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Unconditional Stability Analysis of the 3D-Radial Point
Interpolation Method and Crank-Nicolson Scheme

Hichem Naamen* and Taoufik Aguili

Abstract—This paper provides the theoretical validation of the unconditional stability using the Von
Neumann method for the radial point interpolation method (RPIM) and Crank-Nicolson (CN) scheme,
in a three dimensional (3D) problem. Moreover, the matrix inversion process, typical of the CN implicit
scheme, is circumvented and approximated by a finite series for a particular stability factor range. To
validate numerically the efficiency of the CN-RPIM unconditional stability, the resonant frequency inside
a 2D double ridged rectangular cavity is simulated. The numerical results confirm that the CN-RPIM is
significantly efficient, since the simulation time is reduced by up to 90%, and the memory requirement
is saved up to 81%, with a little loss of accuracy.

1. INTRODUCTION

Well posed electromagnetic problems [1] are characteristically reduced to a set of partial differential
equations (PDEs) in microwave engineering simulation and design [2]. The classical mesh-methods,
such as the finite element method (FEM), method of moments (MoM) and finite difference time-
domain method (FDTD), have thus been developed to convert such PDEs into sets of solvable algebraic
equations [3]. Despite their wide performances the involved mesh/grid and the generated polygonisation
for complex geometries [4] reduce their applications

Meshless methods use a set of unconnected nodes, randomly spread or regularly distributed to
approximate the solution [5]. Among them the smoothed particle electromagnetic method (SPEM) [6],
the partition of unity method (PUM) [7, 8], and the meshless local PetrovGalerkin method (MLPGM) [9]
have been implemented to solve electromagnetic problems. The radial point interpolation method
(RPIM) is a truly meshless method used for space discretization conjointly to the leapfrog explicit time
stepping [10]. However, the Courant-Friedrich-Levy (CFL) condition limits the maximum time-step
and therefore the minimal space discretization interval. To overcome such a restriction unconditionally-
stable RPI methods have been elaborated centered on the implicit finite difference, such as alternating-
direction implicit (ADI) and Crank-Nicolson (CN) schemes. Thus [11, 13] introduced the hybridization
of the ADIRPIM and gave the proof of its unconditional stability for a three-dimensional domain. [12]
proposed the CN-RPIM and numerically verified its unconditional stability for a 2-D domain as far as
the locally one-dimensional RPIM (LODRPIM) [13] schemes have also been studied.

In this paper, using the Von-Neumann method based on spatial Fourier modes and for a
three-dimensional open domain filled with a linear, isotropic and non-dispersive lossless medium,
we theoretically justify the unconditional stability of the CN-RPIM. Moreover, the matrix inversion
succeeding the Crank-Nicolson implicit scheme is theoretically approximated and numerically justified,
as long as the stability factor S is inferior to 2.525 for our studied structure. The CN-RPIM is
implemented for a double-ridged rectangular cavity [14, 15], and we found an excellent agreement
between the numerical and analytical resonant frequencies [16] for different numerical stability factors.
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The memory requirements and CPU time are investigated for the CN-RPIM. The CN scheme saves up
to 81% of memory and 90% of CPU time when the stability factor S = 10.

2. RADIAL POINT INTERPOLATION METHOD RPIM ALGORITHM

Let u (X) be a function defined in the problem domain. The RPIM interpolates u (X) around a certain
nodeX(x, y, z). We force the interpolation function to pass through the function values at each scattered
node, within the defined support domain shown in Figure 1. The RPIM with polynomial basis functions
defines the field variable function in the following way and therefore can be written as:

u (X) =
i=N∑
i=1

Ri (X) ai +

j=M∑
j=1

Pj (X) bj, (1)

where Ri(X) and Pj(X) are the radial basis functions and the polynomial basis functions, respectively;
ai and bj are constant coefficients yet to be determined; N is the number of nodes in the support domain
controlling the number of basis functions; M is the number of polynomial basis terms. The Gaussian
function is selected to be the radial basis function and defined as an exponential function of the distance
r with shape parameter c to control the decaying degree. With this choice the radial basis function is
expressed as:

rn (X) = exp
(
−c |r/rmax|2

)
, (2)

where r =
√

(x− xn)
2 + (y − yn)

