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Calculation of Passive Magnetic Force in a Radial Magnetic Bearing
Using General Division Approach

Tapan Santra*, Debabrata Roy, and Amalendu B. Choudhury

Abstract—This paper represents the force calculation in a radial passive magnetic bearing using
Monte Carlo technique with general division approach (s-MC). The expression of magnetic force is
obtained using magnetic surface charge density method which incurs a multidimensional integration
with complicated integrand. This integration is solved using Monte Carlo technique with 1-division
(1-MC) and 2-division (2-MC) approaches with a MATLAB programming. Analysis using established
methods such as finite element method (FEM), semi-analytical method, and adaptive Monte Carlo
(AMC) method has been carried out to support the proposed technique. Laboratory experiment has
been conducted to validate the proposed method. 2-MC gives better result than 1-MC. The computation
time of the proposed method is compared with the quadrature method, FEM and AMC. It is observed
that the proposed method invites less computational burden than those methods as the algorithm
adaptively traverses the domain for promising parts of the domain only, and all the elementary regions
are not considered with equal importance.

1. INTRODUCTION

A radial magnetic bearing consists of two passive ring magnets [1] in concentric fashion. This bearing
is very popular due to its simple construction, contact free operation, zero lubrication, no wear,
high rotational speed and zero maintenance [2]. To model the bearing for control, optimization and
performance analysis, calculation of force between these two ring magnets is indispensable [3]. So
design of such bearing needs to crack the equations of force which is a very complex function of
many geometrical and operational parameters. The methods available to solve the equation of force
between two ring magnets are finite element method (FEM) [4], three dimensional (3D) numerical
method [5], semi-analytical method [6, 7] and analytical method [8, 9]. Lijesh and Hirani [10] developed
some analytical equations for design optimization of magnetic bearing.

Among these methods, the 3D numerical technique is preferred due to its high accuracy. The
complicated multidimensional integration associated with the 3D numerical method may be solved by
different techniques, namely: the quadrature method, Monte Carlo method (MC), Adaptive Monte
Carlo method (AMC) etc. The traditional quadrature method is monotonous and laborious too. The
crude MC method has high integration error and computational burden. Santra et al. [11] carried
out an adaptive Monte Carlo technique (AMC) to calculate the magnetic force, where the wastage in
calculation is avoided using importance sampling. The sample density was optimally selected using
Lagrangian method in the integration domain [12] in each iteration. Due to this optimization the
calculation becomes little bit complicated and difficult to understand.

In this paper, a simple methodology is considered using Monte Carlo technique with general division
approach (s-MC) where the sample density remains constant in all the iterations. There are some large
peaks in the integration domain which mainly contributes to the integral whereas the flat portions are
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less significant for integration. So, flat distribution of sample points invites error in the calculation
unless numbers of samples are very large. On the contrary, if the number of samples is very large
computational cost will be high. In this proposed method, the region with maximum estimated error is
divided iteratively, and an approximation of the integral is calculated. Finally, addition of the estimated
integral of all sub-regions gives the resultant force. In most of the cases the expression of magnetic force
contains implicit or elliptic function which really complicates the analysis, but the proposed technique
does not depend on the type of the integrand.

In this paper, 1-division (1-MC) and 2-division (2-MC) approaches are considered. It is observed
that if the number of divisions s increases the estimated error decreases, but computational time
increases. It is observed that the accuracy of this method is more than the semi analytical method [6]
and is in close agreement with FEM and experimental results. The computational time also less than
other established method such as quadrature method, FEM, and AMC.

2. EXPRESSION OF MAGNETIC FORCE

Figure 1 represents the configuration of a radial passive bearing in the vertical shaft machine. The inner
ring magnet is movable and called rotor magnet. The outer magnet is attached to the frame and called
stator magnet. Our objective is to find the magnetic force between these two ring magnets due to any
kinds of axial and radial movement of the rotor magnets. Fig. 2 shows the translation of rotor magnets
along axial and radial direction from their nominal position. Fig. 3 shows the flux distribution pattern
between stator and rotor magnet in the bearing. The stator and rotor magnets are axially magnetized
along Z-axis, so they have parallel magnetization. We know that bodies with parallel magnetization
which repel themselves. When stator and rotor magnet are concentric (Fig. 3(a)), there are symmetric
flux distribution in the air gap, so resultant force is zero. When rotor moves axially upwards (Fig. 3(b))
flux density increases at the bottom of the rotor magnet. The rotor magnet experiences an upwards
axial force Fa, makes dFa

dz positive, so this force is destabilizing in nature. When the rotor magnet
translates left in radial direction (Fig. 3(c)), flux density increases at the left side air gap, pushing the
rotor towards the right, makes dFr

dx negative, so this force is stabilizing in nature. The nature of the
force is also investigated in Section 4. So the radial passive bearing is inherently stable along radial
directions but axially unstable.

