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Abstract—Objective: As well known, using a single body worn sensor exposimeter introduces
systematic errors on the measurement of the incident free space electric field strength. This is because
the body creates around it high, intermediate and low level field zones, which depend on the direction of
arrival of the incident field. The goal of this work is to propose an efficient method for the reduction of
these errors. Methods: After classifying the perturbations induced by the body on the measured electric
and magnetic fields thanks to realistic numerical simulations, we then propose a two-sensor setup in
conjunction with simple semi-empirical correction formulas, in order to compensate these perturbations.
Results: At 942 MHz, when the two sensors are placed in any opposite sides of the body at chest height,
the worst case, maximum and average errors respectively decrease to 12% and 3% compared to 83%
and 22% for measurement techniques using a single sensor, or 32% and 11% when using the average
value of the measurements. Conclusion: The error related to the measurement in the presence of the
body was significantly reduced by the proposed method making use of two opposite sensors, E-field
and H-field at the chest. Significance: The conformity of exposure to EMF in terms of reference values
according to the ICNIRP is given in the abscence of the human body. The interest of this work lies in
the reduction of the errors made when measuring the field in the presence of the body.

1. INTRODUCTION

The International Commission on Non-Ionizing Radiation Protection (ICNIRP) [1] provides scientific
advice and guidance on the health and environmental effects of non-ionizing radiation (NIR) to protect
people and environment from detrimental NIR exposure. Two classes of guidance are provided, basic
restrictions and reference levels. The basics restrictions use specified physical quantities (Current density
and specific energy absorption rate) for directly established health effects. The references levels are
provided for practical exposure assessment purposes to determine whether the basic restrictions are
likely to be exceeded. All reference levels are derived from relevant basic restrictions using measurement
and/or computational techniques, and some address perception and adverse indirect effects of exposure
to EMF. The derived quantities are electric field strength (E), magnetic field strength (H), magnetic
flux density (B) and power density (P). In any particular exposure situation, measured or calculated
values of any of these quantities without body presence can be compared with the appropriate reference
level. Compliance with the reference level will ensure compliance with the relevant basic restriction.
In this paper, we will focus on the techniques for measuring E by radiofrequency exposimeter. Many
studies also measure E or H in order to verify that the reference levels provided are not exceeded [2–9].
The ICNIRP guidelines [1] also specify that if the measured value exceeds the reference level, it does
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not necessarily follow that the basic restriction will be exceeded. However, whenever a reference level is
exceeded it is necessary to test compliance with the relevant basic restriction and to determine whether
additional protective measures are necessary. Furthermore, the measurement of E is an important step
which can condition the measurement of the Specific Absorption Rate (SAR) or not. Indeed, generally,
it is more advisable to measure E and compare it to the reference levels in order to assess the EMF
exposure. The problem about which this work is concerned comes from the fact that the measurement
of E is carried out by the worn body exposimeter, whereas the reference values are given in the absence
of any body. The objective of this work is to go back to the reference value of the ICNIRP from the
measurement of the field in the presence of the human body.

Several studies aiming to quantify the influence of the human body on the exposimeter
measurements have been published over the last decade. It is shown in [10] and [11] that the body
can produce attenuations up to 30 dB at 900 MHz. The errors due to the position of the exposimeter
on the body were shown to be significant in [8], with ten exposimeter positions considered (six around
the waist, two on arms and two on the upper back). The study also showed the effect of frequency
on the measurement error. Finally, a thorough investigation of the influence of the body for several
frequency bands is presented in [9]. A number of techniques have been proposed to attenuate the
EMF assessment error linked with the presence of the human body. The method proposed in [12]
uses numerical simulations to estimate an average electric field and Specific Absorption Rate (SAR).
The number of measurement points used in this technique is not fixed, and the method requires the
knowledge of the frequency to determine the dielectric constant of each internal organ of the body before
calculating the SAR. The technique cannot readily be used in practice because of the large number of
sensors necessary for reliable EMF assessment. A Personal and Distributed Exposimeter (PDE) with
measurements at different locations on the human body is presented in [13]. The predicted average error
is 7% for 10 sensors, 13% for 3 sensors and 16% for 2 sensors. This distributed measurement approach
is interesting but relies on the a priori knowledge of the ambient electromagnetic fields. Moreover, the
maximum errors obtained for each combination are not reported.

