(1)
0

(
k1

√
[x (t) − x (t′)]2 + [z (t) − z (t′)]2

) (A6)

By applying moment method, we divide the rough surface into Np patches. The unknown is
approximated over each patch by a basis function expansion. For example, for each patch we use the

ψ
(
t′
)

=
Nk∑
k=1

bψkp
Fk

(
t
′
local

)
(A7)

Note that p is the patch index, and t′local is the local coordinate in that patch. Every patch has
k = 1, . . . , Nk basis functions. In our works, we use the 5th order Nystrom method, i.e., Nk = 5.

Then the integration is done by quadrature rule∫ 1

−1
f (t) dt =

n∑
i=1

wif (ti) (A8)

where
ti = ith zero for Pn (t)

wi =
2(

1 − t2i
)
(P ′

n (ti))
2

(A9)

Thus, the number of surface field unknowns is NkNp, and we have

ψ
(
r′
)

=
Np∑
p=1

Nk∑
k=1

bψkp
Fk
(
r′
)

(A10)

We need to do an integral over the pth patch with the kernel

ψinc (r) =
∫
S
K
(
r, r′

)
ψ
(
r′
)
ds′ (A11)
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Since there are Nk basis functions per patch, we also need to have Nk testing functions per patch.
A set of smooth testing functions Tl(r̄′) with support over each patch and complete to order Nk is
introduced. Testing is on the mth patch∫

Sm

drTl (r)ψinc (r) =
∫
Sm

drTl (r)
N∑
p=1

Nk∑
k=1

bψkp

∫
Sp

K
(
r, r′

)
Fk
(
r′
)
ds′

m = 1, 2, ..., N (A12)
l = 1, 2, ..., Nk

Nk∑
q=1

wqTl (rqm)ψinc (rqm) =
Nk∑
q=1

wqTl (rqm)
N∑
p=1

Nk∑
k=1

bψkp

∫
Sp

K
(
rqm, r

′)Fk (r′)ds′
m = 1, 2, ..., N (A13)
l = 1, 2, ..., Nk

We define
Qlq = wqTl (rqm)
q = 1, 2, ..., Nk

l = 1, 2, ..., Nk

(A14)

N∑
p=1

Nk∑
k=1

bψkp

∫
Sp

K
(
rqm , r

′)Fk (r′)ds′ = rq (A15)

Q is a Nk ×Nk matrix, then
Nk∑
q=1

Qlqψinc (rqm) =
Nk∑
q=1

Qlqrq (A16)

Since m is fixed on the mth patch, and Qlq is a square matrix, we can take an inverse. Then we
have

Qψinc = Qr

ψinc = r
(A17)

ψinc (rqm) =
N∑
p=1

Nk∑
k=1

bψkp

∫
Sp

K
(
rqm , r

′)Fk (r′)ds′
q = 1, 2, ..., Nk

m = 1, 2, ..., N

(A18)

For each m, p is split into near and far field shown as

ψinc (rqm) =
∑

p∈farm

Nk∑
k=1

bψkp

∫
Sp

K
(
rqm, r

′)Fk (r′)ds′ + ∑
p∈nearm

Nk∑
k=1

bψkp

∫
Sp

K
(
rqm, r

′)Fk (r′)ds′ (A19)

For far field, we map r̄′ into t′ and then map locally to t′local, then

t′ =
Δt
2
t′local +

(
t′beg +

Δt
2

)
Δt = t′end − t′beg

−1 ≤ t′local ≤ 1

(A20)
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∫
Sp

K
(
rqm, r

′)Fk (r′)ds′ =
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(
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2
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′
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r̄qp is the location of points according to the zeros of PNk
. Then we have
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∑

p∈nearm

Nk∑
k=1

bψkp

∫
Sp

K
(
rqm, r

′)Fk (r′)ds′

+
∑

p∈farm

Nk∑
k=1

bψkp

Δt
2

Nk∑
qp=1

wqK
(
rqm , rqp

)
Fk
(
rqp
)

q = 1, 2, ..., Nk

m = 1, 2, ..., N

(A22)

However, since
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=
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(A23)

We have
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For near field,
∫
Sp
K (rqm, r′)Fk (r′)ds′ has singular integrand for self patch so that we need

quadrature to handle this singularity. Let∫
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Then we have⎡
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Note the rows are the basis functions P0, P1, P2, P3, P4, then
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On the pth patch,
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where wq is the weight of Gauss Legendre quadrature taken for −1 ≤ tlocal ≤ 1.
Now considering the surface integral equation for dielectric rough surface shown in Equation (A1),

we use the Nystrom method and have
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+
Nk∑
qp=1

bukp

Δt
2

Nk∑
qp=1

wqK
(
rqm , rqp

)
Fk
(
rqp
)

q =1, 2, ..., Nk

m =1, 2, ..., N

ψinc (rqm) =
1
2
ψ (rqm) +

∑
p∈near

Nk∑
k=1

bψkp

∫
Sp

KN

(
rqm, r

′)Fk (r′)ds′

+
∑
p∈far

Nk∑
qp=1

Δt
2
wqKN

(
rqm, rqp

)
ψp
(
rqp
)

+
∑

p∈near

Nk∑
k=1

bukp

∫
Sp

KD

(
rqm, r

′)Fk (r′)ds′

+
∑
p∈far

Nk∑
qp=1

Δt
2
wqKD

(
rqm, rqp

)
up
(
rqp
)

q = 1, 2, ..., Nk

m = 1, 2, ..., N

(A30)

Then
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Note that the summation over q and j is over the quadrature points, and the summation over k is
over the basis functions.

Similarly, for the surface integral equation for lower medium, we have

− 1
2
ψ (rqm) +

∑
p∈near

Nk∑
k=1

w
(1N)
j ψp

(
rjp
)

+
∑
p∈far

Nk∑
qp=1

Δt
2
wqK1N

(
rqm, rqp

)
ψp
(
rqp
)

+
1
ρ

∑
p∈near

Nk∑
k=1

w
(1D)
j up

(
rjp
)

+
1
ρ

∑
p∈far

Nk∑
qp=1

Δt
2
wqK1D

(
rqm, rqp

)
up
(
rqp
)

= 0

j, q = 1, 2, ..., Nk

m = 1, 2, ..., N

(A33)

To implement our NIBC with Nystrom, we set K1N

(
rqm, rqp

)
and K1D

(
rqm, rqp

)
equal to zero

when the distances between source points and field points are larger than BW.
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