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Abstract—Two-Dimensional Direction of Arrival (2D-DOA) estimation is increasingly important in
recent years. In this paper, a new method is proposed to estimate the 2D-DOAs of multiple spatial
sources using a three-parallel uniform linear array assuming that some of the sensors happened to be
out-of-order. Firstly, a Matrix Completion (MC) algorithm is applied to recover the observed incomplete
data, and then an improved joint azimuth and elevation angle estimation algorithm using the recovered
data is proposed to obtain the correct parameter estimation. Finally, computer simulation results
show that the proposed algorithm has a great performance improvement compared to those based on
incomplete data in terms of Signal-to-Noise Ratio (SNR) and the sample rate of sensors.

1. INTRODUCTION

Two-Dimensional Direction of Arrival (2D-DOA) estimation is one of the most important topics in array
signal processing thanks to its widely use in the fields of radar, sonar and wireless communication system.
In the past decades, many effective 2D-DOA estimation methods such as 2D-MUSIC (Multiple Signal
Classification) and 2D-ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique)
have been proposed [1–9].

All the subspace-based methods for 2D-DOA estimation require a large amount of samples
to compute the correlation matrix in order to obtain the signal subspace or noise subspace, and
asymptotically achieve unbiased estimation. To reduce the computational load of eigen-decomposition
in the subspace-based methods, the unitary 2D-ESPRIT algorithm [2] proposed by Zoltowski turns a
complex correlation matrix into a real one. However, Zoltowski’s method requires that the array has
a centro-symmetric structure. In Chen et al.’s paper [10], they came up with a 2D-DOA estimation
approach based on a three-parallel uniform linear array. Later, this has been improved by Wu et al.’s
fast algorithm with a generalized propagation method [11].

In the overwhelming majority of cases, those 2D-DOA estimation methods can achieve a good result
when the observed data of sensors array is complete. However, it is impossible to guarantee that all
sensors of the array are properly functional in real engineering application. When the received data of an
array are incomplete, most of the DOA estimation approaches fail to work well. Some DOA estimation
methods are reported in the literature [12] that can cope with the incomplete array data. However,
these methods require higher computational load, initialization, and training. In this paper, we use
the Inexact Augmented Lagrange Multiplier algorithm (IALM) [13] to recover the incomplete data of
a three-parallel linear array, and then a computationally efficient algorithm for 2-D DOA estimation is
proposed by the recovered data, in which the subspace-based technique and the well-known propagation
method are combined to obtain a closed-form parameter estimation without searching computation.

This paper is organized as follows. In Section 2, the signal model is introduced. In Section 3, we
use an IALM algorithm for Matrix Completion to attain the missing part of the observed data, and

Received 4 March 2017, Accepted 31 May 2017, Scheduled 20 June 2017
* Corresponding author: Yuntao Wu (ytwu@sina.com).
The authors are with the School of Computer Sciences and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.



198 Tan et al.

then in Section 4, an improved azimuth and elevation angle estimation algorithm will be applied to the
2D-DOA estimation. The simulation results are presented in Section 5. At last, a conclusion is given
in Section 6.

The notations (·)T , (·)H , (·)+ and (·)−1 represent transpose, conjugate transpose, pseudo-inverse
and inverse. Also, diag(·) denotes the diagonalization operation of a vector; IK is a K × K identity
matrix; E(·) stands for the expectation operator; arg(·) means to get the phase angle of (·); ‖·‖∗ denotes
the nuclear norm which is equal to the sum of the singular values of the matrix; ‖ · ‖F represents the
Frobenius norm of the matrix. 〈·, ·〉 returns the inner product.