2 + (z − zn)
2 is the distance between the point of interest X and a

node at Xn (xn, yn, zn) in the support domain, and rmax is the maximum distance between the selected
point to be interpolated and the nodes in the support domain. Usually the number M of polynomial
basis terms is greater than the radial basis ones. Thus four terms of linear monomial basis functions are
used, and the polynomial basis is [1, x, y, z]. Consequently, for the point X, Equation (1) is rewritten
in the vector form as follows:

u (X) = RT (X)a+PT (X)b, (3)

where a and b are the coefficient vectors; RT (X) is the radial basis vector; PT (X) is the polynomial
basis one defined as:

RT (X) = [r1 (X) , r2 (X) , r3 (X) , . . . , rN (X)] , (4)

PT (X) = [p1 (X) , p2 (X) , p3 (X) , p4 (X)] = [1, x, y, z] . (5)

By imposing to u (X) interpolated by Equation (1) to pass throughout every scattered node in the
field’s support domain of the point of interest X, an algebraic linear system is obtained relating the

 

rmax

supportdomain

Figure 1. Discretized problem domain under study and the support domain of the node X.
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factual values of field variables at the N nodes in the support domain to the unknown interpolation
coefficients. The linear algebraic system expressed as a matrix equation is given by:

Us = R0a+P0b, (6)

where Us is the vector that collects the values of field variables, R0 the moment matrix assembling the
radial basis R (X), and P0 the moment matrix assembling the polynomial basis P (X), respectively
evaluated at the N nodes in the support domain. The polynomial term of the basis function must
support an additional condition that ensures a unique solution formulated as a set of homogeneous
equations [5]. Henceforth, a condition of the following form is obtained:

PT
0 · a = 0. (7)

Combining Equations (6) and (7) and rewriting them in the matrix form yields:[
R0 P0

PT
0 0

] [
a
b

]
=

[
Us

0

]
or G

[
a
b

]
=

[
Us

0

]
. (8)

R0 is an N×N moment matrix, and P0 is an N×M matrix. Since R0 is symmetric, matrix G will
be symmetric too. If G is invertible, the corresponding solution is unique for vectors of interpolation a
and b. By exploiting the nonsingular property of matrix R0 we obtain:

b = SbUs, where : Sb=
[
PT

0 R
−1
0 P0

]−1
PT

0 R
−1
0 (9)

a = SaUs, where : Sa=R−1
0 −R−1

0 P0Sb. (10)

Finally, the interpolation Equation (1) is rewritten:

u (X) =
[
RT (X)Sa +PT (X)Sb

]
Us = Φ (X)Us. (11)

Here Φ (X) is the matrix of shape functions including N shape functions:

Φ (X) = RT (X)Sa +PT (X)Sb= [φ1 (X) , φ2 (X) , . . . φi (X) , . . . φN (X)] , (12)

with φk (X) being the kth node shape function in the support domain expressed as:

φk (X) =
N∑
i=1

Ri (X)Sa
ik +

M∑
j=1

Pj (X)Sb
jk. (13)

Here Sa
ik and S

b
jk are the (ik) element and (jk) element of the constant matrices, respectively. Thus,

the shape functions derivatives are deduced directly, and with q = x, y, z we find:

∂∅k
∂q

(X) =
N∑
i=1

∂Ri

∂q
(X)Sa

ik +
M∑
j=1

∂Pj

∂q
(X)Sb

jk. (14)

Since the radial basis function has a Gaussian form, the first derivative in Equation (14) is
thoroughly calculated, giving:

∂Ri

∂q
(X) = − 2c

r2max

(q − qi)Ri (x, y, z) . (15)

