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Abstract—A MIMO/Diversity antenna with triple notch characteristics is proposed in this article. The
proposed antenna has triple notches in the WiMAX band (3.3–3.6 GHz), WLAN band (5–6 GHz), and
X-band satellite communication (7.2–8.4 GHz) band. Defected Ground Compact Electromagnetic Band
Gap (DG-CEBG) is a design used to accomplish band notches. Defected ground planes are utilised
so as to achieve compactness in conventional EBG structures. The proposed WiMAX band, WLAN
band, and X-band satellite communication band DG-CEBG structures show a compactness of around
46%, 50%, and 48%, respectively, over a conventional EBG structure. In these structures, decoupling
strips and a slotted ground plane are used to enhance the isolation between two closely spaced UWB
monopoles. The individual monopoles are 90◦ angularly separated with a stepped structure which helps
to reduce mutual coupling and also contributes towards impedance matching by increasing the current
path length. |S21| or mutual coupling is found to be less than 15 dB over the whole UWB frequency
range. The Envelope Correlation Coefficient (≤ 0.5) is within the acceptable limits over the whole UWB
frequency range. Notched frequency depends on the parameters of DG-CEBG structures; when there is
a change in these parameters notch frequency is also changed. A low cost FR-4 substrate with thickness
(h) = 1.6 mm, permittivity (ε) = 4.4 and loss tangent (δ) = 0.02 is used for the proposed antenna, and
it has a compact size of 58 × 45 × 1.6 mm3.

1. INTRODUCTION

Since 2002, when Federal communications Commission (FCC) unconstrained the UWB [1] spectrum
(3.1–10.6 GHz) for unconstrained commercial uses, there has been frequent need of UWB antennas.
Circular monopoles [2] are the ideal model for UWB applications owing to advantages such as simplicity
of production, satisfactory radiation characteristics, and huge impedance bandwidth. However, some
applications such as those operating in the WLAN (5–6 GHz), WiMAX (3.3–3.6 GHz), and X-band
satellite communication band (7.2–8.4 GHz) cause interference problems in the UWB frequency range.
To avoid such interferences, an antenna with multiband rejection is required.

A number of approaches have been described in the literature for achieving triple band notch
designs. Notches for WiMAX, WLAN, and the X-band satellite communication band frequencies are
achieved by etching two elliptic single complementary split-ring resonators (ESCSRRs) of dissimilar
dimensions [3] in the patch and split-ring resonators joining the feed-patch connection of the antenna.
The band-rejection characteristics can be achieved by introducing the band reject elements [4] in the
feed line of the UWB antenna. A multi-band antenna [5] can be made by using numerous fine strips
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behaving as resonance tracks unified with a DSP (diamond-shaped patch) antenna. Adding Hook-type
defected ground structure (DGS) on ground plane, or inserting Ω-type slot on the radiator [6] and
adding a semi-octagon-type resonant ring on the patch of the antenna can give triple notched frequency
bands. To produce triple band-notched feature, three open-ended quarter-wavelength slots are used [7].
A conventional slot with open-ends and a quarter-wavelength is engraved in the radiator, and three
half-wavelength semi-circular slots are cut in the radiator to produce the triple band rejection antenna
in [8]. Expending analogous ideas for triple notched antennas are suggested by different authors in [9–
12]. In [13] a triple band rejection notched antenna using electric ring resonator is shown. In [14], a
triple band notch antenna using a hollow cross-loop resonator is shown. In [15], a triple band notch
antenna using particle swam optimisation and firefly algorithm is shown. In [16], slots are made on the
microstrip feed line to obtain triple band notch characteristics. In [17], a triple band notched antenna
using slots in the radiators is shown. In [18], a triple band notched antenna is obtained using C-shaped
slots in the radiator and ground plane. In [19], a triple band notched antenna is obtained using an arc-
shaped slot in the radiator and a U-shaped slot in the ground plane. Problem with these approaches
is that all approaches are antenna design specific and give poor control on notch location and width.
These approaches of obtaining notches are totally dependent on the antenna shape, and one method
of notch creation may not be suitable for another antenna design. Moreover, the UWB antenna with
single or double notches is obtained using EBG structures but in WLAN band only. The authors of [20]
make use of four EBG structures in [20, 21] to achieve one notch.