2. SIGNAL MODEL

As shown in Figure 1, the array geometry is composed by a three parallel uniform linear arrays (ULAs)
with the arrays named array X, array Y and array Z. Arrays Y and Z are made up of N sensors, but
Array X has one more sensor than Array Y . We assume that the adjacent sensor distance of each array
is d, which is equal to half of the wavelength of the incoming signal source, which means d = λ/2. There
are P far-field narrow-band uncorrelated source signals impinging on the array and the ith source has
the elevation angle θi and azimuth angle ϕi. Thus, in the noisy case [5], we can obtain the output data
vector of the whole arrays at snapshot t as:

X(t) = AxS(t) + Wx(t) (1)
Y(t) = AyΩyS(t) + Wy(t) (2)
Z(t) = AyΩzS(t) + Wz(t) (3)

where Ax = [ax(θ1, ϕ1), . . . ,ax(θi, ϕi), . . . ,ax(θP , ϕP ), ], and ax(θi, ϕi) = [1, . . . , e−j2πd sin θi sin ϕi/λ, . . . ,

e−j2πNd sin θi sin ϕi/λ]T . Thus Ay contains the first N rows of Ax. Wx(t), Wy(t) and Wz(t) are inde-
pendent additive Gaussian white noise vectors (AGWN). Ωy = diag[e−j2πd cos θ1/λ, e−j2πd cos θ2/λ, . . . ,

e−j2πd cos θP /λ] and Ωz = diag[e−j2πd sin θ1 cos ϕ1/λ, e−j2πd sin θ2 cos ϕ2/λ, . . . , e−j2πd sin θP cos ϕP /λ]. By giving
a definition that W = [X(t)T Y(t)T Z(t)T ]T , (1)–(3) can be expressed as below:

W =

[X
Y
Z

]
=

[ Ax

AyΩy

AyΩz

]
S(t) + Q (4)

Figure 1. Array model.

In short, we write Eq. (4) as W = AS + Q, where A = [AT
x (AyΩy)T (AzΩz)T ]T ,S(t) =

[S1(t), . . . ,SP (t)]T and Q = [WT
x WT

y WT
z ]T denotes the noise vector of array output.

3. MATRIX COMPLETION

In order to recover the missing part of data received at the array, we regard it as a Matrix Completion
problem [14]. Assume that we have the available technology to locate the broken sensors [15]. Data
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which need to be recovered have low rank P obviously. Candes and Recht’s research [16] shows that
the recovered data are related to the following optimization problem:

min
W

‖W‖∗ , subject to Wij = Dij,∀(i, j) ∈ Ω, (5)

where Ω is the set of indices of functional sensors, and D represents the data received from the array.
The most famous algorithm to solve this problem is the singular value thresholding (SVT) method [17].
In this paper, we introduce an algorithm known as the Inexact Augmented Lagrange Multiplier (IALM)
algorithm [13] to deal with it. Eq. (5) can be expressed as:

min
W

‖W‖∗ , subject to W + E = D, πΩ(E) = 0, (6)

where πΩ : R
m×n → R

m×n is a projection operator which keeps the elements in Ω unchanged and other
elements not in Ω turns into zeros. E is the error matrix. The partial augmented Lagrangian function
of Eq. (6) is:

L(W,E,Y, μ) = ‖W‖∗ + 〈Y,D −W − E〉 +
μ

2
‖D− W −E‖2

F . (7)

Then we can have the Inexact ALM algorithm for the MC problem by updating E under the
condition that πΩ(E) = 0 when minimizing L(W,E,Y, μ). Above all, we have Algorithm 1 as follows:

Algorithm 1 Inexact ALM algorithm for Matrix Completion
Input: Dij , (i, j) ∈ Ω,D ∈ Rm×n

Output: (Ŵk,Ek)
1: Y0 = 0;E0 = 0;μ0 > 0; ρ > 1; k = 0.
2: while not converged do
3: (U,S,V) = svd(D − Ek + μ−1

k Yk);
4: Ŵk+1 = USμ−1

k
[S]VT ;

5: Ek+1 = πΩ(D − Ŵk+1 + μ−1
k Yk);

6: Yk+1 = Yk + μk(D − Ŵk+1 − Ek+1);
7: μk+1 = ρμk;
8: k = k + 1;
9: end while

10: return (Ŵk,Ek).