3. IMPLEMENTATION OF THE CRANK-NICOLSON SCHEME IN THE RPIM

3.1. The 3D-RPIM Approach for Electromagnetics in Time-Domain

Two sets of staggered node distributions are generated, in favor of the implementation of Dirichlet
boundary conditions for the transverse electric field. Firstly, a set of E-nodes is arbitrarily and randomly
distributed over the domain [13]. Secondly, theH-nodes are positioned on the edge centers of the Voronoi
cells tessellation. The E-nodes distribution can be uniform inducing the uniformity of the H-nodes
distribution similar to the point-matched time-domain achieved by the finite element method [22]. Once
the dual node distributions generated in the three-dimensional domain, the electric and magnetic shape
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functions and their associated derivatives are approximated respectively by Equations (13) and (14).
Thus, the RPIM algorithm is implemented in the discretized Maxwell’s equations, and the following
equations are obtained:

Hn+1/2
x,i = Hn−1/2

x,i +
Δt

μ

⎛
⎝∑

j

εny,j
∂∅εj
∂z

(
XH

i

)−∑
j

εnz,j
∂∅εj
∂y

(
XH

i

)⎞⎠ , (16)

Hn+1/2
y,i = Hn−1/2

y,i +
Δt

μ

⎛
⎝∑

j

εnz,j
∂∅εj
∂x

(
XH

i

)−∑
j

εnx,j
∂∅εj
∂z

(
XH

i

)⎞⎠ , (17)

Hn+1/2
z,i = Hn−1/2

z,i +
Δt

μ

⎛
⎝∑

j

εnx,j
∂∅εj
∂y

(
XH

i

)−∑
j

εny,j
∂∅εj
∂x

(
XH

i

)⎞⎠ (18)

εn+1
x,i = εnx,i +

Δt

ε

⎛
⎝∑

j

Hn+1/2
z,j

∂∅Hj
∂y

(
XE

i

)−∑
j

Hn+1/2
y,j

∂∅Hj
∂z

(
XE

i

)⎞⎠ (19)

εn+1
y,i = εny,i +

Δt

ε

⎛
⎝∑

j

Hn+1/2
x,j

∂∅Hj
∂z

(
XE

i

)−∑
j

Hn+1/2
z,j

∂∅Hj
∂x

(
XE

i

)⎞⎠ (20)

εn+1
z,i = εnz,i +

Δt

ε

⎛
⎝∑

j

Hn+1/2
y,j

∂∅Hj
∂x

(
XE

i

)−∑
j

Hn+1/2
x,j

∂∅Hj
∂y

(
XE

i

)⎞⎠ (21)

Here, ε = ε0εr and μ = μ0μr denote the permittivity and permeability of media, respectively. ε0
and μ0 are the free space permittivity and permeability, respectively, and εr and μr are the relative

permittivity and permeability, respectively. En+1
u,i and H

n+1/2
u,i are the electric and magnetic field

intensities, respectively, with u = x, y, or z. Δt is the time-step increment, and XH
i is the point located

at the H-node in which the spatial derivative shape functions of the neighboring E-nodes located in
the selected support domain are evaluated, and the superscript n is a temporal index. The electric and
magnetic dual node distributions are staggered in space and staggered in time by one half time step.

3.2. The Crank-Nicolson Scheme Implementation in the 3D-RPIM

It was reported and confirmed in [17] that the (ADI) is systemically an approximation of the CN
scheme and can also be seen as a second order perturbation of it. The Crank-Nicolson (CN) scheme
solves the discretized Maxwell’s equations by a full time-step size with one marching procedure and
takes the average of a forward difference and a backward difference in space in the right hand-sides
of the discretized Maxwell’s equations for one full update cycle from time-step n to step n + 1. In
the time-domain, however, the electric and magnetic fields are computed not in the leap-frog way but
simultaneously at the same time point in the same treated space for the structure under study. The
CN scheme is applied to Equations (16), . . . , (21) which become:

εn+1
x,i

(
XE

i

)
= εnx,i

(
XE

i

)
+

Δt

2ε

⎛
⎝∑

j

Hn+1
z,j

∂∅Hj
∂y

(
XE

i

)
+

∑
j

Hn
z,j

∂∅Hj
∂y

(
XE

i

)⎞⎠

−Δt

2ε

⎛
⎝∑

j

Hn+1
y,j

∂∅Hj
∂z

(
XE

i

)
+

∑
j

Hn
y,j

∂∅Hj
∂z

(
XE

i

)⎞⎠ (22)
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εn+1
y,i

(
XE

i

)
= εny,i

(
XE

i

)
+

Δt

2ε

⎛
⎝∑

j

Hn+1
x,j

∂∅Hj
∂z

(
XE

i

)
+

∑
j

Hn
x,j

∂∅Hj
∂z

(
XE

i

)⎞⎠

−Δt

2ε

⎛
⎝∑

j

Hn+1
z,j

∂∅Hj
∂x

(
XE

i

)
+

∑
j

Hn
z,j

∂∅Hj
∂x

(
XE

i

)⎞⎠ (23)

εn+1
z,i

(
XE

i

)
= εnz,i

(
XE

i

)
+

Δt

2ε

⎛
⎝∑

j

Hn+1
y,j

∂∅Hj
∂x

(
XE

i

)
+

∑
j

Hn
y,j

∂∅Hj
∂x

(
XE

i

)⎞⎠

−Δt

2ε

⎛
⎝∑

j

Hn+1
x,j

∂∅Hj
∂y

(
XE

i

)
+

∑
j

Hn
x,j

∂∅Hj
∂y

(
XE

i

)⎞⎠ (24)

Hn+1
x,i

(
XH

i

)
= Hn

x,i

(
XH

i

)
+

Δt

2μ

⎛
⎝∑

j

εn+1
y,j

∂∅εj
∂z

(
XH

i

)
+

∑
j

εny,j
∂∅εj
∂z

(
XH

i

)⎞⎠

−Δt

2μ

⎛
⎝∑

j

εn+1
z,j

∂∅εj
∂y

(
XH

i

)
+

∑
j

εnz,j
∂∅εj
∂y

(
XH

i

)⎞⎠ (25)

Hn+1
y,i

(
XH

i

)
= Hn

y,i

(
XH

i

)
+

Δt

2μ

⎛
⎝∑

j

εn+1
z,j

∂∅εj
∂x

(
XH

i

)
+
∑
j

εnz,j
∂∅εj
∂x

(
XH

i

)⎞⎠

−Δt

2μ

⎛
⎝∑

j

εn+1
x,j

∂∅εj
∂z

(
XH

i

)
+

∑
j

εnx,j
∂∅εj
∂z

(
XH

i

)⎞⎠ (26)

Hn+1
z,i

(
XH

i

)
= Hn

z,i

(
XH

i

)
+

Δt

2μ

⎛
⎝∑

j

εn+1
x,j

∂∅εj
∂y

(
XH

i

)
+

∑
j

εnx,j
∂∅εj
∂y

(
XH

i

)⎞⎠

−Δt

2μ

⎛
⎝∑

j

εn+1
y,j

∂∅εj
∂x

(
XH

i

)
+

∑
j

εny,j
∂∅εj
∂x

(
XH

i

)⎞⎠ (27)

These equations remain unchanged even for a domain excited with a source.

4. STABILITY ANALYSIS OF THE CN-RPIM

The Von-Neumann method is used to analyze the stability of the CN-RPIM. The instantaneous values
of the electric and magnetic fields are Fourier transformed into the spatial spectral domain, for each
time-step n. Consider an open domain uniformly discretized with dual staggered grids, an electric and a
magnetic ones, which are spread respectively along the E-nodes and H-nodes. Every E-node is enclosed
by eight H-nodes, and vice versa. The computation of the spatial derivatives shape functions and the
fields phasors calculus are reported in the appendix. For a linear isotropic homogeneous lossless media
in Cartesian coordinates and applying the discrete Fourier transform to Equations (22)–(27) yields the
following ones:

εn+1
x = εnx +

jΔt

εΔy
Cos

(
kxΔx

2

)
Sin

(
kyΔy

2

)
Cos

(
kzΔz

2

)
· (Hn+1

z +Hn
z

)
− jΔt

εΔz
Cos

(
kxΔx

2

)
Cos

(
kyΔy

2

)
Sin

(
kzΔz

2

)
· (Hn+1

y +Hn
y

)
(28)
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εn+1
y = εny +

jΔt

εΔz
Cos

(
kxΔx

2

)
Cos

(
kyΔy

2

)
Sin

(
kzΔz

2

)
· (Hn+1

x +Hn
x

)
− jΔt

εΔx
Sin

(
kxΔx

2

)
Cos

(
kyΔy

2

)
Cos

(
kzΔz

2

)
· (Hn+1

z +Hn
z

)
(29)