Throughout this analysis, an exposimeter is materialized by a single or several sensors distributed
around the human body and all connected to one processing system. Discussions will only focus on
the number of sensors connected to the same processing system. The main objective of this work is
to propose an efficient methods for error reducing when EMF level is to be assessed in the vicinity of
human body. The following three questions are examined:
(1) What are the errors related to this assessment in the vicinity of the human body when using a

single sensor exposimeter? How to qualify and quantify these errors?
(2) When several measurements sensors are used, how should they be chosen and combined? What

is the impact of the number of sensors on the measurement performance? Is there an optimum
number of sensors? The optimal number is the number from which the error can no longer be
significantly reduced.

(3) Is it interesting to measure H in addition to E in order to evaluate EMF exposure?
This paper is organized as follows. In Section 2, we identify and classify errors due to the presence

of the body. Section 3 presents error mitigation techniques. Several approaches are studied, based on
distributed sensors for a single exposimeter and/or a combination of electric field and magnetic field
(E,H) measurements. Two performance indicators are considered: the maximum and the average
errors due to human body. A method based on a two-sensor setup in conjunction with simple semi-
empirical correction formulas is recommended, as it provides a good compromise between accuracy and
ease of implementation. Section 4 presents numerical and experimental results, validating the proposed
methodology.

2. EXPOSURE ASSESSMENT ERRORS DUE TO BODY PROXIMITY

2.1. Electromagnetic Field around the Body

In order to define errors due to the presence of the human body, numerical simulations are performed
for multiple exposure scenarios corresponding to typical situation. These are carried out with CST
Studio based on finite integration technique (FIT) [14] and [15] as numerical simulation model. We
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(a) (b)

Figure 1. GUSTAV human body model (from CST Studio). (a) Heterogenous whole body model. (b)
Homogeneous torso model without arms.

Figure 2. Locations of field evaluation points. Chest (hC = 143 cm, R1 = 28 cm, R2 = 17 cm),
abdomen (hA = 125 cm, R1 = 28 cm, R2 = 20 cm) and waist (hW = 110 cm, R1 = 19 cm, R2 = 18 cm);

̂Li,kLi,k+1 = ̂Li,kLi,1 = ϕ (Angle between two consecutive points used for field measurement) ; R1 and
R2 are respectively the major and minor radii of ellipses defined for each measurement height.

use the heterogeneous human body model [16] (GUSTAV, man, 176 cm, 69 kg, 38 years): see Figure 1
(Page 3). The exposure consists in a plane wave with 1Vm−1 electric field. The magnitudes of the
electromagnetic fields (EPi and HPi) are evaluated on N points Pi (i = 1, . . . , N) located on ellipses
around the body, at three different heights — around the chest, abdomen and waist (see Figure 2).
These fields are provided by CST studio.

2.2. Error Definitions

Let Ebody
Pi

denote the strength of the electric field at point Pi with the presence of body and Efree
Pi

the
undisturbed electric field strength at the same point in the absence of human body as recommended by
the ICNIRP [1]. Indeed, the strength of the electric field is measured in free space at a given location
which will then be compared to the reference levels in order to check compliance with standards. Figure 3
shows three major zones in each incident field scenario:

• The zone where the E-field is greater than the incident one for vertical and horizontal polarizations.
This is the reflection zone SR = {Pi : Ebody

Pi
> Efree

Pi
}. We donote by NR the number of points in

this zone, in which we will define a Body Reflection Error (BRE).
• The zone where the E-field in the presence of the body is less than 30% of the free space field. These
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Figure 3. Electric field strength at chest height. The arrow represents the incident field direction (with
vertical polarization).

values represent the measurement points in the shadowing zone SS = {Pi : Ebody
Pi

< 0.3Efree
Pi

}. We
denote by NS the number of points in this zone, in which we define a Body Shadowing Error (BSE).
This error is the most important one when using an exposimeter to evaluate the EMF. Some work
has already tried to quantify this error [2, 3].

