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Adaptive Sharp Boundary Inversion for Transient
Electromagnetic Data
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Abstract—An adaptive sharp boundary inversion scheme is developed to improve resolution with
feasibility for transient electromagnetic (TEM) data inversion. By using weighted minimum gradient
support (WMGS) constraint, this method focuses the resistivity change areas on layer boundary
locations. Prior information describing roughness can be added into the constraint to improve
resolution. Furthermore, even though no prior information about layer boundaries is available, it can
still reconstruct models with geo-electrical interfaces. Synthetic models prove that this method has a
better performance in presenting layer boundaries than smooth-model inversion. Field data of a TEM
test line are inverted using this method, which makes the basement layer visualized easily.

1. INTRODUCTION

Transient electromagnetic method (TEM) is a powerful geophysical prospecting tool for mineral,
energy and groundwater exploration as well as shallow geological investigation, etc. [1–4]. It is an
artificial source electromagnetic detection method based on the process of transmitting the primary
electromagnetic impulse to underground and analyzing changes of secondary field versus time to get the
electrical characters of the medium [5]. The secondary field is induced by the eddy current underground,
typically appearing from 10−6 s after the transmitting current is cut off.

Inversion is a major approach for TEM data interpretation, but it is ill-posed because of the non-
linearity property of the forward modeling operator [6]. To reduce the chance of stepping into local
minima, constraints of spatial resistivity are imposed on optimization functions. The most accepted
constraint is the smooth model, assuming the underground resistivity changing continuously. For
many years, this constraint has been applied to TEM data inversion in different methods, such as [7–
9]. However, in sedimentary areas, smooth model inversion cannot reflect boundaries of the layers
because it produces smooth resistivity transitions. To improve the inversion resolution in sedimentary
environments, the visualization of geo-electrical interface is required. Another inversion scheme for
reflecting sharp boundary is available [10–12], but it inverts resistivity and layer thickness simultaneously
without parameter constraint, which makes the iteration easy to fall into local minima. Unless prior
information about layer boundaries is sent into its inversion program, this method is difficult to converge.

In this work, weighted minimum gradient support (WMGS) constraint is proposed for TEM sharp
boundary inversion. If there is no prior information about layer interface, WMGS constraint degenerates
to minimum gradient support (MGS) [13–15] constraint, which can select the minimum volume of area
where the gradient of the resistivity is nonzero. By dividing the ground into fixed dense layers, the
resistivity with sharp boundary characteristics can be selected adaptively through MGS constraint
to match the true resistivity distribution. If prior information about layer interface is available, the

Received 8 March 2017, Accepted 27 April 2017, Scheduled 12 June 2017
* Corresponding author: Xin Wu (wu xin18@mail.ie.ac.cn).
1 Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China.
2 University of Chinese Academy of Sciences, Beijing 100039, China.



130 Guo et al.

proposed weight function adds geological information into inversion, which makes the layer interface to
be visualized in a higher resolution.

This paper is organized as follows. In Section 2, the inverse problem models and forward modeling
operations are introduced. In Section 3, the scheme of weighted minimum gradient support is explained
in detail. In Section 4, the optimization problem is solved. In Sections 5 and 6, synthetic data and
filed data inversion are tested to verify this algorithm. Notably, the field test was carried out by
CASTEM [16] system. Conclusions follow.

2. WEIGHTED MINIMUM GRADIENT SUPPORT INVERSION

Layered model is applied here. Divide the ground into N layers with fixed thickness. Taking resolution
into consideration, the thickness of the ith and (i+1)th layers, ti and ti+1, is better to satisfy ti/ti+1 < 1.
The resistivity of the ith layer is mi.

The forward modeling operation can be expressed as [4]

Hz =
Ia

2

∫ ∞

0
λ
[
e−u0|z+h| + rTEeu0(z−h)

]
J0(λr)J1(λa)dλ (1)

where:

(i) Hz is the vertical magnetic field, I the transmitter current strength, a the radius of the transmitter
coil, and r the center offset between the transmitter and receiver coil. z and h are the heights of
transmitter and receiver coils.

