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Data Preconditioning with Gabor Nonstationary Deconvolution
for Radar Imaging of Highly Dissipative and Dispersive Media

Kay Y. Liu*, Elise C. Fear, and Mike E. Potter

Abstract—In medical microwave imaging applications, electromagnetic (EM) waves propagate through
human tissues, which are inherently attenuative and dispersive. In the resulting image, these effects
translate to a lack of resolution that increases with time/distance. To produce microwave images with
high resolution, there is a strong need for a technique that is able to compensate for the energy loss
and correct for the wavelet distortion. Gabor nonstationary deconvolution was developed in the field
of Seismology to compensate for attenuation loss, correct phase dispersion, and produce images with
high resolution. In this study, the Gabor algorithm is proposed to deal with the nonstationarity in EM
wave propagation and attenuation. Gabor deconvolution is essentially based on the assumption that
the anelastic attenuation of seismic waves can be described by a constant Q theory. We investigate the
Q characterization of EM wave propagation, the frequency-dependency of EM Q, and the effectiveness
of Gabor deconvolution to deal with high loss and dispersion. To accommodate for the EM application
conditions, several adjustments are made to the proposed algorithm. Our test results indicate that
Gabor nonstationary deconvolution is able to sufficiently compensate for attenuation loss and correct
phase dispersion for EM waves that propagate through lossy and dispersive media.

1. INTRODUCTION

Consideration of the sensitivity, specificity, cost, and availability of established breast imaging methods
motivates interest in alternative or complementary technologies. The last decade has seen growing
investigation of imaging techniques based on low-power, microwave-frequency electromagnetic (EM)
fields. The distribution of the fields depends on the dielectric properties of the breast tissues [1–3].
Malignant tissues have different permittivity and conductivity from healthy breast tissues; therefore
these tissues will scatter differently, and thus the resulting images can indicate their presence.

There are two main modalities for microwave imaging the interior of the breast [4]: microwave
tomography and radar-based imaging. In microwave tomography, a reconstruction of the electrical
properties of the breast at each pixel is calculated. A variety of inversion algorithms [5], most
often nonlinear inversion algorithms in both frequency [6–9] and time domain [10–13], are used
for this purpose. Significant effort has been invested in iterative algorithms and regularization
techniques, including integration of various optimization strategies (e.g., [13, 14]) and incorporating
prior information [15–18] in order to efficiently handle nonlinearity and the ill-posed problem. In radar
based imaging, signal processing techniques are employed to identify regions of strong backscatter that
indicate the presence of a contrast in dielectric properties. Confocal and beamforming approaches [19–
23] are currently the most commonly studied and applied techniques in radar-based imaging. Enhanced
methods incorporated into the signal processing flow include investigations of property estimation and
reduction of spurious reflections [24–26].

Received 21 October 2016, Accepted 11 January 2017, Scheduled 2 February 2017
* Corresponding author: Kay Yuhong Liu (yuliu@ucalgary.ca).
The authors are with the Department of Electrical and Computer Engineering, University of Calgary, 2500 University Dr. NW,
Calgary, AB, Canada, T2N 1N4, Canada.



170 Liu, Fear, and Potter

Encouraging microwave imaging results have been obtained with simulation and phantom data,
as well as preliminary clinical exams [27–32]. In [29], 150 patients were examined with a microwave
tomography system. The team reported a minimum detected tumor size of 5–10 mm, and preliminary
accuracy of 80–90%. In [31], 95 patients were scanned with another multi-static radar system. When
compared to the diagnostic histories, mixed results were obtained. In [27, 32], a smaller scale patient
study was performed with a monostatic radar system, and images indicated changes in dielectric
properties. Overall, these results suggest that microwave images are able to detect the dielectric property
changes in breast tissues. However, recovering targets within attenuating, dispersive and heterogeneous
media is challenging and motivates development of improved signal processing approaches.

The attenuation of microwaves in biological materials is typically dependent upon frequency; higher
frequencies are attenuated more significantly than lower ones during propagation. As a result, the
microwave wavelet often undergoes a significant change in shape as it travels through the media;
reflections received at later times are noticeably broader than those received at earlier times. This
phenomenon is known as nonstationarity in wave propagation. In the image, this results in a
characteristic blurriness or lack of resolution that increases with time/distance. Correcting for wavelet
distortion in radar data is important for a number of reasons. Qualitatively, it is desirable to have a
high-resolution, well-focused image for interpretation purposes. Quantitatively, the removal of wavelet
distortion is a necessary step before applying signal processing techniques, such as deconvolution and
focusing, which are based upon the assumption of a time-invariant wavelet. Further, since these methods
ultimately lead to the recovery of images of the breast interior, it is clear that correcting for wavelet
distortion is important before radar data are used for the estimation of breast tissue electrical properties.

Microwave imaging shares a number of similarities with seismic imaging. Various techniques
have been developed in the field of Seismology to compensate for energy loss, to correct for wavelet
distortion, and to produce an image with high resolution [33]. Among these, the Gabor deconvolution
method [34] has been successfully tested with industrial seismic data and ground penetrating radar
(GPR) data [35–37]. The results indicate that, compared to the industry standard approach, Gabor
deconvolution provides improved amplitude and phase content of certain geological events. In essence,
Gabor deconvolution is a natural extension of the standard Wiener deconvolution algorithm [38, 39]. It
is based on the key assumption that, over seismic frequencies of interest, the anelastic attenuation of
seismic waves can be described by a constant Q theory [40]. Q is most often defined in terms of the
ratio of the maximum energy stored during a wave cycle to the energy lost during the cycle. Issues with
porting this technique over to microwave imaging arise because the wavelet attenuation and dispersion
in EM wave propagation through the human body is much more severe than that in seismic wave
propagation through the earth subsurface. In essence, the constant Q assumption might not hold for
EM waves. A few studies have been done on Q* characterization of attenuation in GPR pulse for
geophysical applications [41–43]. Q* is defined as the first order derivative of Q over frequencies and
can be approximated as a constant variable over the GPR frequencies. However, little research has been
published for EM wave attenuation in highly dissipative and dispersive biological tissues.

The purpose of this study is a preliminary investigation of the application of Gabor deconvolution
to radar data that includes severe wavelet distortion, which necessitates a good understanding of the
differences in the application conditions between seismic waves and EM waves. We investigate the
Q characterization of EM wave propagation and attenuation in tissues, understand the frequency-
dependent characteristics of Q in this context, and assess the ability of Gabor nonstationary
deconvolution to deal with the attenuation and wavelet dispersion that are much more severe than
those observed in seismic waves.

The rest of this paper is organized as follows. We start with an overview of EM wave propagation,
focusing on the nonstationarity, and the Q characterization in wave propagation and attenuation. Then,
a nonstationary convolutional model is presented to describe EM wave propagation. Next, Gabor
deconvolution is proposed to recover the reflectivity function in the presence of nonstationary wave
propagation. Selected results obtained with analytic, simulated, and measured data are demonstrated
and discussed. At the end, conclusions are drawn based on those results and discussions.
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2. ELECTROMAGNETIC WAVE PROPAGATION

We consider the simple case of uniform plane wave (UPW) propagation in lossy and dispersive dielectric
materials. In Fig. 1, we plot the attenuation coefficient and the phase velocity for a few biological
tissues as a function of frequency. The plot shows an almost linear relationship between attenuation
and frequency. On the other hand, the slow increase in velocity indicates that the change in shape of
an EM pulse due to velocity dispersion alone will be minimal in this substance. These observations are
consistent with those made from the propagation of subsurface radar pulse in geological materials [43].