• Between the two previous zones, the diffraction zone SD = {Pi : 0.3.Efree
Pi

≤ Ebody
Pi

≤ Efree
Pi

}. We
denote by ND the number of points in this zone, in which we define Body Diffraction Error (BDE).
The errors in the different zones are defined as follows:

BRE =
100
NR

∑
Pi∈SR

Efree
Pi

− Ebody
Pi

Efree
Pi

(1)

BSE =
100
NS

∑
Pi∈SS

Efree
Pi

− Ebody
Pi

Efree
Pi

(2)

BDE =
100
ND

∑
Pi∈SD

Efree
Pi

− Ebody
Pi

Efree
Pi

(3)

In addition to these zone errors, we define a Body Depolarization average Error (BPE), which
quantifies the depolarization due to the body. If the incident field is polarized vertically, we define

BPEH =
100
N

N∑
i=1

Ebody
H,Pi

Efree
Pi

, (4)
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where Ebody
H,Pi

=
√

Ebody
x,Pi

2
+ Ebody

y,Pi

2
, and N , used in Equations (4), (5) and (6), is the variable of number

of points in which strength of field is evaluated, as mentioned on this page, at the beginning of first
column. If the incident field is polarized horizontally, we define

BPEV =
100
N

N∑
i=1

Ebody
⊥,Pi

Efree
Pi

, (5)

where Ebody
⊥,Pi

is the field in the plane orthogonal to the incident polarization. Finally, we define the Body
average Error (BE) as follows:

BE =
100
N

N∑
i=1

Efree
Pi

− Ebody
Pi

Efree
Pi

(6)

In addition to these average errors, we will also report the maximum, pointwise errors that are obtained
with each of the proposed methods. Indeed, the determination of the electric field strength with precision
will make it possible in practice to compare it with the reference values, in order to verify compliance
with standards that regulate people’s exposure to electromagnetics fields.

3. ERROR MITIGATION TECHNIQUES

We propose two families of error mitigation techniques:

3.1. Multi-Coefficient Method

The multi-coefficient method is based on multiple linear regression analysis, which attempts to model
the relationship between two or more explanatory variables and a response variable by fitting a linear
equation to observed data. Here, we look for a relation between the values measured in the presence of
human body and the values measured in free space. To obtain this relation, it is necessary to determine
the regression coefficients (vector A) that minimize the residual (vector Ra). For each situation, the
vector A is obtained based on the numerical calculations carried out by the codes that we have written
with Matlab:

Efree = XbodyA + Ra, (7)

with

Efree =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 Efree
P1

...
...

i Efree
Pi

...
...

N Efree
PN

⎞
⎟⎟⎟⎟⎟⎟⎠

; A =

⎛
⎜⎜⎜⎜⎜⎝

1 a1
...

...
k ak
...

...
K aK

⎞
⎟⎟⎟⎟⎟⎠

. (8)

The Xbody matrix is composed by N rows and K columns. The different methods are based
on the possibility of measuring four different quantities, all in V/m. For any (i, k) position on the
measuring ellipse (Figure 2), we can measure, V 1body

Li,k
= Ebody

Li,k
, V 2body

Li,k
= Z0 × Hbody

Li,k
, V 3body

Li,k
=

max(Ebody
Li,k

, Z0 ×Hbody
Li,k

) and V 4body
Li,k

= (Ebody
Li,k

+Z0×Hbody
Li,k

)/2. So, the (i, k) entry xbody
Li,k

in this matrix
is defined as:

xbody
Li,k

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

V 1body
Li,k

[M11]

V 2body
Li,k

[M12]

V 3body
Li,k

[M13]

V 4body
Li,k

[M14]

(9)
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where Z0 ≈ 120 × π ≈ 376.99Ω is the wave-impedance of a plane wave in free space, and Ebody
Li,k

and

Hbody
Li,k

are respectively the electric field strength and the magnetic field strength measured at the Li,k

position on the body. M11, M12, M13 and M14 denote the different ways to consider xbody
Li,k

in the
multi-coefficient method.

The residual vector Ra contains the N errors terms: the maximum error is Ra
max = max(Ra

i ), and
the average error is Ra

mean = mean(Ra
i ), i = 1, . . . , N .