(ii) rTE is the reflection coefficient noted as rTE = λ−û1
λ+û1

, where û1 is calculated from bottom to top

using ûi = ui
ûi+1+ui tanh(−2uiti)
ui+ûi+1 tanh(−2uiti)

, and λ is the beam of the electromagnetic wave.

(iii) ui is called equivalent beam written as ui =
√

λ2 + iωμmi at the ith layer.

Equation (1) can be numerically calculated through fast Hankel transformations [17, 18]. The
relation between theoretical data d and resistivity m can be written as

d = F (m) (2)

where F is the forward modeling operator shorten for Eq. (1).
In practice, only observed data dobs is available, thus we concern more about the inverse solution m

of Eq. (2). As a property of the ill-posed problem, the inverted parameters with different distributions
may have similar field characteristics [19]. To increase the stability of inversion, a reasonable constraint
for inversion parameters should be imposed. One of the assumption is that parameters keep continuous
in adjacent grids. This constraint is called smooth constraint, widely used in solving inverse problems.
However, the continuous resistivity transitions in TEM inversion result in difficulties in distinguishing
layer interfaces, hence decreasing the resolution of TEM method.

Minimum gradient support (MGS) is proposed by [13] for reflecting medium’s sharp boundaries,
which can be written as

PMGS =
∫
V

∇m · ∇m

∇m · ∇m + β
dV (3)

where ∇ is the gradient operator in the domain V , and β is a very small positive number called focusing
factor. In the �2-norm, Eq. (3) can be transformed to

PMGS =
∥∥∥∥ ∇m√∇m · ∇m + β

∥∥∥∥
2

2

(4)

When minimizing Eq. (4), a well-focused distribution m with a minimum volume of area can be
adaptively selected, and the smooth distribution of m which results in a big value will be omitted.
The results tend to have large gradient changes at layer interfaces, making blocky geological structures
easily distinguished.
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For prior information about layer interface to be added, Eq. (4) no longer applies. Weight minimum
gradient support (WMGS) function is proposed here, written as

PMGS =
∥∥∥∥ ∇m√∇m · ∇m + β0l

∥∥∥∥
2

2

(5)

where β0 is a positive number, and l is the weight vector in the format of exponential function.
Suppose that a prior layer interface is located at the Npth layer in the inversion model. Because a

rough weight distribution will cause vibration of inversion results, it is reasonable to define the weight
vector l with respect to layer n as

l (n) = 1 − αe−γ·|n−Np−N0| (α < 1) (6)
where α and γ are used to adjust weight distribution according to prior information, and N0 represents
a constant layer number with a typical value of 2 ∼ 4. Large gradient appears at N0 layers before low
weight occurs. If no prior information is available, α is set to zero. Fig. 1 shows an example of weight
distribution. In Fig. 1, suppose that the interface is at 10th layer. Let Np = 2 and choose different
α and γ. If it is known that there is only one interface at the 10th layer, the yellow line is suitable
for weighting. If the interface number is uncertain, the red line for weighting is more conservative.
However, the blue line without prior information still works, except for some resolution loss. Note that
the weight is normalized, hence β0 needs to be reselected after l changes.

Figure 1. The weight distribution of different α and γ.

With the constraint of WMGS, the inverse problem can be faced as the solution of the following
optimization scheme:

min
∥∥∥∥ ∇m√∇m · ∇m + β0l

∥∥∥∥
2

2

(7)

s.t. ‖Wd (F (m) − dobs)‖2
2 < δ (8)

where Wd is the data weight, inversely proportional to the noise. Using the regularization method to
form the unconstrained optimization function