Because of the appropriate choice of Ek, Y = 0 is always established in the iteration, and it means
that the values of the unknown part retain zeros. The iteration reaches its stopping criteria as follows:∥∥∥D − Ŵk −Ek

∥∥∥
F

/ ‖D‖F < ε1 and dist(ϑ
∥∥∥Ŵk

∥∥∥
∗
,S)/ ‖D‖F < ε2, (8)

The output matrix Ŵ is what we need. With the recovered matrix Ŵ, we can come to the following
DOA estimation part.

4. 2D-DOA

In this section, a computationally efficient azimuth and elevation angle estimation algorithm for a
three-parallel uniform linear arrays [10] is applied to obtain a parameter estimation without searching
computation. The algorithm, based on the propagator method (PM), can automatically pair the azimuth
and elevation angles. In Section 2, we have obtained the incomplete output matrix W of the array.
Then in Section 3, we get the recovered matrix Ŵ which is equal to the complete output data of the
array through the above procedure of matrix completion. We can partition A firstly as follows:

A =
[
AT

1 AT
2

]T
, (9)
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where A1 is a P ×P matrix, and A2 is a (3N +1−P )×P matrix. Then we can obtain a P ×(3N +1−P )
propagator as:

PHA1 = A2, (10)

We introduce a matrix Pe defined as Pe = [IT
P P]H . In the noiseless case, PeA1 = A2. Then we

can partition Pe as:
Pe =

[
PT

x PT
y PT

y

]T
, (11)

Combining Eqs. (9) and (11), we have [PT
x PT

y PT
y ]TA1 = [AT

x (AyΩy)T (AzΩz)T ]T . By
introducing Px1 which has the first N rows of Px, we can obtain:

Px1A1 = Ay (12)
PzA1 = AyΩz (13)

Then we can get P+
x1Pz = A1ΩzA−1

1 . The eigenvalues βi(i = 1, 2, . . . , P ) of P+
x1Pz can be

obtained by doing the EVD on this equation. Ωy and Ωx can be obtained in the same way, where
Ωx = diag[e−j2πd sin θ1 cos ϕ1/λ, e−j2πd sin θ2 cos ϕ2/λ, . . . , e−j2πd sin θP cos ϕP /λ].

Above all, the 2D-DOA estimation algorithm is described as follows:

Algorithm 2 Modified 2D-DOA estimation algorithm for three-parallel uniform linear arrays

Input: Matrix W, and then a recoverded data Ŵ is obtained by the IALM algorithm and the
incomplete data W.
Output: (ϕ̂i, θ̂i)
1: Compute the covariance matrix of Ŵ by this formula: RŴ = E[ŴŴH ].
2: The partition of RŴ can be written as: RŴ = [RŴ1 RŴ2], where RŴ1 ∈ C(3N+1)×(3N+1−P ).

Thus the estimation of P̂, which is a (3N + 1 − P ) × P propagator matrix, can be written as:
P̂ = (RH

Ŵ1
RŴ1)

−1RH
Ŵ1

RŴ2.

3: Then we extended propagator matrix Pe = [IH
P P̂]H .

4: Partition Pe as Pe = [PT
x PT

y PT
z ]T , where PT

x ∈ C(N+1)×P ,PT
y ∈ CN×P ,PT

z ∈ CN×P . Then
importing a matrix Px1 which has the first N rows of Px, we can get a matrix Ψz by defining
Ψz = P+

x1Pz. By performing EVD on Ψz, we can obtain the eigenvectors A
′
1 and the eigenvalues

β̂i of Ψz.
5: By importing a matrix Pe1 written as Pe1 = [PT

x1 PT
y ]T , we can get a matrix B in which B = Pe1A

′
1.

