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Electromagnetic Scattering from Bi-Periodic Fabric Structures

Mohammad Mahdi Salary, Samad Jafar-Zanjani, and Hossein Mosallaei*

Abstract—We develop an efficient semi-analytical technique to calculate the electromagnetic scattering
from fabric structures modeled as crossed gratings of circular coated fibers of any material composition,
arranged arbitrarily in yarns. The method relies on a matrix formulation based on multipole expansion
for modeling conical scattering from uniaxial gratings of fibers, and employs a scattering matrix approach
to obtain co- and cross-polarized transmission and reflection coefficients. The lattice sums are evaluated
using an efficient adaptive algorithm based on Shank’s transformation. The method can be employed
for analyzing the scattering characteristics of fabric structures embedded in any arbitrary layered media.
The validity of the method is verified through comparison with full-wave finite-difference time-domain
simulations. A substantial performance gain is obtained, which makes the proposed method applicable
to solve large-scale fabric structures.

1. INTRODUCTION

Interaction of electromagnetic waves with textiles and fabric structures is currently of significant
importance for several different applications such as personal thermal management [1, 2], wearable
energy harvesting [3, 4], solar-cell carpeting [5, 6], shielding against hazardous radiations [7, 8] and
medical dressings [9, 10]. Moreover, such structures can be regarded as constituent layers of 3D photonic
crystals and woodpile structures. The modern fabrication technologies offer a great amount of flexibility
in modification of composite fabric structures and open up several exciting opportunities for design and
optimization of technical fabrics and fiber-based devices.

Along with the rapid progress in fabrication techniques, there is a need to improve numerical
simulation techniques to further speed up the design and optimization processes. The necessary step
for modeling the fabric structures given as bi-periodic arrays of circular cylinders (fibers) arranged in
bundles (yarns), is solving the problem of scattering from cylinders. This problem has been studied for
many years and several different methods have been adopted for this purpose [11–25]. Some of these are
general methods, such as the finite-difference time-domain (FDTD) method [11], finite-element method
(FEM) [12], boundary-element method [13] and rigorous coupled waveguide analysis (RCWA) [14].
However, the unit-cell of such fabric structures might be extended over many optical wavelengths which
inevitably leads to numerical models with enormous numbers of unknowns, considering small geometrical
features that necessitate ultra-fine meshing.

Therefore, semi-analytical methods that exploit some available geometrical features of the structure
can be of great advantage [15–30]. These methods rely on the multipole expansions and often outperform
full-wave methods particularly when the number of elements is large and the number of excited modes
inside each element could be kept small [31]. Among the various multipole expansion techniques, T -
matrix is the most powerful method due to its simplicity and generality. The problem of electromagnetic
scattering form an arbitrarily shaped homogeneous scatterer was formulated by Waterman, based on
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the T -matrix method [27]. Peterson and Strom [28, 29] extended this formulation to the case of an
arbitrary number of 2D scatterers by applying the translation formula to the cylindrical wave solution of
Helmoltz’s wave equation. Later, Chew [30, 31] developed a generalized recursive algorithm to calculate
the scattered field by multiple scatterers. This technique is well adapted to solve several problems
involving cylindrical structures [32–38], however, it is limited to ideal 2D problems where both the
structure and the incidence geometries are invariant in one direction leading to scalar 2D problems
involving the E and H polarizations separately. For the out-of-plane propagation problems, one might
use 3D T -matrix formulation in conjunction with extended boundary conditions method (EBCM) [39]
which entails considerably more effort. However, since the structure is 2D, one can still formulate
the problem using vector cylindrical harmonics and obtain a similar matrix formulation at the cost of
dependency on the incidence [24–26].

Consider a non-interlaced fabric structure as shown in Fig. 1. In this work, we present a 2D
treatment of such 3D geometry. A robust matrix formulation for modeling conical scattering from
periodic gratings of coated fibers arranged arbitrarily in the bundles is developed which can be regarded
as a major extension of the T -matrix method. The lattice sums involving the translation of harmonics
for on-axis and off-axis periodicity are evaluated using an efficient adaptive algorithm based on Shank’s
transformation. Next, the scattering matrix approach is employed to obtain co- and cross-polarized
diffraction efficiencies of the fabric structures consisted of stack of crossed grating layers where each
layer is invariant in one direction.

Figure 1. The schematic representation of a non-interlaced fabric structure, comprising of core-shell
fibers bundled up into yarns, along with an outset zoom-in plot.

The overall procedure of the method is depicted as a flow-chart in Fig. 2. This treatment is a
major extension of [40, 41] which have studied the woodpile structures where the unit-cell of the grating
contains only one cylinder. It should be remarked that unlike the super-cell methods, the proposed
method requires periodicity only in the directions of the gratings but not in the stacking direction and,
thus, is applicable for a finite number of layers. The method is appropriate for efficient modeling large-
scale fabric structures embedded in any arbitrary layered media. Furthermore, it can treat arbitrary
arrangements of coated fibers made of dielectric and metallic materials within the unit-cell with equal
ease.