From Fig. 1, the high-frequency components of the spectra travel with a higher velocity and are
more quickly attenuated than the lower frequency components. These dissipative and dispersive effects
cause the EM wavelet to distort as it travels through the media, and the received signals at later times
are noticeably broader than those received at earlier times. This phenomenon is illustrated by an
analytical example shown in Fig. 2, in which a wavelet travels through the fatty tissue shown in Fig. 1.

(a) (b)

Figure 1. (a) Attenuation coefficient and (b) phase velocity calculated for three biological tissues
selected from [44]: muscle is in solid red, bone is in dashed black, and infiltrated fat is in dotted blue.
The four-pole Cole-Cole formula [2, 44] is used to calculate the complex dielectric permittivity.

(a) (b)

Figure 2. A minimum phase wavelet traveling through infiltrated fat. (a) Time domain signals. (b)
Amplitude spectra. The color indicates the wavelet travel time: solid red is 0.5 ns, dashed black is
2.5 ns, and dotted blue is 4.5 ns. For the time domain signals, the amplitude of the propagating wavelet
at the two later travel locations has been amplified by 10 in order to make the waveform distortion
more visible.
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It can be seen that, as the time delay increases, the wavelet broadens and its amplitude decreases; as
well, there is a downshift in the peak frequency of the amplitude spectra.

2.1. Q Characterization of EM Wave Propagation and Attenuation

Numerous studies have dealt with the issue of wavelet distortion in seismograms. Seismic wave
attenuation is commonly characterized by a quality parameter Q [40, 45, 46]. As summarized in [33],
a variety of methods have been developed to estimate the earth’s Q function and reverse the earth
Q effect on seismic waves. However, relatively little research has been published on the problem of
removing wavelet distortion from radar data given the presence of media with high loss and dispersion.
In this section, we begin to address this issue by discussing the Q for EM wave propagation.

In [47], Von Hippel associated the quality factor Q with the loss tangent to quantify the energy
loss as EM waves propagate in the dielectric. He derived the definition of Q as

Q = 2π
ε′E2
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/
2
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in which E0 is the amplitude of the electric field at travel time zero, ε
′
the real permittivity, ε

′′
the loss

factor, T the duration of one wave cycle, and ω the angular frequency. Equation (1) implies that Q is
equal to the ratio of the average energy stored per half wave cycle and the energy dissipated per half
wave cycle. This definition is consistent with [40, 45, 46] for characterizing seismic wave attenuation.

Denote P as energy stored per half cycle, and −ΔP as energy lost per half cycle; thus, Eq. (1) can
be simplified as

Q = −2πP/ΔP . (2)

Reorganizing (2), we get
2π/Q = −ΔP/P . (3)

By Eq. (3), Q is inversely proportional to the attenuation. Smaller values of Q indicate greater
attenuation. However, this definition is rarely of direct use since only in special experiments is it
possible to measure the stored energy and the dissipated energy in each wave cycle [46]. Moreover,
Stacey et al. [48] pointed out that Eq. (3) refers to the situation in which the dissipated energy is
much smaller than the stored energy, i.e., −ΔP/P � 1. However, for EM waves in body tissues, this
condition is not typically achieved. In order to deal with small Q values, we follow the same approach
as in [48] and convert Eq. (3) to the differential form:

−2π
Q

=
(

T

P

)(
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)
, (4)

where dP/dt describes the instantaneous rate of change of the energy with respect to time. In practice,
this change in energy includes geometric spreading of waves. However, for a UPW model, there is no
diminution in amplitude or energy density due to geometrical spreading and the progressive decrease
in energy density is due only to dielectric losses presented by Eq. (4). Given the differential form in
Eq. (4), Q can be associated with the attenuation coefficient, α(f), and the phase velocity, v(f), as

Q(f) =
πf

α (f) v (f)
. (5)

The UPW solution for an electric field at a single frequency in one-dimension can be written in
phasor form as [49, 50]

E(t, x) = E0 exp (−α(f)x) exp
(

j2πf

(
t − x

v(f)

))
. (6)

Expressing the attenuation in terms of Q gives

E(t, x) = E0 exp
(
− πfx

Q(f)v(f)

)
exp

(
−j

2πfx

v(f)

)
exp (j2πft) . (7)

In Eq. (7), the first two exponential operators describe the attenuation effect and the phase effect of
the medium Q, respectively.
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3. A NONSTATIONARY CONVOLUTIONAL MODEL FOR RADAR SIGNALS

Assuming a linear and time-invariant system, a recorded signal (i.e., reflection measurement), s(t), may
be represented as the convolution of the time-domain impulse response (i.e., reflectivity function) of the
object under test, r(t), with a source wavelet, w(t), given by

s(t) = w(t) ∗ r(t). (8)
Equation (8) indicates that s(t) is visualized as a scaled superposition of time-shifted source waveforms.
This convolution process is said to be stationary because the source waveform is the same for all samples
of the impulse response regardless of their arrival time.

This definition applies for the ideal conditions where the frequency content of the wavelet does not
change with time or space. For EM wave propagation in lossy dispersive media, the object acts as a
nonstationary system with a time-dependent frequency response. With the resulting wavelet distortion,
the stationary convolutional model is not able to account for the nonstationarity in the wave propagation.

In order to address this shortcoming, a nonstationary convolutional model was introduced by [52],
and given as

s(t) = ŵ(t, τ) ∗ r(t), (9)
where the time variable τ represents the wave travel time, and ŵ(t, τ) is the propagating wavelet. The
source wavelet w(t) is the actual waveform emitted by the source as conceptually could be recorded by
a receiver coincident with the source. In other words, the source wavelet is an initial condition that does
not evolve with time and is therefore regarded as stationary. The propagating wavelet ŵ(t, τ) refers to
the wavelet at a specific instant in time. Thus, the propagating wavelet begins as the source wavelet,
but evolves as the wavelet travels through the object. The source wavelet and the attenuation process
combine to determine the propagating wavelet.

In Eq. (9), there are two time variables, t and τ . The time variable τ is called the input time,
while the independent time variable t is called the output time. We use the example shown in Fig. 3
to explain these two time variables. In Fig. 3(a), the wavelet evolution is based on the stationary
convolutional model. Therefore, other than a time shift, no difference is observed in the wavelets
captured at different travel time. Fig. 3(b) shows the propagating wavelets that are modeled by the
nonstationary convolutional model. It can be seen that, as the travel time increases, the propagating
wavelet exhibits more energy decay and broader pulse width due to the frequency-dependent dissipation
and dispersion.
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Figure 3. The relationship between the time variables t and τ . (a) is based on the stationary
convolutional model and (b) is based on the nonstationary convolutional model. In (b), at the travel
times of τ4 and τ5, the amplitude of the wavelet is multiplied by two for visualization purpose.

To connect the source wavelet and the wave attenuation process to the propagating wavelet, the
latter is replaced by two separate terms:

ŵ(t, τ) = w(t) ∗ b(t, τ), (10)
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in which an attenuation function b(t, τ) is introduced to describe the impulse response of the attenuation
process for any travel time τ . Thus, by substituting Eq. (10) into Eq. (9), the nonstationary
convolutional model is

s(t) = w(t) ∗ b(t, τ) ∗ r(t). (11)

By estimating the attenuation function, we can remove it from the recorded data; thus, the rest can
be treated effectively by a stationary convolutional model. In essence, the nonstationary convolutional
model is a generalization of the stationary convolutional model. Recall the example shown in Fig. 2.
The minimum phase w(t) is convolved with b(t, τ), τ = 0.5 ns, 2.5 ns, and 4.5 ns, in order to describe
the position-dependent attenuation as the UPW propagates in infiltrated fat.