A multiple-input–multiple-output (MIMO)/Diversity communication system requires the use of
multiple antennas employed at the transmitter and/or receiver with low mutual coupling between them.
MIMO communication system achieves enhancement in the data rate in multipath signal propagation.
The MIMO technology used in UWB will provide an increase in channel capacity over that used in
a narrowband system [22]. UWB MIMO system behaviour is considered in [23–25]. However, when
MIMO systems are employed for compact portable devices, the high electromagnetic coupling among
antennas affects system behaviour significantly [26, 27]. Different techniques are used to decrease mutual
coupling between antenna elements, such as novel antenna designs [28, 29], using slots in the ground
plane [30–32] and use of EBG patches [33, 34]. The designs in [35–37] are not capable of functioning
over the complete band unrestricted by FCC.

MIMO antennas with band-rejection characteristics have been investigated by various
researchers [38–42]. In [43], a parasitic strip and open ended slots are used to obtain a dual band
notched MIMO antenna. In [44], a WLAN band-notched two-element G-shaped antenna is shown. A
majority of these designs form the notches by altering the radiators. In [45], MIMO antennas with band
rejection features were considered without modifying the antenna patch but restrained intervention from
the WLAN systems only.

In the proposed antenna, a MIMO system composed of two 90◦ angularly separated semi-circular
stepped monopoles with a decoupling network for UWB applications is proposed. The slotted ground
plane and decoupling strips are used to reduce the electromagnetic coupling among the elements.
Stepped UWB monopole antennas are employed with DG-CEBG structures to acquire triple band
notches in WiMAX, WLAN, and X-band satellite communication bands. This method of notch
generation is formula based and independent of the antenna design. The consequences of altering
the DG-CEBG structure parameters on notched frequencies are also explained.

2. SELECTIVE BAND GAP CREATION BY MEANS OF EBG STRUCTURES FOR
CIRCULATING SURFACE WAVES

Mushroom electromagnetic bandgap designs are a type of frequency selective surface. These designs
operate as band rejection filters in explicit frequency bands and also offer very high impedance,
consequently specified as a high impedance surface [46–51]. Mushroom EBGs are made up of conducting
patches and shorted vias that connect patches with ground planes. These EBG structures act as LC
filters where L is due to the current flow through via and C owing to the gap between patches. The
important equations used for designing mushroom EBG structures are given below [46].

L = 0.2h
[
ln

(
2h
r

)
− 0.75

]
(1)
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C = ε0εr
W 2

h
(2)

ω0 =
1√
LC

(3)

where, L and C describe the inductance and capacitance, respectively. W is the width of the EBG
patch, εr the relative permittivity, ε0 the absolute permittivity, ω0 the resonant frequency, h the via
height, and r the radius of mushroom structures.

3. GRADUAL BUILD-OUT OF PROPOSED MIMO/DIVERSITY ANTENNA
DESIGN

A UWB planar antenna structure is considered as a basic design in this paper, and only unit cells
of the DG-CEBG are positioned in the neighbourhood of microstrip feed of the basic antenna design.
The proposed DG-CEBG structures consist of spiral shaped slots in the top and bottom planes of
the conventional EBG structures. This increases the total inductance of the equivalent circuit thereby
making the structures more compact. If one interfering scheme is active in the UWB functioning range
at a time, then only a single notch is essential. Therefore, a single DG-CEBG element can be placed close
to the microstrip feed to achieve the desired notch. When disturbance is from the WiMAX band (3.3–
3.6 GHz), WLAN band (5–6 GHz), and the X-band satellite communication (7.2–8.4 GHz) band, then
three EBG designs are essential to reject these bands. The smallest DG-CEBG design is accountable
for the notch in the X-band satellite communication band.