In Section 2, we establish the procedure for modeling fabric structures and present our formulation.
Numerical examples are given in Section 3 to demonstrate the applicability of the method and the results
are compared with full-wave simulations to verify validity and efficiency of the method.

2. FORMULATION

2.1. Conical Scattering from Gratings of Fibers: Multipole Expansion

We start the mathematical formulation by considering a periodic grating of an arbitrary arrangement
of uniaxial coated fibers, invariant in the z direction, illuminated by an oblique plane wave as shown in
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Figure 2. The flow-chart of the overall procedure in the proposed method for calculating the
electromagnetic scattering form bi-periodic fabric structures.

(a) (b)

Figure 3. A periodic grating of an arbitrary arrangement of uniaxial coated fibers, (a) 3D Geometry,
(b) x-y, 2D cross-sectional geometry.

Fig. 3. The 0-th unit-cell is the reference cell which is repeated periodically in the x-axis direction with
a periodicity Λ. The repeated unit-cells are shown with the indices j = −∞, . . . ,−1,+1, . . . ,+∞. The
filling fraction of the core-shells within the unit-cell and their corresponding electromagnetic parameters
can be different in this model. The in-plane and out-of-plane incidence angles are denoted by φ0 and
θ0, respectively. We introduce local coordinate systems (xj,l, yj,l) located at the centers of the l-th fiber
within j-th cell. The corresponding polar coordinates are denoted by (ρj,l, φj,l). The time convention
is assumed to be exp(−iωt) throughout the paper.

The transverse magnetic (TMz) polarization corresponds to the case where the electric field is
perpendicular to the incidence plane. The z component of the incident electric field can be written as:

E(i),TM = E0 sin θ exp[i(k0xx− k0yy + k0zz)] (1)

Similarly, for the transverse electric (TEz) polarization where the electric field is parallel to the
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incidence plane, the z component of the incident magnetic field can be expressed as:

H(i),TE = H0 sin θ exp[i(k0xx− k0yy + k0zz)] (2)

In the above equations E0 and H0 are normalizing amplitudes and:

k0 = 2π/λ (3)
k0x = k0 sin θ0 cosφ0 (4)
k0y = −k0 sin θ0 sinφ0 (5)
k0z = k0 cos θ0 (6)

The incident fields can be expanded in terms of cylindrical harmonics in the local coordinate system
of l-th cylinder inside the 0-th unit-cell as:

E
(i),TM
l =

+∞∑
m=−∞

a(i),E,l
m Jm(k0tρ0,l)e−imφ0,l (7)

H
(i),TE
l =

+∞∑
m=−∞

a(i),H,l
m Jm(k0tρ0,l)e−imφ0,l (8)

where:

k0t =
√
k2

0 − k2
0z =

√
k2

0x + k2
0y; (9)

a(i),E,l = E0 sin θ(−i)neinφ0 exp[i(k0xxl − k0yyl + k0zzl)] (10)

a(i),H,l = H0 sin θ(−i)neinφ0 exp[i(k0xxl − k0yyl + k0zzl)] (11)

Then, the z component of the scattered fields from l-th cylinder inside n-th unit-cell can then be
expressed in the following form for an arbitrary linear combination of TM and TE incidence:

E
(s)
n,l =

+∞∑
m=−∞

b(s),EE,l
m H(1)

m (k0tρn,l)e−imφn,l +
+∞∑

m=−∞
b(s),EH,l
m H(1)

m (k0tρn,l)e−imφn,l (12)

H
(s)
n,l =

+∞∑
m=−∞

c(s),HH,l
m H(1)

m (k0tρl)e−imφl +
+∞∑

m=−∞
c(s),HE,l
m H(1)

m (k0tρl)e−imφl (13)

All the other components of the field can be obtained through application of Maxwell’s equations.

2.2. Enforcing Boundary Conditions: Matrix Formulation

As mentioned earlier, T -matrix method is not applicable in this case. However, we can extend the
matrix formulation at the cost of dependency of the transition matrix on the incidence. Here, we are
dealing with cross-polarized coupling because of the out-of-plane variation of the incident field. If the
fibers are invariant in the z-direction, the grating will conserve k0z and all the field contributions will
have the same z-dependence. This allows us to work only with the z-component of the fields. Following
the procedure of T -matrix method, we define following basis column vectors[

ψ(k0tρn,l, φl)
]
m

= H(1)
m (k0tρn,l)e−imφn,l (14)[

Regψ(k0tρn,l, φn,l)
]
m

= Jm(k0tρn,l)e−imφn,l (15)

where Reg stands for the regular part. In order to apply the matrix formulation for the considered
problem, one would require the isolated transition matrix of scatterers relating the amplitude of scattered
field to the amplitude of incident field. This can be built using the solution obtained by Wait [16] for
the Mie-type scattering coefficients of an isolated fiber. For an isolated scattered with the radius a,
relative permittivity of εr and relative permeability of μr, we have:[

b(s),EE b(s),EH

c(s),HE c(s),HH

]
= T

[
a(i),E

a(i),H

]
=

[
T 11 T 12

T 21 T 22

][
a(i),E

a(i),H

]
(16)
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[
T11

]
m

=

⎡
⎢⎢⎢⎢⎣−

Jm(v)