4. GABOR NONSTATIONARY DECONVOLUTION

Given the nonstationary convolutional model, the goal is to solve for the reflectivity function by
deconvolving other effects from the recorded data. We start from an introduction to the Gabor transform
of nonstationary convolutional model. Next, we explain the assumptions that allow one to recover
the reflectivity function given only the recorded signal. Then, the Gabor deconvolution algorithm is
presented. At the end, we discuss the modifications to Gabor deconvolution in order to effectively deal
with the challenges presented in EM applications.

4.1. Gabor Transform of Nonstationary Convolutional Model

The frequency domain representation of Eq. (11) can be written as

S(f) = W (f)
∫ +∞

−∞
B(f, τ)r(τ) exp(−j2πfτ)dτ , (12)

in which B(f, τ) is the Fourier transform of the attenuation function, defined as

B(f, τ) =
∫ +∞

−∞
b(t, τ) exp(−j2πft)dt. (13)

Equation (12) implies that the recorded signal is generated by a nonstationary system with time-
dependent frequency response. Therefore, a local analysis scheme is necessary to yield a time-frequency
representation for the time-variant system. Among a variety of local analysis based algorithms for
estimating the object reflectivity in the presence of nonstationary systems, Gabor nonstationary
deconvolution has demonstrated success in attenuation compensation and phase correction for
seismograms [34]. Through the partition of unity (POU) windowing scheme, the Gabor algorithm
is able to minimize the energy loss during the forward and inverse Gabor transform and achieve an
invertible dual-domain transformation.

In Gabor deconvolution, the nonstationary convolutional model is decomposed and transformed to
the Gabor domain (i.e., time-frequency domain). This is given as

Ŝ(f, τ) ≈ W (f)B(f, τ)R(f, τ), (14)

Figure 4. The magnitude of four components of (14) for a typical synthetic radar signal. The wavelet
has a dominant frequency of 4GHz, the Q is calculated based on the dielectric properties of infiltrated
fat given by [44], and the reflectivity is statistically white.
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in which Ŝ(f, τ) is the Gabor transform of s(t), W (f) the Fourier transform of w(t), B(f, τ) the Fourier
transform of b(t, τ) as defined in Eq. (13), and R(f, τ) the Gabor transform of r(t). Fig. 4 illustrates
Eq. (14) for a sample signal. The recorded data, represented by |Ŝ(f, τ)|, shows strength that decays
rapidly with time and frequency, whereas the source wavelet |W (f)| shows only frequency dependence.
The attenuation function |B(f, τ)| shows exponential decay with both time and frequency. The Gabor
transform of the object impulse response, |R(f, τ)|, shows strong, rapid variation in both time and
frequency, but without any systematic decay. Given Eq. (14), the ultimate goal is to solve for R(f, τ).
In order to do so, we need to estimate B(f, τ) and W (f) based on Ŝ(f, τ).

4.2. Assumptions to Recover the Reflectivity Function

In most practical applications, the only known term in Eq. (14) is Ŝ(f, τ). Therefore, the following
assumptions are necessary in order to find the solution for R(f, τ) [34, 52]:

(i) The source wavelet and the nonstationary effects of attenuation are minimum phase.
(ii) The reflectivity function is statistically white, i.e., its amplitude spectrum is approximately

constant.
(iii) The general trend of the amplitude spectrum of recorded data is due to the source wavelet, and

the details are due to the object reflectivity.

The concept of minimum phase was introduced in [53] as a condition on the phase spectrum in the
frequency domain. By “minimum phase”, it is meant that the energy carried by the signal is maximally
concentrated at its onset. The mathematics behind this concept can be found in [54, 55]. Here, our
discussion focuses on the use of this condition to facilitate our goal of solving for the reflectivity function.
The minimum phase operator has a desirable property in that its phase spectrum can be computed as
the Hilbert transform of the natural logarithm of its amplitude spectrum, given by

θm(f) = H {ln |W m(f)|} , (15)

in which |Wm(f)| and θm(f) represent the amplitude spectrum and the phase spectrum of a minimum
phase operator respectively, and H{·} denotes the Hilbert transform.

With the assumption of white reflectivity, the amplitude spectrum of the reflectivity function can
be represented by a constant. This also leads to assumption (iii), which is illustrated by considering the
stationary convolutional model defined in Eq. (8). The amplitude spectrum of recorded data, |S(f)|,
is a multiplication of the amplitude spectra of source wavelet and reflectivity function, |W (f)| and
|R(f)|. Given |R(f)| as a constant, |S(f)| is a version of |W (f)| scaled by |R(f)|. This allows the
amplitude spectrum of the wavelet to be estimated from that of the recorded data; thus, together with
the minimum phase assumption, the wavelet can be estimated.

4.3. Gabor Deconvolution

To solve Eq. (14) for R(f, τ), we need to estimate B(f, τ), then W(f). There are various ways to estimate
the attenuation function in the Gabor domain. In particular, Margrave et al. [34, 56] reported that the
hyperbolic smoothing approach is robust and able to yield a consistent estimate of the Gabor magnitude
spectrum of the propagating wavelet. Hyperbolic smoothing is essentially based on the theory that the
amplitude spectrum of attenuation can be described by a constant Q model as

|B(f, τ)| = exp(−π |f | τ/Q). (16)

By Eq. (16), given Q as a constant, the contours of the attenuation function are determined by
tf = constant, which is the equation of a hyperbola with the time and frequency axes as asymptotes.
Thus, the attenuation function can be estimated by taking the average of the Gabor magnitude spectrum
of the recorded signal along the hyperbolic lines.

Once the attenuation function is estimated, it is to be removed from the recorded data:

|G(f, τ)| =
∣∣∣Ŝ(f, τ)

∣∣∣/|B(f, τ)|. (17)
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|G(f, τ)| can be treated as a stationary convolution as described in Eq. (8). Thus, given assumptions
(ii) and (iii) and the fact that the frequency spectrum of source wavelet is time-independent, |W (f)|
can be estimated by averaging |G(f, τ)| over time, then smoothing in frequency. Once |G(f, τ)| and
|W (f)| are estimated, the reflectivity function in the Gabor domain can be calculated as

R(f, τ) =
Ŝ(f, τ)

|W (f)B(f, τ)| + μAmax
e−jθ(f,τ), (18)

in which θ(f, τ) is the Gabor phase spectrum of W (f)B(f, τ), Amax the maximum of |W (f)B(f, τ)|,
and μ a small positive constant to avoid singularities. Given the minimum phase condition, θ(f, τ) is
calculated as

θ(f, τ) = H {ln(|W (f)B(f, τ)| + μAmax)} . (19)

Thus, the reflectivity series in time, r(t), is obtained by an inverse Gabor transform of R(f, τ).

4.4. Gabor Deconvolution for EM Applications

Because Gabor nonstationary deconvolution was developed in the field of Seismology, examination of
the original algorithm is necessary in order to make it an effective approach for EM applications. For
biological tissues, more attenuation is expected than with seismic materials. Secondly, the EM wave
operates at a higher frequency range with a broader frequency band than that of the seismic wave.
The broader the frequency band, the more dispersion is involved. Thus, the wavelet dissipation and
dispersion is far more pronounced in radar data than in seismic data. As a consequence, the microwave
Q is much smaller than the seismic Q, and shows a greater variation over the frequencies of interest.
With this in mind, several adjustments are made to Gabor deconvolution in this study.