P = ‖Wd (F (m) − dobs)‖2
2 + λ

∥∥∥∥ ∇m√∇m · ∇m + β0l

∥∥∥∥
2

2

(9)

where λ is an ad-hoc parameter [20] defining the total constraint strength.
The minimum of P can be reached when its gradient with respect to m vanishes. The mathematical

problem can be solved by an iterative process. Suppose that there is a starting model m0 from which
the iteration begins the refinement procedure. If F is differential at m0 (as we shall always assume that
it is), for some sufficiently small vector Δ

F (m0 + Δ) = F (m0) + JΔ + ε (10)
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where ε is a very small vector with the magnitude of o‖Δ‖, and J0 is an M × N gradient matrix
represented as components

Jij =
∂Fi (m)

∂mj
(11)

Eq. (9) can be rewrite as

P = ‖Wd (F (m0) + J (m− m0) − dobs)‖2
2 + λ ‖Wβ∇m‖2

2 (12)
with

Wβ ≈ Wβ0 = diag

(
1√∇m0 · ∇m0 + β0l

)
(13)

By letting
∇mP = 0 (14)

we have
2 (WdJ)T Wd [F (m0) + Jm − Jm0 − dobs] + 2(Wβ∇)T (Wβ∇)m = 0 (15)

After some algebra, m can be represented as

m =
[
(WdJ)T (WdJ) + α(Wβ∇)T (Wβ∇)

]−1
Wd [dobs + Jm0 − F (m0)] (16)

For numerical calculation, the gradient operator is written as

∇ =

⎡
⎢⎢⎢⎣

0 0
−1 1

−1 1 0
. . .
0 −1 1

⎤
⎥⎥⎥⎦

N×N

(17)

 Input Parameters(observed data dobs,

layer numbers N, thickness t, RMSC)

Input Starting Model  m0

RMS>RMSC

Calculate J, Wβ

Generate New Model m

Output Inverted Model m

Yes

No

Figure 2. Inversion flowchart.
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After m is computed, the disagreement between the forward modeling result using m and the real
observed data can be measured by

RMS =

√√√√ 1
M

∑
V

(
F (m) − dobs

dobs

)2

(18)

RMS should be small enough so that the forward modeling result fits observed data well. If it is not the
case, m is then considered as the starting approximation of the next iteration. Such procedures keep
on until RMS reaches an acceptable level RMSC. During each iteration, λ is selected using a linear
searching algorithm to make sure that RMS can be as small as possible.

The inversion procedure can be represented as the flowchart in Fig. 2. In step 3, RMS is calculated
by Eq. (18). In step 4, J and Wβ are calculated by Eqs. (11) and (13). In step 5, the generated model
is calculated by Eq. (16). If RMS is smaller than the level RMSC, the new model m can be considered
as the inversion result.

3. SYNTHETIC EXAMPLES

In all the following cases, the synthetic data are simulated by means of Eq. (1) and corrupted with
normalized noise with the amplitude of 0.01 nV/Am2. The radius of transmitter coil is 100 m with the
current strength 20 A. The receiver is located at the center of transmitter coil. Four models describing
different underground structures are generated. Table 1 shows the parameters of these models.

Table 1. Model parameters.

Models Resistivity (Ωm) Thickness (m)

Model A
300 100
100 200
300 Half space

Model B

100 100
300 100
100 300
300 Half space

Model C

300 100
100 100
300 200
100 300
300 Half space

Model D 300 100
100 to 300 Half space

Models A, B and C are layered-models, which have clear interfaces between different layers. In
model D, the resistivity increases from 100 Ωm to 300 Ωm gradually, beneath the first sedimentary layer.
The responses with noises are presented in Fig. 3, which are used for inversion next. In order to provide
high resolution, the ground in the inverse problem is discretized with 39 layers, with the first layer
thickness 5m and increasing ratio 1.09. The target RMS is set to 2%.

Suppose that no prior information about models A, B and C is available. In model D, prior
information is that the interface is located at the 100 m underground, and we use the yellow line
presented in Fig. 1 to describe the weight vector. The inversion results of WMGS are compared with
that of smooth constraint inversion (see Fig. 4).