H
(1)
m (v)

+

2i

(
H

(1)′
m (v)

vH
(1)
m (v)

− μrJ
′
m(u)

uJm(u)

)

πv2
[
H

(1)
m (v)

]2
Dm

⎤
⎥⎥⎥⎥⎦ (17)

[
T12

]
m

=
k0

μ0ω

⎡
⎢⎣ 2
πv2

(
1
u2

− 1
v2

)
mk0z

k0

[
H

(2)
m (v)

]2
Dm

⎤
⎥⎦ (18)

[
T21

]
m

= − k0

ε0ω

⎡
⎢⎣ 2
πv2

(
1
u2

− 1
v2

)
mk0z

k0

[
H

(2)
m (v)

]2
Dm

⎤
⎥⎦ (19)

[
T22

]
m

=

⎡
⎢⎢⎢⎢⎣−

Jm(v)

H
(1)
m (v)

+

2i

(
H

(1)′
m (v)

vH
(1)
m (v)

− εrJ
′
m(u)

uJm(u)

)

πv2
[
H

(1)
m (v)

]2
Dm

⎤
⎥⎥⎥⎥⎦ (20)

in which

u =
√
εrμrk2

0 − k2
0za (21)

v = k0ta (22)

Dm =

(
H

(1)′
m (v)

vH
(1)
m (v)

− μrJ
′
m(u)

uJm(u)

)(
H

(1)′
m (v)

vH
(1)
m (v)

− εrJ
′
m(u)

uJm(u)

)
− k2

0z

k2
0

(
1
v2

− 1
u2

)2

m2 (23)

Furthermore, the coefficient can be obtained for a coated fiber as well, which offers a great advantage
as the computational complexity of the problem remains in the same order as a uniform fiber, while the
other computational techniques may require a finer mesh to accurately reconstruct the structure. These
coefficients are obtained by using the solutions of Shah [17]. Denoting the core and shell parameters by
a, εr1 , μr1 and b, εr2 , μr2, respectively, we have:

[
T11

]
m

=
|δ11|m
|δ|m

(24)

[
T12

]
m

=
|δ12|m
|δ|m

(25)

[
T21

]
m

=
|δ21|m
|δ|m

(26)

[
T22

]
m

=
|δ22|m
|δ|m

(27)
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where:

δ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fH
(1)′
n (fb) −f1H

(1)′
n (f1b) f1J

′
n(f1b) 0

0 f1H
(1)′
n (f1a) −f1J

′
n(f1a) f2J

′
n(f2a)

0 0 0 0
0 0 0 0

− inh
kb

H(1)
n (fb)

inh

kb
H(1)

n (f1b) − inh
kb

Jn(f1b) 0

0 − inh
ka

H(1)
n (f1a)

inh

ka
Jn(f1a) − inh

ka
Jn(f2a)

f2H
(1)
n (fb) −f2

1H
(1)
n (f1b) f2

1Jn(f1b) 0

0 f2
1H

(1)
n (f1a) −f2

1Jn(f1a) f2
2Jn(f2a)

inh

kb
H(1)

n (fb) − inh

m1kb
H(1)

n (f1b)
inh

m1kb
Jn(f1b) 0

0 − inh

m1ka
H(1)

n (f1a)
inh

m1ka
Jn(f1a)

inh

m2ka
Jn(f2a)

f2H
(1)
n (fb) − f2

1

m1
H(1)

n (f1b)
f2
1

m1
Jn(f1b) 0

0
f2
1

m1
H(1)

n (f1a) − f2
1

m1
Jn(f1a)

f2
2

m2
Jn(f2a)

fH ′
n(fb) −m1f1H

′
n(f1b) m1f1J

′
n(f1b) 0

0 m1f1H
′
n(f1a) −m1f1J

′
n(f1a) m2f2J

′
n(f2a)

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

where h = k0t, f = k0z, f1 =
√
εr1μr1k

2
0 − k2

0z, f2 =
√
εr2μr2k

2
0 − k2

0z. δ11 and δ21 can be obtained by
replacing the following vector with the first and fifth columns of δ, respectively.

a =
[

inh
kb Jn(fb) 0 f2Jn(fb) 0 fJ ′

n(fb) 0 0 0
]

(29)

Similarly, δ12 and δ22 can be obtained by replacing the following vector with the first and fifth
columns of δ, respectively.

b =
[
fJ ′

n(fb) 0 0 0 inh
kb Jn(fb) 0 f2Jn(fb) 0

]
(30)

Having built the transition matrix of each scatterer, we can write the z component of the total
fields outside the l-th scatterer in terms of basis column vectors in the l-th local coordinate system as:[

E(tot)(ρ0,l, φ0,l)
H(tot)(ρ0,l, φ0,l)

]
=

[
E(i),TM(ρ0,l, φ0,l)
H(i),TE(ρ0,l, φ0,l)

]
+

N∑
i=1

+∞∑
j=−∞

[
E

(s)
j,i (ρ0,l, φ0,l)

H
(s)
j,i (ρ0,l, φ0,l)

]