4.4.1. Frequency-Dependency of Q

The first adjustment is associated with the frequency-dependency of Q. The fundamental assumption
behind hyperbolic smoothing used to estimate B(f, τ) is that the nonstationary effects of attenuation
can be represented by a constant Q. For EM waves, the literature on GPR applications [41, 43] has
revealed that Q is not frequency-independent over the bandwidth of a GPR wavelet.

For a variety of human body tissues, we calculate Q values based on Eq. (5) and selected results
are shown in Fig. 5. Our results reveal that, over the frequencies of microwave breast imaging, the Q
lies somewhere between 1.5 and 8. This is more than an order of magnitude lower than the range of
values typically given for seismic Q [45]. In addition, as shown in Fig. 5(a), Q is not constant over the
examined frequency range.

Q(a) Q*(b)

Figure 5. Q and Q∗ calculated as a function of frequency for selected body tissues whose dielectric
properties were fitted using the Cole-Cole formula: muscle is in solid red, bone is in dashed black, and
fat is in dotted blue.
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For hyperbolic smoothing, the importance of the frequency-dependence of Q is that it governs
the shape of the hyperbolic contours for the attenuation function estimation. With this in mind, we
modified the algorithm to construct the hyperbolas by replacing the constant value of Q with the
actual Q calculated using a Cole-Cole model. In Fig. 6, using fatty tissue as an example, we compare
the hyperbolas constructed with the constant Q and the frequency-dependent Q. The results indicate
that the hyperbolic paths constructed with the constant Q model might result in under-compensation
in certain areas on the time-frequency plane. In this study, our interest is in the effect of this shape
difference on the accuracy of the Gabor estimates. This will be examined in more detail later in this
paper.
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Figure 6. Hyperbolic contours constructed in time-frequency domain with (a) the constant Q model
and (b) the frequency-dependent Q model.

However, regions where Q is approximately linear with frequency can be found when considering
sub-bands. This observation leads to the introduction of parameter Q* [41], defined as

Q∗ =
π

v
(dα/df)−1, (20)

in which the phase velocity v is approximated as a constant value over the examined sub-band of
frequencies, and dα/df is the first order derivative of the attenuation coefficient with respect to the
frequency. Equation (20) implies that, in the region where Q is approximately linear with frequency,
a constant Q* can be approximated (shown in Fig. 5(b)). Q and Q* might be different in the total
amplitude; however, these quantities describe the same changes in wavelet shape that occur during
propagation [41, 43]. Therefore, to apply Gabor deconvolution to the biological media, we need assess
the feasibility of this algorithm for the condition where a constant Q* model can be approximated.
Later in this paper, the results obtained from various biological media will be provided to demonstrate
the effectiveness of Gabor deconvolution in the case of a constant Q* approximation.

4.4.2. Boxcar Smoothing to Estimate Source Wavelet

In Gabor deconvolution, the basic idea behind the estimation of |W (f)| is first removing the
nonstationary attenuation function from the recorded data to get |G(f, τ)|. Next, the source wavelet is
estimated by averaging |G(f, τ)| over time, then smoothing in frequency [34]. However, for signals with
low signal to noise ratio (SNR), it is possible for the later response to be attenuated to a level that is
close to the noise floor.

Instead, we practiced a different smoothing approach by convolving a 2D boxcar function with
|G(f, τ)|. This approach is simply based on the assumption that the amplitude spectra of the source
wavelet and the recorded signal share the same trend. The results obtained from the tested datasets
indicate that, given data with low SNR, the boxcar smoother yields a better recovery of the reflectivity
function in terms of the relative amplitude and the response location.
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4.4.3. Phase Estimation Based on Zero-phase Operator

Gabor deconvolution relies heavily on the minimum phase assumption, allowing us to concentrate on
the amplitude spectra of these effects without considering their phase spectra. The minimum phase
assumption for the attenuation function is widely accepted because it is a natural process in the wave
propagation. However, in most practical applications, the source wavelet might not be minimum phase.
For example, in EM applications, the initial pulse is modified by the antenna. Typically, it is not trivial
to estimate the antenna impulse response that describes this process.

Considering potential for inaccuracy in the phase estimation, an alternative approach is using the
zero-phase operator to replace the minimum phase operator. The creation of a zero-phase operator can
be done by setting the phase term of (18) to zero as

R(f, τ) =
Ŝ(f, τ)

|W (f)B(f, τ)| + μAmax
. (21)

This is equivalent to replacing the phase spectrum of the reflectivity function with that of the
recorded data. The importance of this replacement in practice is that, in the case of inaccurate minimum
phase estimation, the phase information carried by the recorded data is closer to the truth.

5. EVALUATION ON SYNTHETIC DATA

To assess the performance of Gabor nonstationary deconvolution in scenarios where EM waves propagate
in highly lossy and dispersive dielectric materials, we first consider the simple case of UPW propagation.
Our intention is to examine the ability of Gabor nonstationary deconvolution to 1) separate the
superposed wavelets, 2) recover the weak responses later in time, and 3) work with frequency-dependent
Q. With UPW propagation, we can concentrate on the effects of attenuation and dispersion due to the
dielectric properties, but eliminate the effects from other undesired factors (e.g., geometric spreading).
In this section, the generation of the synthetic signal is described first. Then, the results obtained from
processing the synthetic data with Gabor deconvolution are presented and discussed.

5.1. Data Generation

Table 1. Steps to generate synthetic signal.

1) In frequency domain, use the Cole-Cole model to compute α and v for the given
medium at defined sampling frequencies.

2) Define a time sequence τ = {τ [i]} = {iΔτ}, i = 0, 1, . . . , N − 1, which includes N

temporal sample points with a sample time interval of Δτ .
3) Choose an arbitrary reference frequency f0. Use its phase velocity, v0, to calculate

the sequence of travel distances x = {x[i]} = {iΔτv0}, i = 0, 1, . . . , N − 1.
4) Starting with x[0], calculate B(f, x[0]) based on (22).
5) Multiply W (f) with B(f, x[0]) to get Ŵ (f, x[0]).
6) Take inverse Fourier transform of Ŵ (f, x[0]).
7) Repeat steps 4 to 6 for each element in x to construct a matrix. The column vector

of the matrix describes the waveform of ŵ(t, x[i]), i = 0, 1, . . . , N − 1.
8) Generate a pseudo r(t) by either a random data generator or arbitrarily choosing

location and amplitude for reflectivity.
9) Multiply the matrix constructed in step 7 with r(t) to get s(t).

Given the UPW solution for an electric field in Eq. (6), denote the impulse response of the
attenuation process as b(t, x), so that the Fourier transform of b(t, x) is obtained as:

B(f, x) = exp (−αx) exp (−j2πfx/v) . (22)
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The travel distance x is associated with the travel time τ through a reference velocity v0 as

x = v0τ. (23)

Usually, v0 is chosen as the phase velocity at a reference frequency f0. In this paper, unless specified, x
and τ are converted via this formulation.

Given the above definitions, the steps for generating the analytical s(t) are described in Table 1.
The w(t) for generating the synthetic signal is shown in Fig. 7. It is a minimum phase wavelet with
the dominant frequency at 4GHz. The calculation of a minimum phase wavelet can be found in [54].
We generate the analytical data to simulate the UPW propagation in the tissues with the dielectric
properties illustrated in Fig. 2.
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Figure 7. The minimum phase w(t) for generating synthetic signal, (a) the waveform and (b) the
amplitude spectrum.