εn+1
z = εnz +

jΔt

εΔx
Sin

(
kxΔx

2

)
Cos

(
kyΔy

2

)
Cos

(
kzΔz

2

)
· (Hn+1

y +Hn
y

)
− jΔt

εΔy
Cos

(
kxΔx

2

)
Sin

(
kyΔy

2

)
Cos

(
kzΔz

2

)
· (Hn+1

x +Hn
x

)
(30)

Hn+1
x = Hn

x +
jΔt

μΔz
Cos

(
kxΔx

2

)
Cos

(
kyΔy

2

)
Sin

(
kzΔz

2

)
· (εn+1

y + εny
)

− jΔt

μΔy
Cos

(
kxΔx

2

)
Sin

(
kyΔy

2

)
Cos

(
kzΔz

2

)
· (εn+1

z + εnz
)

(31)

Hn+1
y = Hn

y +
jΔt

μΔx
Sin

(
kxΔx

2

)
Cos

(
kyΔy

2

)
Cos

(
kzΔz

2

)
· (εn+1

z + εnz
)

− jΔt

μΔz
Cos

(
kxΔx

2

)
Cos

(
kyΔy

2

)
Sin

(
kzΔz

2

)
· (εn+1

x + εnx
)

(32)

Hn+1
z = Hn

z +
jΔt

μΔy
Cos

(
kxΔx

2

)
Sin

(
kyΔy

2

)
Cos

(
kzΔz

2

)
· (εn+1

x + εnx
)

− jΔt

μΔx
Sin

(
kxΔx

2

)
Cos

(
kyΔy

2

)
Cos

(
kzΔz

2

)
· (εn+1

y + εny
)

(33)

where kx, ky, and kz are the spatial frequencies along the x-, y-, z-directions; εn+1
x , εnx, ε

n+1
y , εny , ε

n+1
z ,

En
z , Hn+1

x , Hn
x, Hn

x , Hn+1
y , Hn

y , Hn+1
z and Hn

z are discrete Fourier transformed electric and magnetic
field intensities in the spectral domain; Δx, Δy and Δz are the distance between the two nearest E/H
nodes along the Cartesian directions. Throughout this paper, we use the following notations:

Wx = Sin

(
kxΔx

2

)
Cos

(
kyΔy

2

)
Cos

(
kzΔz

2

)
(34)

Wy = Cos

(
kxΔx

2

)
Sin

(
kyΔy

2

)
Cos

(
kzΔz

2

)
(35)

Wz = Cos

(
kxΔx

2

)
Cos

(
kyΔy

2

)
Sin

(
kzΔz

2

)
(36)

Sx =
jΔt

Δx
, Sy =

jΔt

Δy
, Sz =

jΔt

Δz
(37)

After some rearrangements Equations (28)–(33) are rewritten as:

εn+1
x +

SzWz

ε
Hn+1

y − SyWy

ε
Hn+1

z = εnx − SzWz

ε
Hn

y +
SyWy

ε
Hn

z (38)

εn+1
y − SzWz

ε
Hn+1

x +
SxWx

ε
Hn+1

z = εny +
SzWz

ε
Hn

x − SxWx

ε
Hn

z (39)

εn+1
z +

SyWy

ε
Hn+1

x − SxWx

ε
Hn+1

y = εnz − SyWy

ε
Hn

x +
SxWx

ε
Hn

y (40)

−SzWz

μ
εn+1
y +

SyWy

μ
εn+1
z +Hn+1

x =
SzWz

μ
εny − SyWy

μ
εnz +Hn

x (41)

SzWz

μ
εn+1
x − SxWx

μ
εn+1
z +Hn+1

y = −SzWz

μ
εnx +

SxWx

μ
εnz +Hn

y (42)