Figure 4(a) shows the actual magnetic configuration, consisting of two concentric ring magnets with
axial polarization. R1, R2 are the inner and outer radius of rotor magnet. R3, R4 are the inner and outer
radius of stator magnet. L1, L2 are the thickness of the stator and rotor magnets respectively. To derive

Figure 1. Fabricated model of a vertical shaft machine with radial magnetic bearing.
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(a) (b) (c)

Figure 2. Different motions of rotor. (a) Nominal position. (b) Axial shift along Z axis. (c) Radial
shift along X axis.

(a) (b) (c)

Figure 3. Flux distribution for (a) nominal position of rotor, (b) axial shift of rotor, (c) radial shift of
rotor.

the expression of force between two passive magnets, Coulombian surface charge density method [13]
is applied. It is assumed that the magnets are uniformly magnetized in the axial z direction as shown
in Fig. 4(b). The uniform magnetization (M) has no divergence, so magnetic charge density is zero
throughout the volume. Therefore the source of magnetic field (H) is on the top and bottom surfaces
of the ring magnets where M originates and terminates. Fig. 4(b) represents the fictive magnetic
charge distribution on the top and bottom surfaces of the magnets. In this paper 3D numerical method
is applied to calculate the force between stator and rotor magnet due to its high accuracy. Let rotor
magnet displaced from nominal position O to O′ (Fig. 5(a)) due to a radial shift y along Y -axis and axial
offset z along Z-axis. The force between stator and rotor magnet is calculated by Columbian surface
charge density method [5] according which it is considered that magnetic charges are distributed on the
pole faces A, B, C, and D and they are discretized into small elementary surfaces (Fig. 5(b)). Let A1,
B1, C1, and D1 are one of such charged magnetic elements. The elementary magnetic force is produced
due to the interaction between charges of these elements [14]. There are magnetic forces of attraction
(�FB1C1 and �FD1A1) and repulsion (�FA1B1 and �FC1D1) between these charged surfaces. So the total force
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(a) (b)

Figure 4. (a) Actual configuration of the radial passive bearing. (b) Magnets with dimensions and
charged magnetic faces.

(a) (b)

Figure 5. Forces acting on inner magnet after a translation e in Y -Z plane. (b) Elementary force
between two tiny magnetic surfaces on outer and inner magnets in Z-X plane.

on rotor is given by the summation of these four forces. By surveying literatures [4, 8, 9], the radial
force (Fr) and axial force (Fa) are given by Eqs. (1) and (2) respectively.
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Br1Br2
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Table 1. Parameters of the magnetic system.

Material of magnets NdFeB
Coercivity (Hci) 1.3 ∗ 106 A/m
Magnetic remanences (Br) 1.17 T
Outer radius of stator magnet (R4) 0.025 m
Inner radius of stator magnet (R3) 0.015 m
Outer radius of rotor magnet (R2) 0.010 m
Inner radius of rotor magnet (R1) 0.005 m
Thickness of magnets (T ) 0.005 m

(a) (b)

Figure 6. (a) Permeance coefficient (Pc) of axially polarized ring magnet for different dimensions. (b)
Calculation of corrected magnetic induction (Br) considering self demagnetization.

where, Br1 and Br2 are the corrected magnetic remanences of stator and rotor magnet, respectively.
All other symbols and nomenclatures in the equations are self-explanatory and given in Fig. 5.

There is always a continuous process of demagnetization inside a permanent magnet to reduce
its energetic state. The geometry of the magnet significantly influences the demagnetizing process.
First, the permeance coefficient Pc is calculated as per the literature [15] for ring magnet with axial
polarization at open circuit condition as shown in Fig. 6(a). For the given geometry of stator and rotor
magnets, listed in Table 1, calculated Pc of stator magnet is Pc1 = 1.68, and rotor magnet is Pc2 = 1.0
as shown in Fig. 6(a). With these Pc values, the corrected magnetic induction is calculated as shown
in Fig. 6(b). It is observed that due to demagnetization the stator and rotor magnet induction reduces
to Br1c = 0.97Br1 and Br2c = 0.94Br2 respectively. These modified of magnetic induction will be used
for the force calculation using s-MC algorithm.