5.2. Metrics

The following metrics are defined in order to quantitatively assess the accuracy of the Gabor estimates.
For computational purposes a discrete series is usually preferred. Define the actual reflectivity series
as r = {r[i]}, i = 0, 1, N − 1, which includes N temporal sample points. Let r̂ = {r̂[i]} denote as the
estimated series of r.

To assess how well the deconvolution operator recovers the r series, a measure of the accuracy of
r̂ is given as

I =
N−1∑
i=0

(r[i] − r̂[i])2. (24)

The smaller value of I indicates a more accurate estimate of r. Define the sample variance of r to be

I0 =
N−1∑
i=0

(r[i] − r̄)2, (25)

where r̄ is the sample mean of r, given as

r̄ =
N−1∑
i=0

r[i]

/
N. (26)

Thus the percent reduction (PR) [57] is another measure of how well the operator recovers r, defined
to be

PR = 100
(

1 − I

I0

)
. (27)
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The computational definition of PR can yield values from negative infinity to 100, where the closer
the value of PR is to 100, the better r is recovered. A negative value of PR implies a large discrepancy
between r̂ and r. Other than the error in the estimated waveform, the discrepancy can be caused by
applying different gains to the compared signals. Therefore, a proper gain needs to be determined in
order to yield a reasonable value of PR. Compared to I, PR is a better measure because it incorporates
the relationship between the estimator and the actual value. Therefore, we use PR in the following
discussion.

Both PR and I describe the overall accuracy of the r̂ series. A good estimate should also
demonstrate the correct reflection magnitude recovered at the correct location with the correct polarity.
With this in mind, the following metrics are defined in order to measure the accuracy of the r̂ estimation
for each reflection.

The magnitude measure is defined as

rmag =

√√√√ K2∑
i=K1

r̂2[i], (28)

where K1 and K2 are the time index of the window of interest. Given an ultra-wide band (UWB) signal,
rmag is a more accurate representation of the reflection magnitude than the maximal value picked from
a single sample point. We are interested in the relationship between the impulse responses; therefore, a
relative magnitude (∼ rmag) is deployed, given as

∼ rmag[j] = rmag[j]/rmag[1], (29)

where j is the index of the reflection, and rmag [1] denotes the magnitude of the first reflection.
The location is measured by the center time of the energy distribution inside of the window of

interest, given as

tc =
K2∑

i=K1

iΔt × r̂2[i]

/
r2
mag, (30)

where Δt is the sample time interval.
The polarity of the reflection is determined by the sample mean of the r̂ series in the time interval

of [K1Δt,K2Δt], given as

r̄K1,K2 =
K2∑

i=K1

r̂[i]

/
(K2 − K1 + 1). (31)

r̄K1,K2 > 0 indicates a positive reflection, and r̄K1,K2 < 0 indicates a negative reflection. In essence,
the polarity is determined based on the overall amplitude inside of the window of interest. This gives
a more accurate representation of the reflection polarity than that determined based on the amplitude
at a single time point.

5.3. Results and Discussions

Figure 8 shows the results obtained from a UPW propagating through infiltrated fat. The top signal
in Fig. 8 describes the model structure, and the attenuated signal is shown at the bottom of the figure.
The model includes four impulse responses that are indicated by the window in different colors and line
styles. For each impulse response, the window is centered at the point with the maximum magnitude
and extended on both sides to the points with 20 dB drop from the maximum. We process the analytical
signal with Gabor nonstationary deconvolution and Wiener stationary deconvolution. Depending on
the construction of the hyperbolic contours for attenuation function estimation, there are two variations
with the Gabor deconvolution: 1) the hyperbolic contours are constructed using the constant Q model
and 2) the hyperbolic contours are constructed using the frequency-dependent Q model.

The results indicate that Gabor deconvolution gives a more accurate estimate of the true reflectivity
than the stationary deconvolution. First of all, the Gabor estimates are able to separate the superposed
wavelets and place the associated reflectivity in the proper locations. Secondly, the Gabor algorithm is
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Figure 8. The performance of Gabor nonstationary deconvolution with the synthetic signal to simulate
the UPW propagation in fat. From top to bottom, the signals represent the true reflectivity, the
output of the Gabor algorithm with the constant Q model, the output of the Gabor algorithm with
the frequency-dependent Q model, the output of the Wiener deconvolution, and the attenuated signal,
respectively.

able to detect the small reflectivity at late time and compensate for its energy dissipation. Moreover,
the relative strengths of individual reflectivity are recovered with reasonably good accuracy.

For evaluating the overall estimation accuracy, PR is calculated for each estimate. Since we are
interested in the relationship between the successive reflection and the first reflection, the signals are
normalized at first, then scaled by the first reflection in the actual model. The Gabor estimate yields a
PR of 39.82% with the constant Q model, and a PR of 28.16% with the frequency-dependent Q model.
The estimate obtained from the stationary deconvolution has a PR of −81.26%. These results confirm
our observation from Fig. 8 that the Gabor estimates are more accurate than the Wiener estimate. The
negative PR is consistent with the large discrepancy between the Wiener estimate and the bandlimited r
series. For the Gabor estimates, we also compute the PR for individual impulse responses and the results
are listed in Table 2. It can be seen that the PR decreases as the travel time increases, i.e., a better
estimation accuracy for the early responses than for the late responses. This is because the propagating
wavelet broadens up as the travel time increases, and exceeds the Gaussian partition window at late
times.

Table 2. PR for different estimates.

PR
Gabor estimate

using constant Q

Gabor estimate using
frequency-dependent Q

Entire signal 35.88 20.41
Impulse response 1 87.55 72.62
Impulse response 2 56.92 62.32
Impulse response 3 28.85 −97.66
Impulse response 4 −36.46 −408.78



182 Liu, Fear, and Potter

Table 3. Comparison of actual and estimated impulse responses.

Metrics
Interface

(#)
Actual
model

Gabor estimate
using constant Q

Gabor estimate using
frequency-dependent Q

∼ rmag

1 1.00 1.00 1.00
2 1.50 0.84 0.92
3 0.50 0.46 0.71
4 0.25 0.25 0.49

tc(ns)

1 1.20 1.13 1.17
2 1.85 1.81 1.82
3 3.20 3.26 3.38
4 8.05 8.41 8.73

Polarity

1 + + +
2 − − −
3 + + +
4 + − +
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Figure 9. Output signals from constant Q and frequency-dependent Q models.

Given the metrics for assessing the individual reflections, Table 3 compares the actual and the
Gabor estimated impulse responses. In both cases, the second reflection is not fully recovered. This
may be due to the overlapping area between the first and the second reflections as shown in Fig. 8.
In terms of the third and the last reflections, there is an overestimate in the Gabor output with the
frequency-dependent Q model. This observation is consistent with our previous analysis based on
Fig. 6. By which, the hyperbolas constructed with the frequency-dependent Q model indicate a higher
attenuation compensation than the constant Q model. To compare the difference in these Gabor
estimates, we plot the output signals in Fig. 9. The cross-correlation gives 0.73 at the zeroth lag, and
the maximum is achieved at the third negative lag (i.e., 0.03 ns) with a value of 0.86.