−SyWy

μ
εn+1
x +

SxWx

μ
εn+1
y +Hn+1

z =
SyWy

μ
εnx − SxWx

μ
εny +Hn

z (43)
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The foregoing equations are written into a matrix form as:

M1 · ψn+1 =M2 · ψn (44)

where ψn = [εn,Hn]T =
[
εnx, ε

n
y , ε

n
z ,Hn

x ,Hn
y ,Hn

z

]T
, and the superscript T indicates the transpose

operator of a vector. With α = μ/ε, one has:

M1 =

[
I −αA
A I

]
; M2 =

[
I αA

−A I

]
(45)

where the matrix A has the following expression:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −SzWz

μ

SyWy

μ
SzWz

μ
0 −SxWx

μ

−SyWy

μ

SxWx

μ
0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (46)

Thus, the matrix M−1
1 is given by:

M−1
1 =

[
(I + αA2)

−1
αA · (I + αA2)

−1

−A · (I + αA2)
−1

(I + αA2)
−1

]
. (47)

After some algebraic manipulations, the update equation is obtained more compactly:

ψn+1 =M−1
1 ·M2 · ψn = Gψn, (48)

where I is the unity matrix. The vector ψn remains bounded as n→ ∞ if the eigenvalues of the matrix
G are included in the unity radius disk centered at the origin of the complex plane. Hence, the stability
of the CN-RPIM algorithm is determined by finding the eigenvalues of the composite matrix G and
verifying if they are located in the unity radius disk. We use the Mathematica 9.0 software package to
compute the six eigenvalues, which turn out to be:

λ1 = λ2 = 1, (49)

λ3 = λ4 =

√
R2 − S2 + jS

R
, (50)

λ5 = λ6 = λ∗3, (51)

where R = εμ− S2
xW

2
x − S2

yW
2
y − S2

zW
2
z and S =

√
−4εμ

(
S2
xW

2
x + S2

yW
2
y + S2

zW
2
z

)
.

The magnitudes of all the eigenvalues ofG are equal unity, regardless of the time-step Δt. Therefore,
we conclude that the CN-RPIM algorithm is unconditionally stable for any value of Δt, and the Courant-
Friedrich-Levy condition is removed.

5. NUMERICAL VALIDATION

In this section, numerical experiments are carried out to justify numerically the effectiveness of the
unconditional stability of the CN-RPIM scheme. A 2D double-ridged rectangular cavity problem is
considered. In the 2D cavity, the electromagnetic fields are excited by a TM line source and calculated
by the CN-RPIM. A double ridged rectangular cavity of 0.04m×0.02m is used, and the origin is at the
lower left corner of the domain, as illustrated in Figure 2. The domain is discretized by dual staggered
E/H grids, and the boundary is a perfect electric conductor (PEC). The dual nodal spreading is
uniform along the Cartesian directions and is fixed to be Δx = Δy = 1mm. As excitation, a modulated
Gaussian pulse is used and located at the point A(5; 10) mm. The observation point is the point
B(35; 10)mm. The excitation is given by:

Jz (A,n) = Exp

[
−
(
(nΔt− 4σ)

/(√
2σ

))2
]
Sin [2πf (nΔt− 4σ)] ,
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Figure 2. Geometry of the double ridged 2D-cavity surrounded by the PEC walls. Excitation source:

, observation point: .
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Figure 3. Time domain of Ez component at the observation point of the double ridged cavity for a
duration of 5 ns simulated with the CN-RPIM.

where σ = 0.1061 ns is the width factor, f = 3.25Ghz the frequency, Δtm = Δt/S the Courant-
Friedrich-Levy (CFL) limit equal to 2.35 ps, and S the stability limit number varying from 1 to 10.
The RPIM parameters, transcendently introduced, are selected to be the shape parameter c = 18. The
maximum distance is rmax = 2mm, and the number of nodes in the support domain is N = 12.

Figure 3 presents the time-domain Ez field component computed with the CN-RPIM at the
observation point B of the 2D ridged cavity. As can be observed, the presented solutions are stable even
when S = 10.