In the examples above, WMGS model inversion, represented by black lines, has larger gradient at
the layer interface and is more flat in blocky areas than the smooth model inversion, represented by red
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(  )

Figure 3. Responses of model A, B, C and D, with 0.01 nV/m2/A noises added.

(a) (b)

(c) (d)

Figure 4. WMGS and smooth model inversion of (a) model A, (b) model B, (c) model C, and (d)
model D.
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lines. Especially in high resistivity areas, WMGS model inversion has better performance than smooth
model inversion. In Fig. 4(d), WMGS can reflect both the interface at 100 m and smooth resistivity
distribution beneath 100 m. It is shown that the weight (see Fig. 1) selects the model properly.

4. FIELD TEST

The field example is presented here to verify the adaptivity of this algorithm in practice. The test field
is in Jianying, Anhui Province, China (see Fig. 5). According to the previous drilled results, there is
a quaternary aquifer starting at 60 m underground. The test area is a typical three-layered geological
structure. The thickness of the quaternary aquifer is about 400 m. At the bottom is the bed rock layer.

Survey location

Jianying

China

(a) (b)

Figure 5. Location of the field test. (a) Survey location in Jianying. (b) Jianying’s location in China.

CASTEM system, developed by Institute of Electronics, Chinese Academy of Sciences, was used
during the field test. The radius of transmitter coil is 170 m. The transmitting current is 10.8 A with
the turned-off time 6 µs. More details about the system are shown in Table 2. There are 35 points
along a test line. The intervals between two points is 20 m. The observed data after data processing
are shown in Fig. 6.

Table 2. Parameters of CASTEM system.

Current 11.3 A
Turn-off time ∼ 60µs

Transmitting frequency 2.5 Hz
Effective areas of receiver 1000 m2

Bandwidth of receiver 30 kHz
Number of windows 31

First window 90 µs
Last window 88.881 ms

Inversion result of a test line is shown in Fig. 7. The distance changes from 0 m to 700 m,
corresponding to the test points from 1st receiver to the 35th receiver with the intervals of 20 m.
From top to bottom, the resistivity distribution is high-low-high. The first part is the high resistivity
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Figure 6. Observed data received by CASTEM receiver.
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Figure 7. 2D imaging of 1D inversion. (a) Imaging using smooth model inversion. (b) Imaging using
WMGS inversion.
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layer at the shallow ground. At the depth of 60 m, the resistivity drops to a low level, which represents
the quaternary aquifer. At the bottom is the bed rock. From Fig. 7(a) it is difficult to distinguish the
interface of quaternary aquifer layer and basement layer, but Fig. 7(b) can do. It is shown that WMGS
inversion has a higher resolution of the layers’ interface than traditional smooth model inversion.

5. CONCLUSION

Traditional TEM inversion for sharp boundaries is easy to step into local minima, hence the smooth
model inversion, which is more stable than the former, are widely accepted for data interpretation.
However, in sedimentary environments, smooth model inversion has difficulties in reflecting layer
interfaces, which results in the resolution loss in TEM data interpretation.

In this work, the weight minimum gradient support constraint is introduced, developed and tested.
The weight is selected by a series of exponential functions according to prior information. By solving an
optimization problem, the inverted images have large gradient at layer interfaces and become flatter in
other areas. This inversion algorithm is tested by synthetic data, which are generated by four different
models with noises corrupted. The result shows a better performance than smooth model inversion.
At last, a field test is carried out by CASTEM system. After data processing, the inverted model
using WMGS shows the interface between quaternary aquifer layer and basement layer with a higher
resolution than smooth model inversion.

This method does not need prior information about layer interface but still makes sharp boundaries
visualized adaptively. The resolution can be further enhanced by utilizing the proposed weighting
scheme. It is especially applicable to inverting data observed in sedimentary areas. For areas with
continuous resistivity, it is recommended that smooth model inversion is used, or the focusing factor in
WMGS is large.
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