The above results indicate that, even though there are differences in the Gabor estimates obtained
from the constant Q model and the frequency-dependent Q model, they do not significantly affect the
overall accuracy of the Gabor estimates. With practical applications, it is not possible to construct the
hyperbolas using the frequency-dependent Q model since the characteristics of each medium are typically
not known. This observation enables the approximation of the hyperbolas of frequency-dependent Q
by the hyperbolas constructed using a constant Q. For the tested tissue (i.e., fat), the Q* is shown
in Fig. 5(b) and exhibits a good consistency over the frequencies of interest. This result provides us
with evidence that Gabor nonstationary deconvolution is feasible for the condition where a constant Q*
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model can be approximated.
Other than fat, we also examined two other tissues: bone and muscle. As shown in Fig. 2 and

Fig. 5, these tissues exhibit a more severe frequency-dependent attenuation, i.e., a smaller value of Q,
than fat. Fig. 10 illustrates the Gabor estimate using the constant Q model and Table 4 provides the
quantitative assessments for individual reflections. In general, these results are consistent with those
obtained with the fatty tissue. Therefore, the constant Q assumption is used in the Gabor deconvolution
algorithm in the rest of the paper.
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Figure 10. The performance of Gabor nonstationary deconvolution with the synthetic signal to
simulate the UPW propagation in (a) bone and (b) muscle.

Table 4. Comparison of actual and estimated impulse responses.

Metrics
Interface

(#)
Actual
model

Bone: Gabor estimate
using constant Q

Muscle: Gabor estimate
using constant Q

PR

1 100 38.3 58.64
2 100 29.57 28.78
3 100 42.87 53.41
4 100 35.69 −100.90

∼ rmag

1 1.00 1.00 1.00
2 1.50 0.82 0.74
3 0.50 0.39 0.42
4 0.25 0.26 0.24

tc (ns)

1 1.37 1.31 1.30
2 2.16 2.15 2.13
3 3.82 3.79 3.79
4 6.50 6.42 6.49

Polarity

1 + + +
2 − − −
3 + − −
4 + + −
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6. SIMULATION TESTS

Next, we use a layered model to explore the ability of Gabor nonstationary deconvolution to handle small
reflections from the interfaces between lossy and dispersive media. Two variations on the configuration of
this simulation are tested: one incorporating a parallel plate waveguide, and the other incorporating an
UWB sensor. Different source wavelets are also deployed. Unless specified, all simulations in this paper
are performed using SEMCAD X (SPEAG, Zürich, Switzerland), which utilizes the finite-difference-
time-domain (FDTD) technique.

6.1. Parallel Plate Waveguide Simulations

Figure 11 illustrates the setup of the parallel plate waveguide simulation. A plane wave source is placed in
Layer 1 to generate wave propagation along the +x direction. Layers 1 and 4 have dielectric properties
of lossless, nondispersive media with εr = 2.5 (i.e., canola oil) and 1 (i.e., free space), respectively.
Layers 2 and 3 are lossy and dispersive. Different dielectric properties are assigned to these layers
in order to create different attenuation and dispersion effects. Fig. 12 describes the dissipative and
dispersive behavior of these layers in two different scenarios, one with α up to 20 dB/cm and the other
with α up to 70 dB/cm. As revealed by Fig. 12(c), in both cases, a low contrast is observed at the
interface between these two layers. A point sensor is placed inside of Layer 1 between the plane wave
source and the first interface. Our intention is to capture the primary reflections from the Interfaces 1, 2,
and 3. Therefore, the dimension of each layer along the x axis is calculated based on the given dielectric
properties in order to exclude the multiples in the simulated data. Multiples refer to the secondary

Uniform plane 
wave source

Point 
sensor

Layer 1: lossless 
nondispersive

Interface 1

Layer 2: lossy
dispersive Interface 2

Layer 3: lossy
dispersive

Interface 3

Layer 4: lossless 
nondispersive

Figure 11. Setup up of plane wave guide simulation. From left to right, the layers are numbered
from 1 to 4. Interface 1 is between the layers 1 and 2, Interface 2 is between the layers 2 and 3, and
Interface 3 is between the layers 3 and 4.

(a) (b) (c)

Figure 12. The frequency-dependent behavior of the lossy dispersive layers: (a) the attenuation
coefficients, (b) the Q, and (c) the reflection coefficients at Interface 2.
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reflections with inter-layer or intra-layer wave travel paths [52].
Two variations of source wavelets are tested. The first is the minimum phase equivalent of the

differentiated Gaussian pulse defined as

w(t) = (t − t0)e−(t−t0)2/τ2
, (32)

in which t0 = 0.25 ns and τ = 0.0625 ns. The minimum phase wavelet is estimated by the use of cepstral
method [58]. The second is a Ricker wavelet obtained by taking the differential of w(t) as

w(t) =
(

1 −
(√

2(t − t0) /τ
)2

)
e−(t−t0)2/τ2

. (33)

6.2. Radar Pulse Propagation Simulations

In practical applications, the pulse radiated from a realistic antenna is likely to differ from the plane
wave propagation model. The geometric spreading, the response of the transmitting and the receiving
antennas, and other factors add complexity to the propagating wave. Therefore, the simulations
included in this section are conducted to identify the effects of the realistic antennas that may affect
the performance of Gabor deconvolution operator.

For comparison purposes, the layered object shown in Fig. 11 is also utilized in these simulations.
An UWB sensor, namely the BAVA-D antenna [59], is incorporated in a monostatic configuration.
The BAVA-D sensor was developed for near-field microwave imaging and sensing, and is designed to
operate in a specific background medium (canola oil). The BAVA-D sensor is able to produce a narrow
beamwidth and generally high fidelity while keeping the return loss below −10 dB between 2.4 to 18 GHz.
The dielectric properties of canola oil are εeff (ω) = 2.5 and σeff (ω) = 0.04 S/m.

6.3. Results and Discussions

6.3.1. Plane Wave Propagation in Layered Media

With the parallel plate waveguide simulations, Fig. 13 shows the results obtained from the media that
exhibit low and high levels of attenuation and dispersion. In each case, the middle two layers are
assigned the dielectric properties illustrated in Fig. 12. Normalized amplitude is plotted in order to
demonstrate the efficiency of Gabor deconvolution in regard to attenuation compensation and phase
correction. The obtained results reveal the promise of applying Gabor nonstationary deconvolution
with significant attenuation and dispersion, i.e., Q < 5. In all cases, three reflections are present in the
signal. However, before Gabor deconvolution, only the first reflection is visible in the attenuated signal,
while the energy of the second and the third reflections is reduced by more than 75 dB relative to the
first reflection. On the other hand, after Gabor deconvolution, the energy attenuation in the signal is
sufficiently compensated, so that the responses at the second and the third interfaces can be clearly
observed. These results indicate that the Gabor algorithm is able to detect the reflectivity from largely
attenuated and distorted signals and place the reflectivity at the right location.

In Table 5, the differences are observed between the Gabor estimates and the analytical calculations,
especially in the case of high loss and dispersion. Based on our analysis, the under/over compensation
often relates to 1) the size of the Gaussian partition window in terms of the time interval from the
center point to the 1/e amplitude point; and 2) the length of the boxcar filter in time and frequency
dimensions for smoothing the Gabor amplitude spectrum. With a small-sized Gaussian window, the
second reflection may be overly compensated and noise introduced at a later time, which in turn will
overwhelm the actual response of the third interface. Given the tested datasets, the size of Gaussian
partition window is chosen to be at least one and half times the length of the source pulse. On the other
hand, increasing the length of the boxcar filter in the time dimension may cause under compensation
of the second reflection, without significantly affecting the recovery of the last reflection. Increasing the
length of the boxcar filter in frequency dimension may cause over compensation of the third reflection
in the signal, without significantly affecting the recovery of the second reflection. A guideline is to set
the width of the boxcar filter in time to be at least five times the half-width of the Gaussian partition
window; the width in frequency is equal to the dominant frequency of source wavelet. Optimal values for
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Figure 13. Applying the Gabor deconvolution to the plane wave simulations with media exhibiting (a)
low loss and dispersion and (b) high loss and dispersion. From top to bottom, the results are obtained
from a minimum phase source pulse and a Ricker source pulse, respectively. The Gabor estimates
are shown in solid red and the attenuated signals are shown in dashed blue. The ‘Δ’ indicates the
interface locations computed based on the model geometry and the medium dielectric properties. The
‘O’ indicates the interface locations derived from the Gabor estimates.

these parameters are approximated after some experimentation. Given the tested dataset, the optimal
values for the time smoother and the frequency smoother are 1 ns and 1GHz, respectively.