3.2. Single-Coefficient Method with Maximum Value

The single-coefficient method is based on a simple linear regression:

Efree = b Y body + Rb (10)

where b is the single correction factor and where the i-th entry ybody
Pi

in the vector Y body is defined as:

ybody
Pi

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max(V 1body
Li,1

, ..., V 1body
Li,K

) [M21]

max(V 2body
Li,1

, ..., V 2body
Li,K

) [M22]

max(V 3body
Li,1

, ..., V 3body
Li,K

) [M23]

max(V 4body
Li,1

, ..., V 4body
Li,K

) [M24]

(11)

In this method, we take maximum quantity for all the K points used in measuring ellipse. The
residual vector Rb contains the N error terms. As for the multi-coefficient method, the maximum error
is Rb

max = max(Rb), and average error is Rb
mean = mean(Rb). M21, M22, M23 and M24 denote the

different ways to consider ybody in the single-coefficient method.
In addition to the eight methods described above, we also consider method M00, which represents

a conventional measurement technique using a single sensor, as well as methods M10 and M20, which
represent the simple cases when we just measure the electric field in a two-sensor setup, either by
averaging the values (M10) or taking the maximum value (M20). M10 is also used in [13].

4. RESULTS AND DISCUSSION

4.1. Comparison between Simulations and Measurements

To validate the simulations, measurements have been carried out at 900 MHz in a full anechoic room
with vertical and horizontal polarizations, and the level of the reflected waves on the walls of the chamber
is approximately −50 dB (0.3% in magnitude). A SATIMO dual-ridge 600 MHz–9 GHz horn antenna is
used to produce the incident field (Figure 4), and a wideband probe (En-Probe EFS-105, 5 MHz–3 GHz
with noise < 10µV ·m−1Hz−1/2 from 200 to 500 MHz and < 30µV ·m−1 from 500 MHz to 3GHz) is
used as an exposimeter. This probe is connected to the base unit through an optical fiber link, and
the base unit is connected to a network analyzer (VNA, Agilent ENA 5071b) through a short cable.
The exposimeter is placed at 3 cm of the surface of the human body model. The human body model
is filled by a fluid with relative permitivity 60 and conductivity 1.2 Sm−1 as recommended by Federal
Communication Commission (FCC) in the report entitled, evaluating compliance with FCC guidelines
for human exposure to radiofrequency electromagnetic fields. The body model turns on itself following
the angle ϑ (−π ≤ ϑ ≤ π) and is placed in the far field region (472 cm) of the antenna. This movement
system is managed by a motor programmed for this purpose. All measurements are made by cycles. A
measuring cycle is characterized by the fact that the entire system (human body and probe) performs
a rotational movement on itself of −π ≤ ϑ ≤ π with an angle π/4(45◦) of increment. Another cycle will
be defined by another position of a probe on the human body at the same height but at an angular
deviation of 2π/9 also. For example, a cycle can be performed with a probe at 0◦ in the torso as in
Figure 4, and another cycle will be done for the probe at pi. Figure 5 compares measured and simulated
values around the body: a good match is observed, with a relative root mean square deviation of 14%
and maximum relative deviation is 40%.
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Figure 4. Measurement validation tools: antenna, probe and human body model.
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Figure 5. Comparison between measurements and simulations at 942 MHz.

4.2. Body Errors Classification for a Single Point

The variation of the intensity of the electric (E) and magnetic (H) fields along the axis OY at height
z = hc is shown in Figure 6. The intensity of the electric field varies from 0.51 V/m on the surface
of the human body, to 1.47 V/m at 17.4 cm distance from the surface of the body. The intensity of
the magnetic field changes from 3.93 10−3 A/m at the surface of the human body to 1.26 10−3 A/m
for the vertical polarization at 400 MHz. This distance of 17.4 cm is equivalent to the quarter of the
wavelength for a frequency of 400 MHz. For the frequencies 942 MHz and 1842 MHz, we also make
the same observation. We deduce that whatever the polarization of the incident field, opposite to the
direction of arrival of the incident field and with the presence of the human body, maximum of the
electric field strength coincides with minimum of the magnetic field strength and vice versa.
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Figure 6. Variation of E and H fields along the OY axis at height z = hc = 143 cm with the presence
of human body. For 400 MHz, 942 MHz and 1842 MHz.