Double ridged rectangular cavities have a lower resonant frequency than standard rectangular
cavities having the same inner dimensions [14, 20]. As a reference for the first resonant frequency of
the double-ridged rectangular cavity, we opt for the mean between the frequencies mentioned in [15]
and [19], thus, the reference frequency is fref = 3.275Ghz. Furthermore, this choice is verified and
validated by the performed simulation using the FDTD simulator, leading to the simulated frequency
fFDTD = 3.28Ghz.

For different stability values, curves of Ez components versus the time variations are stored and
Fourier transformed keeping the normalized Ez components versus the frequency as shown in Figure 3
and Figure 4.

From Figure 4, it can be deduced that the resonant frequency relative errors are about 0.06%,
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Figure 4. Normalized frequency domain of Ez component at the observation point of the double ridged
rectangular cavity for different stability limit factors S.
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Figure 5. The spectral radius of the matrix A [CN-RPIM] versus stability factor S.

0.5% and 1.8% at the stability factors 1, 2 and 5, respectively. The accuracies of the simulated resonant
frequencies, for the different stability factors, are very satisfactory. From these aforementioned numerical
implementations we numerically deduce that the CN-RPIM is unconditionally stable.

The drawback is that the Crank-Nicolson scheme implementation requires a matrix block inversion,
as reported in [21] without splitting; therefore, the computational cost is increased. To fix this issue
numerically, the matrix inversion is approximated by a finite development of monomial terms since the
series I +A+A2 + . . . converges to the limit (I −A)−1, if and only if the spectral radius ρ(A) < 1 [18].
Figure 5 plots the spectral radius of the considered matrix A, relatively to the CN scheme, as a function
of the stability factor for the 2D ridged cavity. It illustrates that as long as the stability factor S is
inferior to 2.525, the spectral radius is inferior to unity, and therefore, the theorem approximation can
be implemented to avoid the matrix inversion in the CN scheme. When the stability factor is equal to
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Table 1. Computational expenditure for 2-D rectangular ridged cavity.

CN-RPIM (S = 1) CN-RPIM (S = 5) CN-RPIM (S = 10)

Number of unknowns 3811 3811 3811

Total steps run 2500 500 250

CPU time (s) 1989 405 191

Memory (Mbs) 91 26 17

CPU gain 0.0 3.9 9.4

Memory gain 0.0 2.5 4.3

1.7, the spectral radius presents a singularity closely related to the characteristic stability limit of the
RPIM, as mentioned in [13, 22] where its value is around S = 1.66.

The computational costs and memory requirements for the CN-RPIM are listed in Table 1, for
the numerical computed structure. The CN-RPIM notably reduces the whole computational time as
S is increased. The unconditionally stable CN-RPIM reduces the CPU time by up to 90% when the
stability factor is chosen to be S = 10, and the memory requirement is saved up to 81%. Therefore, the
CN-RPIM reduces the computational expenditure with the increase of stability factor.

6. CONCLUSION

In this paper, the RPIM algorithm is implemented in conjunction with the Maxwell’s equations to solve
electromagnetic problems in time-domain. To overcome the CFL limit on time-step, the CN scheme
is implemented too in the previously mentioned algorithm to omit this condition on time-step. As
a reminder, this time-step must comply with the Nyquist condition as an upper limit. Looking for
the eigenvalues of the resulting linear system, the analytical calculus confirms that the spectral radius
remains equal to unity independent of the prefixed RPIM spatial discretization and the time-step. We
applied the CN-RPIM for a double-ridged cavity in order to have its first resonant frequency for different
stability factors. We have numerically verified the agreement between the numerical obtained frequencies
and those predicted by the theory. The unconditional stability of the CN-RPIM is justified analytically
and confirmed numerically. In addition, the matrix inversion involved by the CN scheme is avoided and
approximated if the stability factor S remains inferior to 2.525. The CN-RPIM permits a significant
reduction of the computational expenditure; this is by increasing the stability factor. Although the
CN-RPIM remains efficient, it reveals a little loss of accuracy.

APPENDIX A.