=

⎛
⎜⎝
[
a(i),p,l

a(i),s,l

]
+

N∑
i=1
i�=l

+∞∑
j=−∞

[
a(s),p,i

a(s),s,i

][
αji,0l 0

0 αji,0l

]⎞⎟⎠[
Reψ(k0tρl)
Reψ(k0tρl)

]

+

[
a(s),p,l

a(s),s,l

][
ψ(k0tρl)
ψ(k0tρl)

]
(31)

where αji,0l is the translation matrix, which relates the scattered harmonics at i-th local coordinate
system inside the j-th unit-cell to the l-th local coordinate system inside 0-th unit-cell. The expression
of such matrix is given by:

[αji,0l]n,m = H
(1)
n−m(k0tdji,0l) exp(i(n −m)φji,0l − i(jk0xΛ)) (32)
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where dji,0l =
√

(xl − xi − jΛ)2 + (yl − yi)2 and φji,0l = atan2(yl − yi, xl − xi − jΛ).
In Eq. (31), the first term can be regarded as the incident field on the l-th isolated scatterer and

the last term can be viewed as the scattered field. According to the definition of transition matrix, we
can write: [

a(s),p,l

a(s),s,l

]
= Tl

⎛
⎜⎝[

a(i),p,l

a(i),s,l

]
+

N∑
i=1
i�=l

+∞∑
j=−∞

[
a(s),p,i

a(s),s,i

] [
αji,0l 0
0 αji,0l

]⎞⎟⎠ (33)

which can be rewritten as:

(
Tl

)−1
[
a(s),p,l

a(s),s,l

]
−

N∑
i=1

[
a(s),p,i

a(s),s,i

]
⎡
⎢⎢⎢⎢⎢⎣

+∞∑
j=−∞

αji,0l 0

0
+∞∑

j=−∞
αji,0l

⎤
⎥⎥⎥⎥⎥⎦ =

[
a(i),p,l

a(i),s,l

]
(34)

Writing this coupling equation for all the cylinders inside the unit-cell, we arrive at a system of N
linear equations the solution of which gives us the unknown scattered field coefficients.

2.3. Evaluation of Lattice Sums

One of the challenges faced by multipole methods in solving periodic structures is the calculation of
highly oscillating and slowly convergent lattice sums involving the translation of harmonics. These
summations do not have a closed-form response except for on-axis periodicity that is when all the fibers
are located on the x axis. One of the ways to avoid this challenge, which has been previously used
for the 2D case and T -matrix method is to translate all the harmonics into the center and build the
aggregate T -matrix [33, 35]. However, this approach might fail when the fiber separation distance within
the unit-cell is large, as it gives rise to ill-conditioned matrices, which will break down the solution of
matrix equation. Moreover, the information regarding the coupling of the elements in the near-field will
be lost in this approach. For the general case, a robust approach is required for calculation of infinite
summations in the forms of:

S = lim
k→∞

Sk = lim
k→∞

+k∑
j=−k

αji,0l = lim
k→∞

+k∑
j=−k

H
(1)
n−m(k0tdji,0l) exp(i(n −m)φji,0l − i(jk0xΛ)) (35)

For this purpose, we have adopted an adaptive mathematical algorithm based on Shank’s
transformation to calculate the infinite series. The Shanks’ sequence transformation [42] ep : (Sk) �→
{ep(Sk)} consists of transforming a given sequence (Sk) into the set of sequences ep(Sk) whose terms
are defined by:

ep(Sk) =
Hp+1(Sk)
Hp(Δ2Sk)

, p, k = 0, 1, . . . (36)

where Δ is the forward operator and Hk is the Hankel determinant [42].
The ε-algorithm is a recursive algorithm due to Wynn [43] for implementing the Shanks’

transformation without computing the Hankel determinants appearing in (36). The ε-algorithm is
recommended as the best all-purpose acceleration method for slowly converging sequences and consists
of replacing the sequence Sk with the sequence εk0 , which is defined by the following non-linear recurrence
relation:

ε
(k)
p+1 = ε

(k+1)
p−1 +

[
ε(k+1)
p − ε(k)

p

]−1
, k, p = 0, 1, . . . (37)

with
ε
(−1)
k = 0, ε

(0)
k = Sk, (38)

For higher-order multipoles, the convergence is slower. In order to improve the performance, we
implement an adaptive multistep algorithm [44]. The recursive rule in this case is defined for the m-th
step as:

ε
(k)
p+1,m = ε

(k+1)
p−m,m + Πm

i=1

[
ε
(k+1)
p−m+i,m − ε

(k)
p−m+i,m

]−1
, k, p = 0, 1, . . . (39)
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In order to ensure convergence, an adaptive approach is used. The number of sampling points
and extrapolation steps are increased at each iteration, until the results are converged by a predefined
threshold. The same approach is used for evaluation of the near-field expressions given by Equations (12)
and (13).