RA1B1 =
(
(r2 cos β − r1 cos α)2 + (r2 sin β − r1 sin α + y)2 + (−L1/2 + L2/2 − z)2

)1.5 (3)

RC1D1 =
(
(r2 cos β − r1 cos α)2 + (r2 sin β − r1 sin α + y)2 + (L1/2 − L2/2 − z)2

)1.5 (4)

RD1A1 =
(
(r2 cos β − r1 cos α)2 + (r2 sin β − r1 sin α + y)2 + (L1/2 + L2/2 + z)2

)1.5 (5)

RB1C1 =
(
(r2 cos β − r1 cos α)2 + (r2 sin β − r1 sin α + y)2 + (−L1/2 − L2/2 + z)2

)1.5 (6)

Expressions (1) and (2) are the function of four variables r1, r2, α and β. The four dimensional
visualization of the integrand is very difficult. To visualize the function a coordinate transformation is
performed by Δr = r1 − r2 and Δθ = α − β.

The integrand is plotted in Δr-Δθ plane for inner magnet displacement y = 0 and z = 0.004 m and
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Figure 7. Plot of integrand in two dimensional integration domains.

shown in Fig. 7. It is observed that the main contribution arises from the three peaks in the integration
domain, and all other portions are flat and have a minor contribution towards the integration. In this
paper, a numerical solution based on Monte Carlo integration technique with general division approach
(s-MC) is used to solve Eqs. (1) and (2).

3. MONTE CARLO INTEGRATION WITH GENERAL DIVISION APPROACH
(s-MC)

Standard available numerical integration techniques do not perform satisfactorily in multidimensional
boundaries, particularly when the integrand is complicated and not smooth. Monte Carlo integration
technique [16] is very powerful in these circumstances, mostly for the problem involving integration,
which is too difficult to solve analytically and by other available numerical methods. Efficiency of
Monte Carlo integration method increases relative to other method when the dimension of the integral
increases. Convergence of Monte Carlo method is guaranteed irrespective of problem dimension and
smoothness of the function. Monte Carlo is very simple, involves only two steps, random sampling
integrand and point evaluation. Consider the problem as shown in Eq. (7).

I(f) =
∫
Ω

f(x)dx (7)

where x ∈ �d, d ≥ 1, f(x) is the function of vector x, and Ω is the d-dimensional hyper rectangle
(a1, b1)× (a2, b2) . . . . . . (ad, bd). In crude Monte Carlo (CMC), the integration is done by independently
sampling N points {xi}N

i=1 as per uniform density over Ω and the sample mean is given by Eq. (8).

ÎN = (V/N)
N∑

i=1

f(xi) (8)

where V is the volume of Ω. If N is very large, then the sample mean ÎN converges to integration I(f),
almost surely. In most of the practical problems, the integrand f(x) varies significantly only in a small
portion of overall integration domain Ω. The basic MC, which samples from a uniform distribution
U , wastes calculation in the unimportant region. So a systematic procedure is required to allocate
resources to the important region of the integration domain. In the proposed method adaptive Monte
Carlo technique is used with the general division approach. In most of the integration algorithms an
approximation of integration is given by Eq. (9).

ĨN =
N∑

i=1

wif(xi) (9)

where xi ∈ Ω, i = 1, 2, 3, . . . , N are abscissas or node of integration, and wi, i = 1, 2, 3, . . . , N are
the weights. The values of weights are corresponding with the appropriate choice of abscissas, with
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N∑
i=1

wi = V . In this way, the weight of CMC is wi = V/N for i = 1, 2, 3, . . . , N . In non-adaptive algorithm

a fixed set of nodes and weights are used, and it is generated before the evaluation of integration. On
the other hand, adaptive algorithm calculates the nodes and weights in present iteration from the result
of previous iteration. In our proposed method global subdivision strategy [17] is introduced, where the
region with largest estimated error is subdivided until the convergence conditions are met.

3.1. Algorithm

Step 1 Set maximum number of iterations M , find the dimension of the problem d, number of random
points N in sub-regions and the number of division s, where 0 < s ≤ d.

Step 2 At iteration it, region collection Hit contains it ∗ (2s − 1) + 1 number of regions and it is given
by Eq. (10)

Hit = {Ωit(j)}, (10)

where j = 1, 2, 3, . . . , (it ∗ (2s − 1) + 1).
The creation of sub-regions is explained in Table 1 and Table 2 respectively. Estimate basic Monte
Carlo (MC) integration Îit,j over each regions Ωit(j). Find out total estimated integral in iteration
it over the whole region as per Eq. (11).