Here the Taflove and Umashankar notation is adopted for positioning the spread nodes [3]. Figure A1
reveals that any (ijk)E-node is surrounded by eight H-nodes, four H-nodes at the k − 1/2 plane
as presented by Figure A2 and four at the k + 1/2 plane too, for Figure A3. The magnetic shape
functions are arbitrarily indexed, and their derivatives are calculated at the considered (i, j, k)E-node.
The presence of monomial terms in the interpolation Equation (1) improve the accuracy of the results
and remove the impact of the shape parameter c on the H shape function derivatives evaluated at
the E-node position [5] and vice versa. Obviously, the implementation of the RPIM algorithm for this
uniform distribution gives numerically that:

∂φEm
∂q

=
∂φHm
∂q

= ± 1

4.Δq
for m ∈ [1, 8] and q = x, y, z (A1)

The joined Table 2 indicates and summarizes the sign of the H/E-shape function derivatives which
are related to phasors.
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Table A1. Sign of the H/E-shape function derivative versus the nodes location.

Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8

sign
(
∂φE,H

∂x

)
− + + − − + + −

sign
(
∂φE,H

∂y

)
− − + + − − + +

sign
(
∂φE,H

∂z

)
− − − − + + + +

Figure A1. Support domain of the E-node (i, j, k) and the neighboring H-nodes.

Figure A2. Projection of the E-node compact
support on the k − 1/2 plane.

Figure A3. Projection of the E-node compact
support on the k + 1/2 plane.
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Applying the discrete Fourier transform to Equation (22) outlines the field phasors function at the
relative positions between H/E-nodes and the considered E/H-node; therefore, it follows:

εn+1
x,i

(
XE

i

)
= En

x,i

(
XE

i

)
+

(
Δt

2ε

)(
1

4Δy

)
((−Exp [j (−kxΔx− kyΔy − kzΔz) /2]Hn+1

z

−Exp [j (kxΔx− kyΔy − kzΔz) /2]Hn+1
z +Exp [j (kxΔx+ kyΔy − kzΔz) /2]Hn+1

z

+Exp [j (−kxΔx+ kyΔy − kzΔz) /2]Hn+1
z − Exp [j (−kxΔx− kyΔy + kzΔz) /2]Hn+1

z

−Exp [j (+kxΔx− kyΔy + kzΔz) /2]Hn+1
z + Exp [j (+kxΔx+ kyΔy + kzΔz) /2]Hn+1

z

+Exp [j (−kxΔx+ kyΔy + kzΔz) /2]Hn+1
z ) + (−Exp [j (−kxΔx− kyΔy − kzΔz) /2]Hn

z

−Exp [j (kxΔx− kyΔy − kzΔz) /2]Hn
z + Exp [j (kxΔx+ kyΔy − kzΔz) /2]Hn

z

+Exp [j (−kxΔx+ kyΔy − kzΔz) /2]Hn
z − Exp [j (−kxΔx− kyΔy + kzΔz) /2]Hn

z

−Exp [j (+kxΔx− kyΔy + kzΔz) /2]Hn
z + Exp [j (+kxΔx+ kyΔy + kzΔz) /2]Hn

z

+Exp [j (−kxΔx+ kyΔy + kzΔz) /2]Hn
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(
Δt

2ε

)(
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4Δz

)
((−Exp [j (−kxΔx− kyΔy − kzΔz) /2]Hn+1
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−Exp [j (kxΔx− kyΔy − kzΔz) /2]Hn+1
y − Exp [j (+kxΔx+ kyΔy − kzΔz) /2]Hn+1

y
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y
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−Exp [j (kxΔx− kyΔy − kzΔz) /2]Hn
y − Exp [j (kxΔx+ kyΔy − kzΔz) /2]Hn

y
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y )), (A2)

After some simplifications and adoptions of the transcendental notation, the right-hand side terms
of Equation (A2) are generated:

εn+1
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(
XE

i

)
= εnx,i
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)
+
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)(
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(A3)

Finally, Equation (38) is obtained, and similarly for the others.

εn+1
x = εnx +

SyWy

ε
Hn+1

z +
SyWy

ε
H

n

z
− SzWz

ε
Hn+1

y,j − SzWz

ε
Hn

y,j. (A4)
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