2.4. Bi-Periodic Gratings and Scattering Matrix

Figure 4(a) shows a schematic of the unit-cell of a fabric structure given as a bi-periodic grating of
fibers crossed at the right angle. This problem is essentially a 3D problem, which poses computational
challenges for any numerical method, as discussed in the introduction. Here, we demonstrate a 2D
treatment of such a 3D problem. This is done by making use of the scattering matrix approach to handle
coupling between the crossed grating layers in the Cartesian coordinates through recursive formulae. In
order to make all the reflection and transmission coefficients unit-less we scale the magnetic field by the
wave impedance of free-space H̃z = η0Hz.

(a) (b) (c)

Figure 4. (a) The 3D unit-cell of a fabric structure given as a stack of crossed grating layers,
(b) schematic representation of diffraction orders from the bi-periodic fabric structure, (c) accessible
diffraction modes with a bi-periodic grating, represented in wavevector space.

We define the scattering matrix as:⎛
⎜⎜⎜⎜⎝

E
(d)−
z

H̃
(d)−
z

E
(d)+
z

H̃
(d)+
z

⎞
⎟⎟⎟⎟⎠ = S

⎛
⎜⎜⎜⎜⎝

E
(i)+
z

H̃
(i)+
z

E
(i)−
z

H̃
(i)−
z

⎞
⎟⎟⎟⎟⎠ (40)

where + and − denote fields propagating upwards and downwards, respectively. Superscripts (d) and
(i) denote the diffracted and incident fields, respectively. Treating each grating layer as an interface,
the scattering matrix of each interface can be expressed as:

S =
(
R+ T−

T+ R−

)
=

⎛
⎜⎜⎜⎝

r+pp r+ps t−pp t−ps

r+sp r+ss t−sp t−ss
t+pp t+ps r−pp r−ps

t+sp t+ss r−sp r−ss

⎞
⎟⎟⎟⎠ (41)

where the subscript s represents the transverse electric component of waves and p represents the
transverse magnetic component of waves. The periodicity of the fabric structure in x and z directions
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gives rise to a group of diffracted plane waves as shown in Fig. 4(b) whose x and z dependencies are
given by exp(ikx,px) and exp(ikz,qz), respectively, where

kx,p = k0x +
2πp
Λx

(42)

kz,q = k0z +
2πq
Λz

(43)

where Λx and Λz are the periodicities in x- and z-directions, respectively. Each pair (p, q), thus, specifies
a diffracted plane-wave order and, for notational convenience, we map each (p, q) to a unique integer
v, and use the subscript v to denote quantities associated with the (p, q)-th order. Note that the v-th
plane-wave order is propagating if

k2
yv = k2

0 − k2
x,p − k2

y,q (44)

The accessible diffraction modes with a bi-periodic grating are represented in wavevector space in
Fig. 4(c). The propagating modes are the ones inside the circle with a radius of k0. Fixing the values
of p and q and then projecting the problem onto the x-z plane allows us to use the multipole method
to solve for the part of the diffracted field having an x dependence of exp(ikx,px) and z dependence of
exp(ikz,qz) for each layer of the grating.

While the plane wave diffraction problem is best formulated in terms of parallel/perpendicular (p/s)
polarizations, the multipole scattering problem is best handled in terms of TM/TE modes with respect
to the principal Cartesian field components parallel to the cylinder axes. This requires translation of
reflection and transmission coefficient from the TM/TE modes to p/s polarizations. For this purpose,
we have [26, 40]: [

r±pp r±ps

r±sp r±ss

]
=

(
χ±)−1

[
r±TM/TM r±TM/TE

r±TE/TM r±TE/TE

]
χ± (45)

where

χ± =
[ −ξβ ξα
∓ξα ∓ξβ

]
(46)

in which

ξβ =
[
(kyv/k0)−1/2kx,p/

√
k2

x,p + k2
z,q

]
(47)

ξα =
[
(kyv/k0)1/2kz,q/

√
k2

x,p + k2
z,q

]
(48)

To derive the reflection and transmission coefficients of the array, we consider TM and TE
polarizations separately. Equations (12)–(13) are then rewritten in terms of the Floquet modes. Using
the recurrence formula and Fourier integral representation of Hankel functions, considering kyv < 0, the
reflected fields E(d)+

z , H̃
(d)+
z in y > 0 domain and the transmitted field E

(d)−
z , H̃

(d)−
z in y < 0 domain

are obtained as follows [33, 35]:
For the TM polarization:

E(d)+ =
+∞∑

v=−∞

N∑
i=1

pT
v,i · b(s),EE,i exp [i(k0xx+ k0yy + k0zz)] (49)

E(d)− =
+∞∑

v=−∞

N∑
i=1

(
qT
v,i · b(s),EE,i + δv0

)
exp [i(k0xx− k0yy + k0zz)] (50)

H̃(d)+ =
+∞∑

v=−∞

N∑
i=1

pT
v,i · c(s),HE,i exp [i(k0xx+ k0yy + k0zz)] (51)