Expansion of the proposed UWB MIMO/Diversity antenna with triple band notches by means of
DG-CEBG cells is revealed in Figure 1. Antenna 3 demonstrates the improved perimeter of the radiator.

fr =
1

2π
√

(L1 + L2 + L3) (C1 + C0)
(4)

The increase in the current path length helps to accomplish proper impedance matching [52] and
improves partition among individual antennas. Antenna 4 uses the DG-CEBG structure to obtain
triple band notches. Antenna 6 is shown with triple band notches and the decoupling strips to decrease
mutual coupling among individual antennas. A variety of intermediary antenna structures are also
shown, which are used intermediately in realizing the proposed antenna 6 structure. Figure 2 shows the
development of the DG-CEBG structure from conventional mushroom EBG structure. Figure 3 shows

Figure 1. Stepwise expansion of the triple notched MIMO/Diversity antenna.
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(b)(a) (c)

Figure 2. Development of the DG-CEBG structure from the mushroom EBG structure.

(a) (b)

Figure 3. (a) A DG-CEBG structure placed near the antenna feed; (b) Equivalent circuit of (a).

the equivalent circuit of DG-CEBG cell, and Equation (4) gives the resonant frequency. L2 and L3 show
the inductance in series due to spiral-shaped slots in the top and bottom planes of conventional EBG
structures.

4. PROPOSED UWB MIMO/DIVERSITY ANTENNA WITH TRIPLE NOTCHES

Figure 4 illustrates the geometry of a sample UWB antenna with DG-CEBG design cells. The antenna
design parameters are shown in Table 1. The simulated current distribution of the proposed antenna
is shown in Figure 5 for additional examination. It may be seen straightforwardly in Figure 5 that
dissimilar DG-CEBG designs have different current circulations at dissimilar frequencies with the highest
current in their bandgaps. Figure 6 demonstrates the made-up prototype of the proposed antenna. The
simulation is performed using Ansoft HFSS v.14. The proposed antenna has a VSWR which is calculated
by means of AgilentTM Network Analyzer PNA-L series.

5. RESULTS

The VSWR variations of all intermediate antennas along with the proposed antenna are shown in
Figure 7. It is verified that each DG-CEBG cell is responsible for notch generation in its band. The
radiation principle of the antenna is also implicit from Figure 7 because in the DG-CEBG [53] band
gap (VSWR > 2), total input power does not get transferred to the antenna, and as such, no radiation
takes place. The VSWRs of antennas 1 and 3 are close to each other because the perimeters of antenna
1 and 3 are the same. In antenna 4 and antenna 5, steps are taken to reduce the mutual coupling, which
will not have any effect on notched frequencies. So, antennas 4 and 5 have notched frequencies close to
each other.

The antenna design parameters of the proposed antenna shown in Table 1 are calculated and
optimized experimentally. Figure 8 shows the simulated |S21| (mutual coupling) between the two
participating ports of the different antennas.

As mutual coupling of less than 15 dB is enough for most of the UWB applications, the antenna
is appropriate for MIMO/Diversity purpose over the whole UWB. Figure 8 also illustrates the mutual
coupling between antenna 6 and antenna 1, antenna 2 and antenna 3, antenna 4 and antenna 5. When
Port 1 of the proposed antenna is energized, the current from the patch has a tendency to couple to Port
2. This is blocked by the decoupling arrangement consequently reducing the wide-band electromagnetic
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(c)

(d)

Figure 4. (a) Upper view. (b) Back view of proposed antenna. (c) Upper view of WiMAX and WLAN
DG-CEBG structures. (d) Top view of X-band satellite communication band DG-CEBG structure
(Antenna 6).

coupling. The result is identical when Port 2 of antenna 6 is energized. It is seen that the isolation of the
proposed antenna can be improved by decoupling among the radiators across the whole UWB without
disturbing the notched frequencies. Figure 9 illustrates the simulated and measured VSWRs of antenna
6. The notch in the WiMAX band has its midpoint at 3.4 GHz with a simulated VSWR magnitude of
5.2 and measured VSWR magnitude of 4.7. The notch in the WLAN band has its midpoint at 5.5 GHz
with a simulated VSWR magnitude of 6.1 and measured VSWR magnitude of 5.6. The midpoint of
the notch in X-band satellite communication band is at 7.6 GHz with a simulated VSWR magnitude
of 5.1 and measured VSWR magnitude of 4.6. Figure 10 shows that the simulated and measured
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Table 1. Antenna design parameters of the proposed antenna (antenna 6).