This observation can also be made with the measuring ellipse in the direction of arrival of the field
or reflection zone (Figure 7). These remarks allow us to imagine that an exposimeter worn on the front
and capable of simultaneously measuring both electric and magnetic components will be less susceptible
to under-estimating the incident field strength (when arriving from the front) due to a null in one of
the components caused by destructive interference. However, an under-estimation in both components
of the field cannot be avoided when an exposimeter is located at the rear where the body shields the
exposimeter from the front incident plan wave. Overall, similar variability in the electric and magnetic
field strengths close to the body is observe.

We classify assessment errors due to the presence of the body and present an assessment based
on the combination approach (distributed measurements, electric and magnetic fields). As shown
in [10, 11] and [17–19], using a single sensor is largely ineffective in an overall estimation exposure.
Indeed, Figures 3 and 7 show the field level around the chest for different incident fields direction.
Particularly in Figure 7, we compare four fields quantities with the incident field in free space such as:
E-field with body presence V 1body, V 2body, V 3body and V 4body. This shows how V 1body and V 3body

curves match for on all diagrams, and there is noticeable difference between V 2body, V 4body and V 1body

curves, in central parts of diagrams regarding direction of arrival of incident field. This can be explained
by the result obtained in Figure 6. Indeed, at a distance from the human body less than a quarter of
the wavelength of the incident field (7.75 cm for 942 MHz), opposite to the direction of arrival of the
incident field, V 1body ≈ V 3body ≈ max(Ebody, Z0H

body) because Ebody > Z0H
body, and at the rear

side (back) of the human body relative to direction of arrival, Ebody and Z0H
body are both very low.

On the other hand, it can be seen that the two fields E and Z0 × H act in a complementary manner
around the reference value, hence the interest to study the measured values as the average defined
by (E + Z0 × H)/2. Relative to this observations, a measurement method based on multiple points
distributed in the reflection, diffraction and shading zones is required.

As shown in Figure 9 (Page 9) and Figure 10 (Page 9), we present assessment errors due to the
presence of the human body as a boxplot. In descriptive statistics, a boxplot is a convenient way of
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Figure 7. Elliptical scanning at chest height of the human body (Vertical polarization, 942 MHz).

Figure 8. BoxPlot explanation.

graphically depicting groups of numerical data through their quartiles. The boxplot (Figure 8, Page
8) displays the distribution of data based on the five-number summary: minimum (Min), first quartile
(Q1), median (Q2), third quartile (Q3), and maximum (Max). The median is the number that divides
the studied data into two groups containing the same number of elements. This parameter is useful to
give the distribution of the character studied, because about 50% of the data studied has a modality
lower than the median and 50% a modality higher than the median. The spacings between different
parts of the box indicate the degree of dispersion (spread) and skewness in the data. A segment inside
the box shows the median, and whiskers above (25% of datas) and below (25% of datas) the box show the
locations of the minimum and maximum. Not uncommonly real data-sets will display surprisingly high
maximums or surprisingly low minimums called outliers. Following this study, we will call IQ = [Q1, Q3]
the interquartile interval (50% of datas); its range will be calculated as IQR = ||Q3| − |Q1||. The
variation range for each error data type will also be investigated and calculated as Δ = ||Max| − |Min||.
As we study the behavior of the EMF in the vicinity of the human body in order to use this knowledge
to better evaluate the field in free space, we will use the statistical variables defined above for the study
of this behavior. The values IQR and Δ inform us about the degree of convergence of the data with
respect to the median value of the errors that each method can produce. The maximum (Max) error is
also important because it tells us on the ceiling that we can reach. Moreover, the statistical study also
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Figure 9. Assessment Errors due to proximity of the Body (Vertical polarization).
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Figure 10. Assessment Errors due to proximity of Body (Horizontal polarization).