Îit =
(it∗(2s−1)+1)∑

j=1

Îit,j (11)

Step 3 Estimate standard error of integration over the regions Ωit(j) at iteration it by Equation (12)

Êit,j = Vit,j
σ̂f |Ωit(j)√

Nit,j

(12)

where Vit,j is the volume of region Ωit(j), Nit,j the number of random points taken in Ωit(j) and
σ̂f |Ωit(j) the estimated standard deviation of f over the region Ωit(j). Total estimated standard
error at iteration it over whole region is given by Eq. (13)

Êit =

√√√√√
(it∗(2s−1)+1)∑

j=1

Ê2
it,j (13)

Step 4 Find out the promising region whose estimated error, Êit,j is maximum. The index of the
promising region is given by Eq. (14)

αit = arg max Êit,j, for j = 1, 2, 3, . . . (it ∗ (2s − 1) + 1) (14)

Split Ωit(αit) into 2s number of subregions. For 1-AMC (s = 1) the division is given by Eq. (15),
and for 2-AMC it is given by Eq. (16).
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For 2-AMC (s = 2) the division is given by Eq. (24)
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where, cm ∈ (akm, bkm), 1 ≤ km ≤ d for m = 1, 2. In each iteration it s distinct coordinates
are divided. If promising region is divided into equal sub regions choose cm = (akm − bkm)/2 for
m = 1, 2, . . . , s.

Step 5 Increase iteration number by it = it + 1.
Step 6 if it < M go to step 2.
Step 7 The estimated integral is Îit=M .

4. RESULTS AND DISCUSSION

The practical configuration is shown in Fig. 1, and parameters of the magnet are shown in Table 1. The
objective of this paper is to calculate the force between the two ring magnets by proposed s-MC and
validate the proposed technique by other methods and practical testing in the laboratory. The flowchart
of s-MC is given in Fig. 8.

Figure 8. Flow chart for s-MC method.

4.1. Results of the Proposed Technique

Dimensions of the problem (1 and 2), d = 4, number of iteration M = 50 and number of random samples
in each region N = 25000. A MATLAB code is developed to estimate the axial force on inner magnet.
Let the inner magnet displaced by x = 0, y = 0 and z = 0.002 m. This is an axial displacement, so
the axial force Fa will be calculated. Two detailed outputs are given, first 1-MC and then 2-MC. In
Table 2, output from 1-MC is given, up to the third iteration.

In iteration 0, the estimated integral is actually the basic MC over the whole domain Ω. In iteration
1, Ω is divided into two (21) sub regions: Ω1(1) and Ω1(2). The basic MC is applied to each region
and Ω1(2) becomes the promising region due to high estimated error. So in iteration 2, Ω1(2) is divided
into another two sub-regions Ω2(2) and Ω2(2). In this way the iteration progresses and final estimated
integral is given by the summation of basic MC integral of all sub-regions in the final Mth iteration.
Table 3 represents the output from 2-MC. Here in iteration 1Ω is divided into four (22) sub-regions and
the promising region is Ω1(2), so it is divided into another four sub-regions, thus the total number of
sub-regions in iteration 2 is seven and Ω2(2) is the promising region. Fig. 9 represents the comparison
of estimated error between 1-MC and 2-MC. It is clear that 2-MC algorithm has lower estimated error
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Table 2. Output of 1-MC for rotor magnet displacement (0, 0, 0.002).

Iteration

number

it

Region

collection

Hit

Sub

region

Ωit(j)

Estimated

Integral

Îit,j

Estimated

total Integral

Îit

Estimated

Error

Êit,j

Estimated

total error

Êit

0 H0 Ω0(1) 173.153 173.151 0.251 0.251

1 H1
Ω1(1) 58.151

172.364
0.063

0.155
Ω1(2) 114.213 0.142

2 H2

Ω2(1) 58.11

171.251

0.063

0.115Ω2(2) 72.432 0.081

Ω2(3) 40.668 0.051

Table 3. Output of 2-MC for inner magnet displacement (0, 0, 0.002).

Iteration

number

it

Region

collection

Hit

Sub

region

Ωit(j)

Estimated

Integral

Îit,j

Estimated

total Integral

Îit

Estimated

Error

Êit,j

Estimated

total error

Êit

0 H0 Ω0(1) 173.113 173.113 0.242 0.242

1 H1

Ω1(1) 31.210

172.321

0.041

0.153
Ω1(2) 56.341 0.087

Ω1(3) 59.230 0.107

Ω1(4) 25.540 0.052

2 H2

Ω2(1) 31.210

170.153

0.041

0.109

Ω2(2) 56.341 0.087

Ω2(3) 13.710 0.005

Ω2(4) 17.301 0.003

Ω2(5) 15.010 0.001

Ω2(6) 11.041 0.002

Ω2(7) 25.540 0.052

Figure 9. Estimated errors in 1-AMC and 2-AMC algorithm during 50 iterations.

than 1-MC. In the similar manner force on inner magnet for different displacement is calculated and
plotted in Fig. 10.