Parameters Value (mm)
Circular disc monopole radius (r) 12

Length of antenna ground plane (L1) 20
Width of antenna Substrate (W ) 58
Length of antenna Substrate (L) 45

Width of antenna microstrip feed (Wf ) 3
Spaceamong ground and circular disc (h) 0.3

Radius of via of WiMAX DG-CEBG structures (r1) 0.5
Radius of via of WLAN DG-CEBG structures (r2) 0.3
Radius of via of 7.2–8.4 GHz band DG-CEBG (r3) 0.25

Space between antenna feed and WiMAX EBG (d1) 0.2
Space among WiMAX DG-CEBG &WLAN DG-CEBG (d4) 0.52

Space among WLAN DG-CEBG & 7.2–8.4 GHz DG-CEBG (d5) 0.78
Spaceamid two monopole antennas (G) 30

Spacelinking feed line and 7.2–8.4 GHz band DG-CEBG (d3) 0.25
Space between feed line and WLAN DG-CEBG (d2) 0.25

Decoupling structure strip width (g1) 0.5
Space between decoupling elements (g3) 2.5
Space between decoupling elements (g2) 5.5

Space on the top of elements (d6) 2.96
Space on the side of elements (d7) 2

Step width on semi-circular monopole (W4) 4.8
Step height on semi-circular monopole (W5) 3.07

Space between WiMAX DG-CEBG and decoupling element (d9) 0.75
Space between WiMAX DG-CEBG and antenna feed (d8) 5

Width of slot in ground plane (b3) 0.5
Space between slots in ground plane (b2) 0.5

Slotted ground plane width (b1) 5.5
Edge length of DG-CEBG for WiMAX notch (W1) 5
Edge length of DG-CEBG for WLAN notch (W2) 3

Edge length of DG-CEBG for 7.2–8.4 GHz band notch (W3) 1.7
Slot width on WiMAX DG-CEBG structure (d10) 0.5
Slot width on WLAN DG-CEBG structure (d11) 0.5

Slot width on 7.2–8.4 band DG-CEBG structure (d12) 0.1

values of mutual coupling (|S21|) in the proposed antenna are well below 15 dB over the whole UWB
frequency range. Figure 10 also illustrates that simulated and measured magnitudes of |S21| are in fairly
good agreement for antenna 6. The electromagnetic interaction between the antenna elements causes
mutual coupling in antennas. Figure 11 illustrates that antennas with single DG-CEBG designs have
lower VSWR magnitudes at WiMAX and WLAN notched frequencies than the antennas with double
DG-CEBGs. Figure 12 illustrates the consequence of stepwise inductance enhancement when only one
WiMAX DG-CEBG cell is placed in antenna 6. Case 1 to Case 9 layouts of WiMAX DG-CEBG cell are
shown in Figure 4(c). Maximum inductance is observed in case 9, and therefore the notched frequency
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(c)

(d)

Figure 5. Surface current circulation of the proposed triple band antenna at notched frequencies of
(a) 3.1 GHz, (b) 3.4 GHz, (c) 5.5 GHz, and (d) 7.5 GHz.

in this case is minimum. Similarly, Figure 13 shows the effect of inductance enhancement when only
one WLAN DG-CEBG cell is used in antenna 6. The maximum inductance in WLAN DG-CEBG cell
is corresponding to case 9 layout of Figure 4(c). Figure 14 shows the incremental inductance effect
when only the 7.2 GHz–8.4 GHz band DG-CEBG structure is used in antenna 6. From case 1 to case
13, inductance is increased because of the increase in spiral turns. The top views of case 1 to case 13
DG-CEBG cells giving the total number of turns are shown in Figure 4(d).
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(a) (b)

Figure 6. (a) Front view. (b) Back view of the fabricated triple band rejection antenna.