H̃(d)− =
+∞∑

v=−∞

N∑
i=1

qT
v,i · c(s),HE,i exp [i(k0xx− k0yy + k0zz)] (52)
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where:

pv,i =

⎡
⎢⎢⎢⎣

2(−i)m(kxv + ikyv)m

Λkyvkm
0

exp [i(kxvxi + kyvyi)] m ≥ 0

2i|m|(kxv − ikyv)|m|

Λkyvk
|m|
0

exp [i(kxvxi + kyvyi)] m < 0

⎤
⎥⎥⎥⎦ (53)

qv,i =

⎡
⎢⎢⎢⎣

2(−i)m(kxv − ikyv)m

Λkyvkm
0

exp [i(kxvxi + kyvyi)] m ≥ 0

2i|m|(kxv + ikyv)|m|

Λkyvk
|m|
0

exp [i(kxvxi + kyvyi)] m < 0

⎤
⎥⎥⎥⎦ (54)

Thus, we can obtain:

r+TM/TM,v =
N∑

i=1

pT
v,i · b(s),EE,i (55)

t−TM/TM,v =
N∑

i=1

(
qT
v,i · b(s),EE,i + δv0

)
(56)

r+TE/TM,v =
N∑

i=1

pT
v,i · c(s),HE,i (57)

t−TE/TM,v =
N∑

i=1

qT
v,i · c(s),HE,i (58)

Similarly, the TE polarization results into:

r+TE/TE,v =
N∑

i=1

pT
v,i · c(s),HH,i (59)

t−TE/TE,v =
N∑

i=1

(
qT
v,i · c(s),HH,i + δv0

)
(60)

r+TM/TE,v =
N∑

i=1

pT
v,i · b(s),EH,i (61)

t−TM/TE,v =
N∑

i=1

qT
v,i · b(s),EH,i (62)

The coefficients t+v and r−v will be obtained in a similar way, considering kyv > 0. Obviously, if the
unit-cells are symmetric with respect to array plane we have R+ = R− and T+ = T−. The scattering
matrix of each layer can be built by the aforementioned procedure. In case that the layers are the same
except for the orientation, the scattering matrix of the crossed layer can be built by properly permuting
the scattering matrix of the other layer such that k′x,p = ky,p and k′y,q = −kx,−q.

Then, the overall reflection and transmission coefficients can be obtained using recurrence
relationships for the scattering matrices for a stack of s+ 1 non-interpenetrating gratings [41]:

R+,s+1 = R+ + T−PR+,sP
(
I −R−PR+,sP

)−1
T+ (63)

R−,s+1 = R−,s + T+,sPR−P
(
I −R+,sPR−P

)−1
T−,s (64)

T+,s+1 = T+,sP
(
I −R−PR+,sP

)−1
T+ (65)

T−,s+1 = T−P
(
I −R+,sPR−P

)−1
T−,s (66)
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where I is the identity matrix and P is the matrix accounting for the change in phase that occurs for
fields propagating between successive layers and is defined as:

P =
[

exp(ikyvh) 0
0 exp(ikyvh)

]
(67)

in which h is the distance between interfaces s and s+ 1. Obviously, the formulation holds true for an
arbitrary number of grating layers as well as in the presence of any substrate/superstrate medium.

The diffraction efficiencies can be obtained:

Rpp,sp,ps,sp
v =

Re{kyv}
ky0

(|rpp,sp,ps,sp
v |2) (68)

According to the law of conservation of energy, for a structure made of lossless materials:∑
v

Rpp
v + Rps

v + Tpp
v + Tps

v = 1 (69)

∑
v

Rss
v + Rsp

v + Tss
v + Tsp

v = 1 (70)

Finally, in order to be able to plot the near-fields we need to obtain the fields inside the grating
layers, as the Fourier integral representations of the fields are only valid outside the grating layers.
For this purpose, after obtaining all the forward and backward waves above and below the grating
layers, we use the waves propagating towards each interface as input of the multipole expansion method
and obtain the scattering coefficients of the cylinders. The field inside the grating layers can then be
evaluated through Equations (12)–(13). According to the Floquet theorem, the outgoing waves from
the interfaces will be the continuation of the obtained fields outside the grating.

3. NUMERICAL RESULTS AND DISCUSSION

In this section, sample numerical results are presented to evaluate the validity and efficiency of the
developed formulation for modeling large-scale fabric structures. All the simulations are performed on
a Linux-based machine with Intel Xeon(R) CPU E5-2670 v3 @ 2.30 GHz and 11.5 GB RAM. For the
FDTD simulations NVIDIA R©Tesla R©K40C GPU accelerator was utilized.

In our simulations, the number of multipoles are truncated to M = round(3k0
√
εrμra) [20, 21]. In

order to ensure convergence, we have considered −10 ≤ p, q ≤ 10 which is equivalent to 21 diffraction
orders for 1D periodicity and 441 diffraction orders for 2D periodicity. Lattice sums are evaluated using
an adaptive criterion with the prescribed accuracy of 10−6. The near-field summations are evaluated
using 19 sample points and 8 steps in the multi-step Wynn algorithm. A great accuracy is afforded
using these parameters.