4.2. Results of FEM Analysis

Figure 3 shows the magneto static analysis with flux distribution for nominal position, axially and
radially shifted positions of inner magnet in X-Z plane, respectively. It is observed that in nominal
position the resultant force on the inner magnet is zero. If it is shifted upwards as shown in Fig. 3(b),
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(a) (b)

(c) (d)

Figure 10. (a) Test set-up to measure force between two ring magnets. (b) Comparison of axial
force computed by FEM, 2-MC and Ref. (Ravaud et al., 2009). (c) Closeness of 2-MC considering
demagnetization with experimental results. (d) Comparison of radial force computed by FEM, 2-MC
and Ref. (Ravaud et al., 2009).

a destabilizing resultant force acts upwards on the inner magnet. If the inner magnet shifted in radial
direction as shown in Fig. 3(c), a stabilizing resultant force acts on it. The force on inner magnet at
different axial position is calculated using FEM and plotted in Fig. 10. If the derivative of force with
respect to displacement is calculated from Figs. 10(b) and 10(d), it is observed that derivative of axial
force is positive, and for radial force derivative is negative. It signifies that the axial force is destabilizing
and radial force is stabilizing in nature.

4.3. Results of Laboratory Testing

A laboratory test setup is fabricated to measure the axial force between two ring magnets, as shown in
Fig. 10(a). There is an arrangement to hold the two ring magnets. By a screw and nut arrangement
inner magnet can be placed at different axial positions, whereas the outer magnet is fixed. A sensor
unit is used to measure the axial repulsive force between the stator and rotor magnets, and a display
is used to show the calibrated results. The force on rotor magnet at different axial position is obtained
from the testing and plotted in Fig. 10(c).

5. VALIDATION OF THE PROPOSED TECHNIQUE

A comparison of axial force (Fig. 10(b)) and radial force (Fig. 10(d)) is represented using s-MC, FEM
& Ravaud et al. [6] respectively. It is observed that results from these three methods are in close
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Table 4. Computation time for magnetic force calculation.

Quadrature method
of integration

Finite element
method (FEM)

Adaptive Monte Carlo
Method (AMC)

Proposed 2-MC method
Upto 20 iterations

160 sec 28 sec 16 sec 11 sec

agreement with each other. Fig. 10(c) represents the validation of 2-MC by experimental result. It
is observed that if the self-demagnetization is considered, 2-MC gives excellent results with respect to
practical test results. A comparison has been carried out to observe the computation time for calculating
the magnetic force by different methods (Table 4). Maximum time is taken by quadrature method of
integration which is natural as at higher dimension quadrature method becomes very complex. FEM
takes moderate execution time of 28 sec more than 2-MC because 2-MC does not calculate for all the
discrete magnetic surfaces with equal importance. It splits only the promising region with high estimated
error. Whereas FEM consider all the discrete magnetic surfaces on inner and outer magnet pole faces.
The proposed method also executes in lesser time than AMC method because AMC optimally selects
the sample density at each iterations whereas s-MC considers the constant sample density thus avoiding
some calculations. Thus s-MC reduces the computation burden also.

6. CONCLUSION

The objective is to calculate the force between stator and rotor magnets of a radial passive bearing.
Existing analytical or semi-analytical methods have lower accuracy, whereas FEM has high accuracy but
also high computational time. This paper proposes a 3D numerical method where the multidimensional
integration is solved using Monte Carlo technique with general division approach (s-MC). The proposed
technique minimizes the complexity of the problem as well as reducing the computational time compared
to other methods. In most of the cases, the expression of magnetic force contains complicated implicit
or elliptic function. The great advantage of the proposed method is that it does not depend on the type
of the integrand. Integrand may have an implicit or elliptical function, and it does not matter for the
proposed technique. The multidimensional integration is numerically solved by both 1-MC and 2-MC
methods using MATLAB. It is observed that the 2-AMC method gives better result, and its estimated
standard error is also less. In support of the proposed technique, FEM semi-analytical analysis has been
carried out. Finally, the test result is obtained from the laboratory, and it is observed that laboratory
result is also in close agreement with the results from the proposed technique. The computation time
of the proposed method is less than the existing methods: quadrature, FEM and AMC.
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