Figure 7. VSWR variation of the different
antennas along with the proposed antenna.

Figure 8. Mutual coupling in dissimilar antennas
along with proposed antenna.

Figure 9. Simulated and measured VSWR of the
proposed antenna.

Figure 10. Variation of the simulated and
measured mutualcoupling (|S21|).
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Figure 11. Simulated VSWR when EBGs are
placed at single and double side of feed.

Figure 12. Reduction of notch frequencies in the
WiMAX band with incremental inductance.

Figure 13. Reduction of notch frequencies in the
WLAN band with incremental inductance.

Figure 14. Reduction of notch frequencies
in the 7.2 GHz–8.4 GHz band with incremental
inductance.

Figure 15, Figure 16, and Figure 17 show the variation of VSWR with variations of the edge
length of DG-CEBG structure which is used for WiMAX, WLAN and X-band satellite communication
band-notch generation.

It can be seen that increasing W1, W2, and W3, all have the same effect of increasing the capacitance,
and hence decreasing the resonant frequency as given by Equation (4).

Figure 18 shows the variation in VSWR when d1, i.e., space between the WiMAX DG-CEBG cell
and the microstrip feed, is varied. Figure 19 reveals the variation in VSWR when d2, i.e., space between
the WLAN DG-CEBG cell and the microstrip feed, is varied. Figure 20 reveals the variation in VSWR
when d3, i.e., space between the 7.2 GHz–8.4 GHz DG-CEBG cell and the microstrip feed, is varied.

It is observed that a strong notched band is obtained if the space or the mutual coupling between
the microstrip feed and DG-CEBG structures is decreased. There are minor variations in notched
frequencies of other bands when the DG-CEBG cell corresponding to a specific band is moved. This
is due to mutual coupling among the three DG-CEBG cells. Each DG-CEBG cell controls the notch
frequency tuning of its own band. Figure 21 shows the variation of VSWR with the via radius of WiMAX
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Figure 15. Variation of VSWR with the
width (W1) of the mushroom WiMAX DG-CEBG
structure.

Figure 16. Variation of VSWR with the width
(W2) of the WLAN DG-CEBG structure.

Figure 17. Variation of VSWR with the
width (W3) of 7.2 GHz–8.4 GHz band DG-CEBG
structure.

Figure 18. Variation of VSWR with the space
between the microstrip line and the WiMAX DG-
CEBG structure.

and WLAN DG-CEBG structures. This can be easily verified using Equation (1) and Equation (4). As
the radius of via (r) decreases, the inductance (L) given in Equation (1) increases thereby decreasing
the resonant frequency (fr) given in Equation (4). The antenna gain may be increased remarkably
using a high impedance surface reflector [54, 55]. Furthermore, this reflector also helps in minimising
back lobes, and increasing the front-back ratio DG-CEBG structures can also be used to make antenna
operate in WLAN and WiMAX bands as done by the researchers in [56].

Figure 22 shows the radiation patterns of the proposed antenna at 4 GHz. Figure 22(a) shows
E-plane co-polar and cross-polar radiation patterns for both simulated and measured values while
Figure 22(b) shows H-plane co-polar and cross-polar radiation patterns for both measured and simulated
values. Figure 23 shows the radiation patterns of the proposed antenna at 9GHz. Figure 23(a) shows
E-plane co-polar and cross-polar radiation patterns for both simulated and measured values while
Figure 23(b) shows the H-plane co-polar and cross-polar radiation patterns for both measured and
simulated values.

An antenna test kit is used to measure antenna radiation patterns, and a horn antenna is used as
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Figure 19. Variation of VSWR with the space
between the microstrip line and WLAN DG-
CEBG structure.

Figure 20. Variation of VSWR with the space
between the microstrip line and WiMAX DG-
CEBG structure.