gives the behavior of all the situations, hence the values of interest such as IQR and Δ.
Figures 9 and 10 show that the human body barely depolarizes the incident field. Indeed, the

boxplot representing the depolarization error (BPE V when the incident field is horizontally polarized
and BPE H when the incident field is vertically polarized) has a median less than 20% for the BPE H
and 10% for the BPE V . The IQR of depolarization varies between 3% and 11%, which reflects the
fact that the values of BPE H and BPE V are very close to the median. It means that it will be more
obvious to find suitable weighting coefficients to mitigate the error due to depolarization. The errors
due to depolarization are lower than other errors (BRE, BDE, BSE and BE), but their values are not
negligible and will be specifically treated later. Overall, for a given incident polarization, it would be
better to measure the same polarization close to the human body. These are the same points that we
can do regarding the errors due to the mask (BSE), with the following features: IQR between 10% and
14% and the maximum difference between the errors due to the human body mask (Δ) varies in each
case between 24% and 33%. Whatever the polarization of the incident field and the measurement level
(Chest, waist and abdomen), the errors due to the measurement in the mask zone (BSE) is between
80% and 99% relative to the electric field level measured at the same place in free space (without the
presence of the human body). In sum, the errors due to the mask areas are the most important ones
that require a large correction, and these errors also have the particularity of being grouped around the
median value.
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We also notice that errors due to reflection of the incident field by the body are mostly over-
estimated. Indeed, the boxplots representing all the BRE are mostly in the negative part of the graph.
Moreover, their IQR between 13% and 24% means that nearly 50% of the measured samples are quite
close within 25% of their median value, the median value that varies between 15% and 27% (i.e., between
1.15 V/m and 1.27 V/m). In other words, in vertical polarization, half of the measurements made in the
reflection zone is between 1 V/m and 1.15 V/m, and the other half is more than 1.15 V/m. In horizontal
polarization, half of the measurements made in the reflection zone is between 1 V/m and 1.27 V/m, and
the other half is more than 1.27 V/m. The maximum difference between the errors due to the reflection
of the incident field by the human body (Δ) is between 0% and 63% (between 1V/m and 1.63 V/m)
and particularly between 0% and 85% (between 1V/m and 1.85 V/m) for horizontal polarization and
for measurements made at the waist level. In terms of outliers, we notice that they are usually present
when it comes to make measurements in the waist zone. This is due to the presence of the arms in this
region. Indeed, when we approach the zone of the chest, this is reduced considerably; it can also be
noticed that, as we presented in [19], the chest zone is the most stable zone and most recommended for
assessment of personal body exposure. On the other hand, while making these remarks, the outliers do
not represent more than 6% (BPE V W horizontal polarization) of all the measurements carried out.
This reflects the fact that the data are quite clustered in the boxplot.

4.3. Error Mitigation Results

For K measurement points (φ = 360◦/K), we show in Figure 11 how the average error (BE) decreases
with the increase of the number of points (K). This extends the results that we presented in [19] and [20]
for two measurement points. When the number of measuring points increases, it is possible to get at least
one point in the reflection or diffraction zones, and the average of measurements will be closer to the free
space value of the field: for chest height and vertical polarization, we have IQR = 30% and Δ = 89%
for a single point, IQR = 12% and Δ = 36% for 2 points, IQR = 11% and Δ = 28% for 3 points and
IQR = 8% and Δ = 28% for 4 points. In other words, after three points or sensors, it is no longer
necessary to increase the sensors because the impact on the performance of the measurement is no longer
very significant. These observations are also clearly shown in Tables 1 and 2 and Figure 12. Indeed,
with the method that we propose (M24), we obtain the best error reduction for only two measurement
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Figure 12. Comparison between the assessment errors obtained for the different techniques M00
(BE M00), M10 (BE M10), M20 (BE M20), M11 (BE M11), M21 (BE M21), M13 (BE M13) and
M24 (BE M24).

points (Reduction of 8 times in terms of average error and 3 to 7 times in terms of maximum error).
We also note that, for a single E-field sensor, regardless of the measurement level (chest, abdomen and
waist), the behaviors of average and maximum errors are the same. For conventional measurement
methods with two E-field sensors, M10 (average method) and M20 (maximum method) are described
in the last paragraph of Section 3.2 (Single-coefficient Method with Maximum Value).

It is necessary to avoid making measurements at the waist level, because it presents twice as many
errors as the other positions (Chest and abdomen) with a slight preference for chest level. The robustness
of M24 method compared to others is due to the combination of E-field and H-field with two points
diametrically opposed to the measuring ellipse. This result considerably reduces the complexity of the
exposimeter presented in [13]. Several exposimeters as ESM-30 RADMAN XT already measure the
electric and magnetic fields. By combining two sensors of this exposimeter with the M24 method, we
will get 3% average error and 12% maximum error in free space electric field strength assessment.