Then we construct two new matrixes B1 and B2. B1 has the first N rows of B, and B2 has the
rest rows of B. Matrix Ω̂y is defined by Ω̂y = B+

1 B2. Then we can get α̂i from the ith diagonal
element of Ω̂y.

6: Now we import a series of matrixes Px2,Py1,Py2,Pz1,Pz2, where Px2 has the last N rows of Px;
Py1 has the first N − 1 rows of Py; Py2 has the last N − 1 rows of Py; Pz1 has the first N − 1 rows
of Pz; Pz2 has the last N − 1 rows of Pz. Then we construct two matrixes C1 and C2 by defining
C1 = [PT

x1 PT
y1 PT

z1]
T A

′
1 and C2 = [PT

x2 PT
y2 PT

z2]
TA

′
1. Ω̂x is obtained by performing Ω̂x = C+

1 C2.
We can get γ̂i when we put EVD on Ω̂x.

7: We can attain the estimate of ϕ̂i and θ̂i from the following equations:

ϕ̂i = arctan

[
arg(γ̂i)
arg(β̂i)

]

θ̂i = arctan

[
arg(β̂i)

arg(α̂i) cos(ϕ̂i)

]

8: return (ϕ̂i, θ̂i).
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5. SIMULATION RESULTS

In this section, several simulations are given to show the improvement of performance of the proposed
method. We assume three uncorrelated signal sources with (ϕ1, θ1) = (20◦, 10◦), (ϕ2, θ2) = (40◦, 30◦)
and (ϕ3, θ3) = (60◦, 50◦) impinging on the received array. Arrays Y and Z have 15 sensors, which
means that array X has 16 sensors according to the array structure. We assume that all sensors have
the same probability to break down. Also we have the ability to know which sensor is broken and get
their locations. After all, we take 200 snapshots for each test. By introducing a new parameter sampling
rate p, which equals the percentage of working sensors in all, we can describe the damage to the array.
The Mean Square Error (MSE) is defined as:

MSEθi
=

√
E[(θi − θ̂i)2]; (14)

MSEϕi =
√

E[(ϕi − ϕ̂i)2]; (15)

In the first test, we set the sampling rate p at 0.7, which means that only 70% sensor is functional in
this array. And then let SNR change from 0dB to 30 dB. Figure 2 and Figure 3 show that our proposed
method has a better performance in the whole range of SNRs, and it works much better at higher SNR
than that at lower SNR.

Figure 2. MSE for θ (dB). Figure 3. MSE for ϕ (dB).

Figure 4. MSE for θ (dB). Figure 5. MSE for ϕ (dB).
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In the second test, we set the SNR as 20 dB. Then let the sampling rate p change from 0.4 to
0.9. The result of DOA estimation is shown from Figure 4 and Figure 5. It is seen that this proposed
method remains stable at a low sampling rate, which means that the proposed method can work well
when most sensors of the array are functioned at a reasonable SNR.

We should notice that this method also suits for other 2D-DOA methods if the shape of the array
changes. In the third test, we change array into a Uniform Circular Array (UCA) and use the UCA-
ESPRIT algorithm to do the DOA estimation. Then we set the sampling rate p on 0.6 and let SNR
change from 0dB to 30 dB. It is shown in Figure 6 that this proposed method can still work if the shape
of array configuration is changed.
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Figure 6. MSE for UCA array (dB).

6. CONCLUSION

In this paper, we propose a computationally efficient method for 2D-DOA estimation with a three-
parallel array, which is aimed at solving the problem that when an incomplete data is received from an
array, using a faster Matrix Completion method-IALM, we can get a correct 2D-DOA estimation result
with the recovered data of the array. The simulation results show that the proposed algorithm has an
improved performance compared to the conventional method when only a small number of sensors in
the array are still working. Moreover, we can use different array configurations in practical application,
and this method can still work.
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