First, we consider circular arrays of coated fibers arranged into collective bundles representing
the formation of yarns to validate our matrix formulation for periodic arrangements. The yarns are
positioned in a periodic staggered configuration oriented 30 degrees relative to the horizontal plane as
shown in Fig. 5(a). Such geometry can be regarded as a 2D model of a woven fabric [1]. The parameters
include: Df = 1µm — the fiber diameter, Dcore = 0.5µm — the core diameter, εshell = 2.25 — the shell
relative permittivity, εcore = 6.25 — the core relative permittivity, Dy = 30µm — the yarn diameter,
Ds = 1µm — the edge-to-edge fiber separation distance, and Dp = 6µm — the edge-to-edge yarn
separation distance. The total number of fibers within a yarn is 169 and the periodicity is 60.6 µm. The
structure is illuminated by a normal TMz plane wave with the wavelength of λ = 15µm.

The normal component of the electric field, Ez, is obtained using the proposed method and
compared with FDTD results. The near-fields are plotted in Fig. 5. A great agreement is observed
between the results which verifies the validity of our method.

The computational time and memory requirements for the methods, corresponding to the solution
of the considered structure are compared in Table 1. A cell size of 50 nm is used for FDTD discretization
to minimize the shape reconstruction errors and ensure the convergence. The grid size is 1633×1318×11
and the number of time steps is 9000. Periodic boundary conditions are applied along x and z directions
and the domain is terminated by perfectly matched layer in the y direction. As can be seen, a significant
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(b)

(a)

(c)

Figure 5. (a) A schematic of the 2D unit-cell simulated here representing a 2D model of woven
fabric consisted of coated fibers arranged in circular yarns. (b) and (c) Correspond to the near-
field distribution of the normal component of the electric field obtained with the proposed and FDTD
methods, respectively.

Table 1. Comparison of the memory requirement and computation time between the proposed method
and FDTD for the fabric structure given in Fig. 5(a).

Proposed Method on CPU FDTD on High-Performance GPU
Number of Unknowns 845 ∼ 1.42 × 108

Memory Requirement 12 MB 2.7 GB
Computation Time ∼ 30 seconds ∼ 28.5 minutes

computational gain is achieved by the proposed method. The memory requirement is decreased by a
factor of 225 and the computation time is reduced by a factor of 57. We need to remind that the FDTD
analysis is suited and performed on a GPU based machine and it will take much longer if one simulates
on the same machine as for our proposed model (∼ 7 hours).

Next, we apply the method to model a practical large-scale bi-periodic fabric structure. The
structure is consisted of a crossed pair of non-interlaced yarns (weft and wraps). Each yarn is a circular
array of fibers. The parameters are chosen as Df = 2µm — the fiber diameter, εfiber = 2.25 — the
fiber relative permittivity, Dy = 30µm — the yarn diameter, Ds = 1µm — the edge-to-edge fiber
separation distance, and Dp = 5µm — the edge-to-edge yarn separation distance. The total number of
fibers within a yarn is 91 and the period is 35µm. The structure is illuminated by a normal TMz plane
wave with the wavelength of λ = 15µm. Fig. 6 compares the results of the proposed method and FDTD
for the near-field distribution of the normal component of the electric field. It should be remarked that
here, we calculate the fields outside the grating layers using the scattering matrix approach and the
fields inside the gratings are obtained by reusing the multipole expansion method for each layer and
considering amplitudes of the waves propagating towards each interface as the excitations. As it can be
seen, the continuity of Ez component in the TMz excitation is satisfied with a great accuracy. Moreover,
a remarkable consistency is observed between the results by the proposed method and those of FDTD.

The computational time and memory requirements for the methods corresponding to the 3D
unit-cell simulation are compared in Table 2. Here, a mesh size of Δ = 100 nm is used for FDTD
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(a)
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Figure 6. (a) A schematic of the 3D unit-cell simulated here representing a 3D model of non-interlaced
fabric structure consisted of crossed gratings of fibers arranged in circular yarns (weft and wrap). (b)
and (c) Correspond to the near-field distribution of the normal component of the electric field obtained
with the proposed and FDTD methods, respectively.

Table 2. Comparison of the memory requirement and computation time between the proposed method
and FDTD for the fabric structure given in Fig. 6(a).

Proposed Method on CPU FDTD on High-Performance GPU
Number of Unknowns 910 ∼ 5.96 × 108

Memory Requirement 15 MB 10.5 GB
Computation Time ∼ 5min ∼ 14.4 hours

discretization (a finer mesh could not be used with the available computational resources). The grid
size is 812 × 350 × 350 and the number of time steps is 8160. It should be remarked that the unit cell
of such structure is 2.4λ × 2.4λ × 4.4λ which considering the fine meshing one would need to minimize
the shape reconstruction errors and to reach convergence, it poses a great challenge for FDTD. The
computational gain obtained in this case is even more pronounced comparing to the 2D case; the
computational time is reduced by a factor 172 and the memory requirement is decreased by a factor
of 700. This is due to the semi-3D nature of our formulation which allows for the 2D treatment of the
complex 3D geometry so that the computations can be done with the same order of complexity as the
2D problem.