Despite these estimation errors, the Gabor recovered reflectivity series still provides much
more information with respect to the object geometrical structure and physical properties than the
unprocessed signal. On the other hand, none of these lossy and dispersive media has a constant Q over
the simulation frequency band (1–15 GHz); however, all have a relatively constant Q*. In this regard,
these results provide evidence that Gabor nonstationary deconvolution may be applied to scenarios
where the constant Q* model holds.

6.3.2. Radar Pulse Propagation in Layered Media

Figure 14 shows the results obtained from the simulation of BAVA-D pulse propagation through layered
media. In Fig. 14(a), the responses at Interfaces 2 and 3 are marked by ‘Δ’ and ‘O’, respectively.
These locations are calculated based on the known model structure and the known dielectric properties.
Comparing to the strong surface response at 0.3 ns, these two responses have decayed to −31.2 dB and
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Table 5. Comparison of actual and estimated impulse responses.

Metrics Interface (#)

Low loss and disperison High loss and dispersion

Analytical

results

Minimum

phase

wavelet

Ricker

wavelet

Analytical

results

Minimum

phase

wavelet

Ricker

wavelet

∼ rmag

1 1.00 1.00 1.00 1.00 1.00 1.00

2 0.38 0.45 0.56 0.04 0.26 0.25

3 1.07 0.98 1.09 0.75 0.43 0.48

tc (ns)

1 0.69 0.78 0.7 0.69 0.86 0.70

2 1.89 1.88 1.93 2.80 3.32 3.16

3 3.45 3.51 3.66 6.69 7.57 7.44

Polarity

1 − − − − − −
2 + + + + + +

3 + + + + + +

−32.2 dB. We also notice that there is a response around 1.25 ns. This response is identified as the
antenna signature from the reverberation of the strong aperture reflection in the BAVA-D sensor. For
visualization purposes, the part of signal between 0.5 ns and 2 ns is amplified. It can be seen that the
antenna signature has similar magnitude as the responses from Interfaces 2 and 3. Applying Gabor
deconvolution to this signal, we obtain the result in Fig. 14(c). It can be seen that the target responses
have been overwhelmed by the enhanced antenna signature and its surrounding high frequency noise.
These results indicate that the antenna signature response can interfere with the target response. Gabor
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Figure 14. The results obtained from monostatic BAVA-D radar. The left column shows the results
before removing the antenna signature response, and the right column shows the results after removing
the antenna signature response. Plots (a) and (b) are the signals before applying Gabor deconvolution,
and plots (c) and (d) are the signals after applying Gabor deconvolution.
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deconvolution is not a noise attenuation technique, and cannot distinguish between the noise and the
signal. In the presence of interference due to the antenna signature response, Gabor deconvolution not
only compensates for the attenuation during the wave propagation, but also boosts up the antenna
signature response. Therefore, a technique to remove the antenna signature may be necessary in order
to effectively apply Gabor deconvolution.

In Fig. 14, we compare the results before and after removing the antenna signature from the signal.
Fig. 14(b) shows the signal, in which the antenna signature has been synthetically removed. The result
obtained from applying Gabor deconvolution is shown in Fig. 14(d). Without the interference of the
antenna signature, the Gabor algorithm is able to compensate for the attenuation loss at the correct
interface locations. The weak responses at Interfaces 2 and 3 have been boosted up to −18.5 dB and
−9.5 dB relative to the response at Interface 1.

7. PRELIMINARY IMAGING TESTS

In the presence of media with significant loss and dispersion, the purpose of using Gabor deconvolution
for data preconditioning is to improve the image quality in terms of sensitivity and resolution. With
this in mind, a series of simulations are conducted to assess the improvement in the image sensitivity
and resolution given the data preconditioned by Gabor nonstationary deconvolution.

7.1. Simulation Model

We start with a simulation that involves the model shown in Fig. 15(a). It is a lossy and dispersive
spherical inclusion embedded in a lossy and dispersive rectangular block. The spherical inclusion has
a diameter 15 mm. Fig. 16 displays the relative permittivity and the conductivity for the spherical
inclusion and the rectangular medium. In order to effectively couple the microwave signal into the
imaged object, the antenna and the model are placed in a simulation space filled with the canola oil.
The antenna scan positions relative to the spherical inclusion are shown in Fig. 15(b). The antenna
radiates in the −z direction and is repositioned on a planar surface defined by z = 57.5 mm. By scanning
the antenna over the grid shown in Fig. 15(b), 441 signals were collected. To avoid spatial sampling
aliasing, the following relation needs to be satisfied

Δx ≤ v

2fmax
, (34)
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Figure 15. The structure of (a) the simulated model and (b) the acquisition geometry. The red dots
represent the antenna, and the blue sphere represent the tumor. The antenna scanned through a grid
with the corner points of (−90 mm, −30 mm), (−90 mm, 30 mm), (−30 mm, 30 mm), and (−30 mm,
−30 mm). The grid has 21 nodes evenly distributed along the x direction and the y direction.
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(a) (b)

Figure 16. The dielectric property of simulated breast phantom.

in which Δx represents the spatial interval, v the velocity, and fmax the maximum frequency included
in the signal. With the BAVA-D sensor, fmax is 12 GHz and v is chosen as the phase velocity at fmax.
Based on the dielectric properties shown in Fig. 16, at 12 GHz, the half wavelengths are 6 mm and
2mm for the rectangular block and the sphere, respectively. In addition, the high frequency component
attenuates during wave propagation in the block medium. Therefore, the grid interval is given as 3mm
in x and y directions.

Given the collected signals, the current TSAR processing flow [27] is utilized for data analysis and
imaging reconstruction. The steps are provided in Table 6.

Table 6. Steps of data processing and image reconstruction.

1) Remove the antenna response from recorded data. Two sets of data are recorded,
one with and one without the presence of an object. The object reflections are
calibrated by subtracting the antenna only response from the data recorded with
the presence of object.

2) Convert frequency recordings to time signals. The frequency measurements are
weighted with the frequency spectrum of the desired pulse. The inverse chirp
z -transform is used to convert the weighted frequency
recordings from frequency domain to time domain.

3) Correct time zero to the antenna aperture location. Estimate the antenna aperture
location in the signal by following the approach described in [60]. Clip off the signal
prior to the estimated antenna aperture.

4) Deconvolve the signals. Apply Gabor nonstationary deconvolution to the signals.
5) Reconstruct images. Image reconstruction is performed using the confocal imaging

approach (i.e., Kirchhoff migration) described in [27].

7.2. Results and Discussions

With the model shown in Fig. 15, the simulated reflection data are collected to reconstruct a 3D image
following the steps provided in Table 6. Fig. 17 compares the results obtained with and without Gabor
deconvolution as preconditioning for imaging. The left column displays 21 of 441 signals (one row) for
image reconstruction and the right column displays the reconstructed images. The original signals are
shown in Fig. 17(a) for the complete model, and Fig. 17(b), shows signals collected from the model
that includes only the medium, but not the sphere. Both figures indicate that a dominant reflection
is received from the surface of the model. Between Fig. 17(a) and Fig. 17(b), significant differences
are not observed in the signal or in the reconstructed image. Due to the strong surface reflection and
the energy loss in the medium, the reflection from the sphere has been reduced to a level that is not
detectable. This leads to the reconstructed image that is not sensitive to the presence of the sphere
object.