Table 1. Correction parameters for vertical polarization and two measurement points.

Multi-coefficient method Single-coefficient method

M00 M10 M11 M12 M13 M14 M20 M21 M22 M23 M24

Chest

a1 - 0.5 0.58 0.67 0.56 0.63
b 1 0.80 1.09 0.79 0.94

a2 - 0.5 0.58 0.67 0.56 0.63

Ra
mean(%) 39 15 8.44 20.8 8.21 12.4 Rb

mean(%) 25 9.30 14.3 8.55 5.36

Ra
max(%) 89 36 25.8 53.0 26.4 37.3 Rb

max(%) 50 39.6 41.9 33.3 24.6

Abdomen

a1 - 0.5 0.59 0.66 0.56 0.63
b 1 0.80 1.03 0.80 0.92

a2 - 0.5 0.59 0.66 0.56 0.63

Ra
mean(%) 41 19 12.0 21.2 13.4 14.5 Rb

mean(%) 24 11.09 11.6 10.2 7.58

Ra
max(%) 86 38 45.4 58.2 46.8 52.9 Rb

max(%) 63 42.5 48.5 39.2 32.1

Waist

a1 - 0.5 0.72 0.78 0.67 0.77
b 1 0.91 1.09 0.88 1.02

a2 - 0.5 0.72 0.78 0.67 0.77

Ra
mean(%) 49 36 20.6 20.1 13.3 14.8 Rb

mean(%) 28 26.0 15.9 17.5 16.4

Ra
max(%) 90 89 85.5 76.3 62.8 65.3 Rb

max(%) 89 90.5 83.0 73.3 76.5
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Table 2. Correction parameters for horizontal polarization and two measurement points.

Multi-coefficient method Single-coefficient method

M00 M10 M11 M12 M13 M14 M20 M21 M22 M23 M24

Chest

a1 - 0.5 0.55 0.62 0.53 0.59
b 1 0.89 1.1 0.87 1.01

a2 - 0.5 0.55 0.62 0.53 0.59

Ra
mean(%) 22 11 7.23 19.12 6.77 10.77 Rb

mean(%) 13 11.2 14.4 8.78 3.31

Ra
max(%) 83 32 24.7 50.2 21.2 25.1 Rb

max(%) 52 36.4 38.1 33.7 12.2

Abdomen

a1 - 0.5 0.57 0.63 0.54 0.60
b 1 0.90 1.04 0.87 1.00

a2 - 0.5 0.57 0.63 0.54 0.60

Ra
mean(%) 24 14 9.21 15.27 7.83 8.78 Rb

mean(%) 14 13.6 12.77 10.5 4.97

Ra
max(%) 82 36 27.5 49.7 25.8 20.9 Rb

max(%) 50 35.5 45.3 30.2 14.7

Waist

a1 - 0.5 0.62 0.62 0.55 0.63
b 1 0.94 0.93 0.84 0.98

a2 - 0.5 0.62 0.62 0.55 0.63

Ra
mean(%) 32 24 15.4 20.7 14.2 15.7 Rb

mean(%) 17 16.8 17.9 11.3 7.53

Ra
max(%) 92 79 75.0 61.9 59.9 54.3 Rb

max(%) 81 78.0 52.4 52.0 43.9

We also show through Tables 1 and 2 that regardless of polarization, the conventional single E-field
sensor method produces the same errors, and the proposed method reduces the average error (8 times)
in the same way as that in the presence of a horizontally or vertically polarized incident field. However,
this method (M24) is more efficient in terms of maximum error reduction for horizontal polarization (7
times) than for vertical polarization (3 times). Finally, our study shows that with conventional methods,
the use of the average (M10) or the maximum value (M20) of the E-field measured in the vicinity of
human body by multiple sensors reduces 2 times of the errors compared to M00 method that uses a
single E-field sensor. Moreover, a much better correction is observed with the method of the average
(M10) than with that of the maximum (M20). However, with the methods that we propose, if we can
just measure the E-field at two diametrically opposed points (Method M11), then the maximum and
average errors are reduced 4 times, respectively to 26% and 8% compared to 89% and 39% for method
M00. In this study, a much better method is also proposed combining the simultaneous measurement
of E and H fields at two diametrically opposed points (M24). Indeed, if we have this possibility, the
average error is reduced 8 times (39% to 5%) regardless of the polarization of the incident field. The
maximum error is also reduced 3 times (89% to 24%) for vertical polarization and 7 times (83% to 23%)
for horizontal polarization compared to the conventional method.