It should be taken into consideration in the above comparisons that FDTD is a time-domain
technique, and when a broadband pulse is used as the source, then the response over a wide range of
frequencies can be obtained with a single simulation while for the frequency-domain techniques such as
ours the simulations need to be repeated for each single frequency. However, given the statistics of our
model one can see significant benefit even if a broadband result is desired. Moreover, it does not require
expensive post-processing to obtain diffraction efficiencies. Transmittance, reflectance and absorptance
of the considered 3D fabric structure over the thermal radiation spectrum are plotted in Fig. 7. The
results are shown for TM-polarized and TE-polarized incidence as well as un-polarized incidence, given
as average of TM and TE. Over this wide spectral range, the dimensions of the unit-cell vary from
7.2λ× 7.2λ× 13.2λ to 1.44λ× 1.44λ× 2.64λ and the number of propagating diffraction orders changes
from 225 to 9. As it can be seen, the absorptance is less than 10−8 over the whole spectrum and the
energy is conserved with a great accuracy, which is another testimony to the method’s accuracy and
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Figure 7. The transmittance, reflectance and absorptance spectra of the above-mentioned fabric
structure for (a) TM polarized incidence, (b) TE polarized incidence and (c) un-polarized incidence.

validity. A step of 0.1µm is used for sweeping the spectrum and the total computation time was around
1hour which still outperforms brute force methods such as FDTD.

In the presented reflectance and transmittance spectra one can notice a drop in the level of
transmittance at wavelengths lower than 9µm. This is due to the increase in the number of induced
cavity modes and confinement of the fields to the fibers as their effective size increase. This drop is more
pronounced for the TM polarization, which shows the stronger interaction of fabric structure with TM
mode. Another implication of this is the polarization sensitivity of fabric structures as opposed to the
woodpile structures. Such studies provide important information regarding the thermal performance of
fabric structures and are critical for designing fabrics and textiles with novel functionalities [1, 2].

4. CONCLUSION

We have developed a robust framework for analysis of electromagnetic scattering from fabric structures,
modeled as crossed gratings of cylindrical fibers, arranged in arbitrary bundles (yarns). The proposed
technique uses a rigorous matrix formulation for analysis of conical scattering from periodic arbitrary
arrangement of coated fibers. The coupling between crossed gratings is treated using recursive formulae
of scattering matrix. The method is applied to analyzing practical large-scale fabric structures and both
near-field and far-field results are presented. The results are compared with full-wave simulation. A
complete agreement is observed between the results, while a significant computational gain is afforded
by the proposed method. The method can be used to model any arbitrary number of fabric layers
embedded in any layered media. Moreover, it can handle any arbitrary arrangement of uniform fibers
and core-shell fibers made of different materials with equal ease. Because of its generality and efficiency,
it should be useful for the design and optimization of the performance of textiles and fabric structures
for a variety of applications.



Progress In Electromagnetics Research B, Vol. 72, 2017 45

ACKNOWLEDGMENT

This work is supported by DARPA via Grant No. N00014-14-1-0850. The authors would like to also
acknowledge several helpful discussions with Sandeep Inampudi.

REFERENCES

1. Tong, J. K., X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-transparent
visible-opaque fabrics for wearable personal thermal management,” ACS Photonics, Vol. 2, No. 6,
769–778, 2015, doi:10.1021/acsphotonics.5b00140.

2. Hsu, P.-C., X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, “Personal thermal
management by metallic nanowire-coated textile,” Nano Letters, Vol. 15, No. 1, 365–371, 2015,
doi:10.1021/nl5036572.

3. Pan, S., Z. Yang, P. Chen, J. Deng, H. Li, and H. Peng, “Wearable solar cells by stacking textile
electrodes,” Angewandte Chemie, Vol. 126, No. 24, 6224–6228, 2014, doi:10.1002/ange.201402561.

4. Zhang, N., J. Chen, Y. Huang, W. Guo, J. Yang, J. Du, X. Fan, and C. Tao, “A
wearable all-solid photovoltaic textile,” Advanced Materials, Vol. 28, No. 2, 263–269, 2015,
doi:10.1002/adma.201504137.

5. Zhang, Z., X. Chen, P. Chen, G. Guan, L. Qiu, H. Lin, Z. Yang, W. Bai, Y. Luo, and H. Peng,
“Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber
format,” Advanced Materials, Vol. 26, No. 3, 466–470, 2013, doi:10.1002/adma.201302951.

6. Zhang, Z., X. Li, G. Guan, S. Pan, Z. Zhu, D. Ren, and H. Peng, “A lightweight polymer solar cell
textile that functions when illuminated from either side,” Angewandte Chemie, Vol. 126, No. 43,
11755–11758, 2014, doi:10.1002/ange.201407688.

7. Erdumlu, N. and C. Saricam, “Electromagnetic shielding effectiveness of woven fabrics containing
cotton/metal-wrapped hybrid yarns,” Journal of Industrial Textiles, Vol. 46, No. 4, 1084–1103,
2015, doi:10.1177/1528083715613628.

8. Roh, J. S., Y. S. Chi, T. J. Kang, and S. W. Nam, “Electromagnetic shielding effectiveness of
multifunctional metal composite fabrics,” Textile Research Journal, Vol. 78, No. 9, 825–835, 2008,
doi:10.1177/0040517507089748.

9. Narbonneau, F., D. Kinet, B. Paquet, A. Depré, J. de Jonckheere, R. Logier, J. Zinke,
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