190 Liu, Fear, and Potter

0 5 10 15 200

0.5

1

1.5

2

2.5

3

x (mm)

z 
(m

m
)

 

 
-40 -20 0 20 40

67.5

57.5

47.5

0

1

2

3

x 10
-3

x (mm)

z 
(m

m
)

 

 
-40 -20 0 20 40

67.5

57.5

47.5

0

1

2

3

x 10
-3

0 5 10 15 200

0.5

1

1.5

2

2.5

3

x (mm)

z 
(m

m
)

 

 
-40 -20 0 20 40

67.5

57.5

47.5

-4

-2

0

2

4
x 10

-30 5 10 15 200

0.5

1

1.5

2

2.5

3

(a)

(b)

(c)

Figure 17. Comparison of reconstructed images with and without Gabor deconvolution as data
preconditioning. (a) and (c) are the results obtained from the model shown in Fig. 15. The data
in (a) does not have Gabor deconvolution for data preconditioning, while the data in (c) has been
processed by Gabor deconvolution. The circle in dashed white indicates the actual sphere location. (b)
is the results obtained from the model that only has the block medium, but without sphere.

Next, we processed the signals shown in Fig. 17(a) with Gabor deconvolution and the results are
shown in Fig. 17(c). It can be seen that, in the signals, the sphere response between 1 ns and 2 ns has been
effectively increased by more than 39 dB comparing to the response before Gabor deconvolution. This
attenuation compensation is also reflected in the reconstructed image, in which the surface response does
not dominate the image. The two strong responses around z = 37.5 mm and z = 57.5 mm correspond to
the surfaces of the sphere aligned with the data acquisition plane. However, similar information cannot
be observed in the image shown in Fig. 17(a). This difference indicates a significant improvement of
the image sensitivity by using Gabor deconvolution as preconditioning for imaging.

In Fig. 17(c), the actual sphere location is circled by the white dashed line. A shift is observed in
the imaged location, especially in the area that corresponds to the lower surface of the sphere (significant
negative response). This is because, with the current processing flow, average permittivity is used to
calculate the travel time which is set to the properties of the medium. However, the actual wave travel
velocity inside of the 15 mm sphere needs to be considered in order to have an accurate estimation of
location. Since the permittivity of the block medium is smaller than that of the sphere medium, given
the same travel time, a longer distance is traveled with the velocity determined by the permittivity of
the block medium.
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8. CONCLUSIONS

In this paper, we extend the application of Gabor nonstationary deconvolution from seismic imaging to
microwave imaging. The latter involves microwave frequency EM wave propagation in biological media
that have high attenuation and dispersion. We calculated the Q for a variety of biological tissues over
the microwave frequencies, demonstrating that the Q is more than one order of magnitude smaller than
the Q observed in seismic. However, the results also indicate that the Q varies with frequency and a
constant Q approximation might not be valid in this case. Fortunately, a new parameter Q* shows
more consistency over the microwave frequencies than the Q does. Even though Q and Q* might be
different in the total magnitude, they describe the wave attenuation and dispersion in the same manner.

We tested Gabor deconvolution with synthesized and simulated data collected with EM wave
propagation in highly attenuating and dispersive media. The results imply that Gabor nonstationary
deconvolution can be applied to the conditions where a constant Q* is approximated. For these cases,
Gabor deconvolution is able to remove the wavelet dispersion in the presence of high attenuation and
dispersion. With the analytic data, we compared the Gabor recovery of the object reflectivity obtained
from the constant Q model and the frequency-dependent Q model. The results indicate that the
difference in the hyperbolic contours constructed with different Q models does not significantly affect
the Gabor estimate. With the simulation of EM wave propagation through layered media, the Gabor
deconvolution is able to boost up the reflectivity from a weak response at its correct location even though
the relative amplitude is slightly off from the analytical calculation given the dielectric properties. With
the preliminary imaging test, the image with Gabor deconvolution as preconditioning shows much
better image sensitivity than that without the Gabor preconditioning. On the other hand, since Gabor
deconvolution is not designed to distinguish between noise and data, the algorithm may unintentionally
boost up the noise when compensating for attenuation. Thus, noise attenuation should be performed
prior to the Gabor deconvolution.

Several priorities of our future work are defining (1) the proper phantom models to be able to best
test the Gabor algorithm and (2) the necessary steps to integrate the Gabor algorithm into the current
workflow of microwave imaging.
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APPENDIX A. DERIVATION OF Q FOR EM WAVE

In EM applications, an important parameter to quantify the energy loss is the loss tangent, tan δ. In
particular, the loss tangent of the dielectric medium is defined as

tan δ =
ε′′

ε′
, (A1)

where ε′ and ε′′ correspond to the real and the imaginary parts of the complex relative
permittivity [48, 51], respectively. In 1959, Von Hippel [48] has associated the quality factor Q with the
loss tangent to quantify the energy loss as EM waves propagate in the dielectric. He defined the Q as
the inverse of the loss tangent, given by

Q =
1

tan δ
. (A2)

Substituting (A1) into (A2), we get

Q =
ε′

ε′′
. (A3)
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For an electric field of amplitude E0, (A3) can be rewritten as

Q =
1
2ωε0ε

′E2
0

1
2ωε0ε′′E2

0

. (A4)

Given ω = 2πf , εeff =ε0ε
′, and σeff =ωε0ε

′′, (A4) can be rewritten as

Q = 2πf
1
2εeff E2

0
1
2σeff E2

0

. (A5)

Define T as the duration of one wave cycle; thus, using T to replace the frequency, f, we have

Q = 2π
1
2εeff E2

0

/
T

1
2σeff E2

0

, (A6)

which is equivalent to

Q = 2π
Average energy stored per half cycle

Energy dissipated per half cycle
. (A7)

This definition of Q is consistent with the one in [40, 45, 46] for characterizing the seismic attenuation,
given as

Q = 2π
Peak strain energy stored in volume

Energy lost in each cycle
. (A8)

However, these definitions refer to the situation where the dissipated energy is small relative to the
stored energy [48]. In order to deal with the situation where a large amount of attenuation is involved,
a differential form is derived based on (A7) and (A8), given as

−2π
Q

=
(

T

P

)(
dP

dt

)
, (A9)

where P is the energy stored per cycle or per half cycle, and dP/dt describes the instantaneous rate of
change of the energy with respect to time.

For comparison with respect to observations, reference to wave amplitude ‘E ’ rather than energy
‘P ’ is generally preferred. It is widely accepted that

P ∝ E2, dP ∝ 2EdE, (A10)

so that
dP

P
= 2

dE

E
. (A11)

Substituting Eq. (A11) into Eq. (A9), we get

− π

Q
=

(
T

E

)(
dE

dt

)
. (A12)

Integration of Equation (A12) gives

E(t) = E0 exp
(−πt

QT

)
. (A13)

Alternatively, given λ as wavelength and v as wave velocity, we have T = λ/v and x=vt. Thus, Eq. (A13)
can be written as

E(t) = E0 exp
(−π

Qλ
x

)
= E0 exp (−αx) , (A14)

where α is the attenuation coefficient. Therefore, Q and α can be associated by

Q =
ω

2vα
. (A15)

This relation is same as the one defined in [46] for seismic waves.
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