The contribution of the work presented in this paper can be evaluated in relation to some recent
works carried out in the bibliography on the same thematic [2–4]. Indeed, to study the potential
errors associated with the exposure measurements to non-ionizing radiations due to the influence of
the BSE (Body Shadow Effect/Error) in order to quantify that influence, the assessment of human
body influence on exposure measurements of electric field in indoor enclosures [2] and the analysis
of polarization dependence of BSE on dosimetry measurements in 2.4 GHz band [3] have recently
been treated. We note that these works focus mainly and exclusively on the error due to shadowing
phenomenon. Moreover, in this paper we show the importance of also taking into account the error due
to the reflection or the diffraction of the incident electromagnetic field on the human body. The study
presented in [2], like this paper, demonstrates that if we do not consider BSE (Body Shadow Error) in
the exposure assessment, then it will translate into measurement by underestimating the exposure to
which the human body is effectively subjected. We have used these remarks to propose new methods
for measuring the electric field by an exposimeter in order to compare them to the reference values. In
the same order of ideas, the study of the role of the location of personal exposimeters on the human
body in their use for assessing exposure to the electromagnetic field in the radiofrequency range 98 to
2450 MHz and compliance analysis (evaluation by numericals simulations) is done [4]. Using the Gustav
model as a numerical model of the human body, measurements are made in 4 locations (front, right,
left and back) at each level (Chest and waist). In an environmental test regarding compliance with the
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binding requirements, the study proposes to use a correction factor (applied to the measurement results
or alternatively to the exposure limit values) to compensate such discrepancies between the result of
an exposimetric measurement and the exposure metric expected by the exposure limit provider (such
as international organization or national legislator). The solution with only one measurement location
or sensor can be interesting, but the correction factor will depend on the position of the exposimeter
and the parameters that we do not master as the direction of arrival of the field. Moreover, we propose
to combine two diametrically opposite points measurements before applying the correction by factors,
which give us the assurance that at least one of the two measurement points will always be in the
reflection or diffraction zone of the field on the human body whatever the direction of arrival. Although
in future work we will perform the same analysis for a wide range of frequencies, we can say that the
current studies on the frequencies DCS 1842 MHz and LTE/Wimax 3500 MHz show similar results to
those of 942 MHz presented in this work.

5. CONCLUSION

In this work, according to ICNIRP, the error considered is the difference between the field value measured
by an exposimeter in the presence of the body and the field value in its absence. In the method proposed
by this work, we have reduced this error by 8 times compared to the conventional method. This good
result is achieved with the following results:

• Sensor(s) location : Whatever the method used, it is necessary to avoid making measurements
at the waist level which presents far more errors than chest and abdomen levels, with a slight
preference for chest.

• Sensors number : With method M24, we obtain the best error reduction for only two measurement
points. After three measurements sensors, it is no longer necessary to increase the number of sensors
because the impact is no longer very significant.

• Incident field polarization : Regardless of the polarization, the proposed method (M24) reduces
the average error by 8 times. Method M24 is more efficient in terms of maximum error reduction
for horizontal polarization (7 times) than for vertical polarization (3 times).

• Measurement methodologies: Conventional two-sensor setup methods reduce the errors by 2
times. However, with our methods, if we can just measure the E-field at two diametrically opposed
points, then the maximum and average errors are reduced 4 times compared to the conventional
single sensor method. A much better method is also proposed combining the measurement of E-
field and H-field. In that case, the average error is reduced 8 times regardless of the polarization.
The maximum error is also reduced 8 times for horizontal polarization but just 3 times for vertical
polarization.
Future work will consider a greater range of frequencies, other human body models morphologies

and other exposure situations.
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