Figure 21. Variation of VSWR with the via radius of WiMAX and WLAN DG-CEBG structures.

the source which is placed at a proper distance from the test antenna. To obtain radiation patterns,
port 1 or 2 of antenna 6 is excited while the other port is terminated with a 50 Ω load. Figure 24
shows that gain of the antenna decreases at the notched frequencies of WiMAX and WLAN bands.
The two-port Envelope Correlation Coefficient (ECC) is an extremely important factor in antennas for
MIMO applications. The ECC formula is given in Equation (5). The radiation efficiency of individual
antennas is around 80% over the whole UWB frequency range.

The ECC (ρe) can be calculated with the technique discussed in [57, 58].

ρe = |ρi,j|2 =

∣∣∣S∗
iiSij + S∗

jiSjj

∣∣∣2(
1 − |Sii|2 − |Sji|2

) (
1 − |Sjj|2 − |Sij |2

)
ηrad,iηrad,j

(5)

where ηrad,i is the radiation efficiency of i-th antenna element.
Figure 25 shows the simulated and measured Envelope Correlation Coefficients (ρe) of the notched

UWB MIMO/diversity antenna. Envelope Correlation Coefficient is below 0.01 over nearly the whole
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(a) (b)

Figure 22. Radiation patterns at 4GHz. (a) E-plane. (b) H-plane.

(a) (b)

Figure 23. Radiation patterns at 9GHz. (a) E-plane. (b) H-plane.

Table 2. Comparisons of compactness in conventional and DG-CEBG structures.

Notch Frequency
Mushroom EBG
structure size

Defected Ground
Compact EBG
structure (DG-

CEBG) size

Percentage
Compactness

Achieved

WiMAX Band 9.25 mm 5 mm 45.9%
WLAN Band 6.1 mm 3 mm 50.0%

7.2–8.4 GHz Band 3.3 mm 1.7 mm 48.5%
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UWB frequency range of 3.1–10.6 GHz. The calculated value of ECC is low, and hence it can give good
diversity performance for UWB MIMO systems. The ECC is less than 0.5 and within the acceptable
limits, which ensures acceptable behavior of the proposed UWB/MIMO antenna over the whole UWB
frequency range. Table 2 indicates a comparison of the size reduction in mushroom and DG-CEBG
structures. WiMAX, WLAN, and the 7.2–8.4 GHz band DG-CEBG structures show size reductions of
45.9%, 50.0%, and 48.4%, respectively. Table 3 shows the different techniques available in literature to
obtain notches. DG-CEBG structures can be used with most of the antenna shapes to obtain notches
without modifying the antenna design.

Figure 24. Antenna gain variation with frequency.

Figure 25. Simulated and measured ECC variation with frequency.
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Table 3. Comparisons of different techniques available to obtain notches.

Reference
No. of Radiating

Elements
Notch Techniques

Notched frequencies

(GHz)

[20] 1 Four EBG structures 5.15–5.95

[21] 1 Two EBG structures 4.98–5.43 & 5.64–5.93

[41] 2
Split ring

resonators
WLAN Band

[59] 2
Strips in

antenna ground
5.15–5.85

[60] 2 L-type Stubs 3.62–4.77

[61] 2
Slit in the

radiator
5.15–5.925

[62] 4
Band stop design

and pin diode
5.15–5.825

[63] 4 Band stop design 5.15–5.825

[64] 4
Quarter wave stub

and pin diode
4.8–6.2

Proposed 2
Five DG-CEBG

structures

WiMAX, WLAN

and X-band

6. CONCLUSION

In this article, a triple band rejection UWB MIMO/Diversity antenna with reduced wideband
electromagnetic coupling among individual antenna elements is discussed. The proposed antenna is
fabricated on a cheaply available FR-4 substrate with an overall size of 58 × 45 × 1.6 mm3. A good
impedance bandwidth from 3.1 GHz to 11 GHz has been achieved with triple notches at WiMAX band
(3.3–3.6 GHz), WLAN band (5–6 GHz), and X-band satellite communication (7.2–8.4 GHz) band. The
mutual coupling among individual antennas in both simulated and measured results is below 15 dB.
This value is sufficient for most of the MIMO/Diversity applications across the whole UWB band. The
values of ECC are at an acceptable limit that ensures good performance of the proposed antenna. There
is a good consistency between measured and simulated results.
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