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A Hybrid Model for Electromagnetic Leakage from an Apertured
Complex Metallic Enclosures

Yan-Fei Gong*, Jian-Hong Hao, Lu-Hang Jiang, and Jie-Qing Fan

Abstract—An efficient and accurate hybrid model has been developed for the electromagnetic leakage
from two apertured cascaded metallic rectangular enclosures connected by a metallic plate with an
aperture covered by a non-magnetic conductive sheet excited by an electric dipole located in the
enclosure. The leakage fields through the covered aperture are derived by using the dyadic Green’s
function and employing the approximate boundary conditions at both sides of the sheet which is regarded
as an infinite conductive plate. Then, the leakage fields into the external space through the aperture
regardless of its thickness at the end of the enclosure are derived based on a generalization of the method
of moments (MoM). Finally, the shielding effectiveness (SE) at the target points outside the enclosure is
calculated for the intermediate analysis of the leakage fields. Comparison with the full wave simulation
software CST has verified the model over a wide frequency band. The hybrid model then is employed
to analyze the effect of different factors including the thickness and the conductivity of the conductive
sheet on the SE, and the corresponding physical mechanisms of the leakage fields are also illuminated.
The hybrid model can also be extended to deal with other cases, including the whole plate made of
non-magnetic conductive material without apertures, the infinite thickness of the aperture at the end of
the enclosure, and the aperture at the end of the enclosure also covered by a non-magnetic conductive
sheet.

1. INTRODUCTION

Due to the increasing complexity and density of high speed integrated circuits and electronic devices,
the problems of electromagnetic interference (EMI) have become considerably common and severe.
Electromagnetic shielding, one of the primary technical measures for suppressing the EMI via field
coupling channel, has been widely used in the electromagnetic compatibility (EMC) design [1–3]. It
can be simply implemented by encasing vulnerable circuits and components within a metallic box
to protect them from the EMI. However, it is inevitable that the enclosure contains apertures in
the internal regions and on its surface due to the needs for the installation of lines, ventilation and
heat dissipation, etc., which may cause significant electromagnetic leakage into the internal adjacent
regions of the enclosure and the external environment through slots and apertures, and degrading its
shielding effectiveness (SE) dramatically as well as having a substantial influence on the surrounding
environment. Designing an enclosure of better shielding effect has always been an important issue [4–7].
Recently, the internal structures of the enclosure have become considerably complex with the increase
of integration of electronic devices, thus studying the SE of various complicated metallic shielding
enclosures provides guidance of great importance for electromagnetic shielding theory and practical
electromagnetic protection technology. Considerable work has been done in the study of the SE of a
metallic rectangular enclosure with apertures using numerical methods [4], analytical methods [5, 6],
and hybrid methods [7]. Numerical methods, including the finite difference time domain (FDTD)
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method, finite element method (FEM), method of moments (MoM), and transmission-line modeling
(TLM) method, are robust and accurate, but require large computational resources because of the
detailed mesh generation for complicated electronic systems. As a result, analytical approaches such
as Bethe’s small aperture coupling theory, equivalent circuit method and BLT equation, which are
much faster and more convenient in the analysis of the effect of different parameters on the SE, have
been especially used in evaluating the SE of the target points. Hybrid methods, which combine the
merits of numerical and analytical methods, have the advantages of substantially reducing the computer
memory and the processing time, overcoming some limitations of single methods, etc. on the premise
that the computational accuracy is guaranteed. The electromagnetic leakage of an apertured rectangular
aperture excited by an internal electric dipole has been studied based on the Bethe’s small aperture
coupling theory in [8, 9], and the SE is used to intermediately measure the electromagnetic leakage.
The small aperture model is reliable in terms of calculation accuracy but restricted to the condition
that the size of the aperture is shorter than 1/10 wavelength of interest and that the thickness of the
enclosure is neglected. In order to overcome these limitations, Dehkhoda et al. [17] have introduced
a generalized model MoM to evaluate the SE of an apertured enclosure with an finite wall thickness
exposed to a plane wave of normal incidence. In this method, the unknown magnetic currents at both
sides of the rectangular aperture are represented by the sinusoidal basis functions. By employing the
surface equivalence principle and boundary conditions at each of the apertures, the unknown magnetic
currents then are obtained and therefore the electric fields inside the enclosure.

With the rapid development of material science and technology, an increasing number of compound
conductive materials with good flexibility and low weight have been used in the design of shielding
enclosures [10, 11]. Sometimes, they are employed to close unnecessary apertures to decrease the
electromagnetic leakage from them, and improve the SE of the enclosures [12]. Konefal et al. [13] have
implemented the intermediate level circuit model to calculate the SE of a metallic rectangular enclosure
with an aperture covered by a conductive sheet against a normally incident plane wave. However, this
model is restricted to the rectangular aperture and plane wave of a normal incidence; therefore, it will
become more complicated and time-consuming, and even fail in other cases.

Previous work mainly focuses on an apertured single enclosure. In fact, a complex metallic enclosure
is generally divided into multiple spatial regions, and thus it is worthwhile to investigate the complicated
mutual EMI of different nearby regions. In this paper, an efficient and accurate hybrid model is
proposed for predicting the electromagnetic leakage field coupling through apertures of multiple cascaded
rectangular enclosures connected by a metallic plate with a covered aperture, and the excitation source
is an electric dipole located inside the enclosure. In order to calculate the leakage fields outside the
enclosures, first, we derive the equivalent magnetic current on the right surface of the sheet by using
the electromagnetic fields excited by the dipole with the aperture short-circuited and employing the
approximate boundary conditions at both sides of the sheet which is regarded as an infinite conductive
plate. Then, using the cavity Green’s function and the equivalent magnetic current, the leakage fields
inside the enclosure through the covered aperture are obtained. Finally, the leakage fields outside
the enclosures through the aperture of which the thickness is very small are calculated based on the
generalized model MoM. Overcoming the above limitations of the intermediate level circuit method, this
model is appropriate for arbitrary covered aperture shape and arbitrary source, because the equivalent
surface magnetic of the sheet plays the part of source in calculating the leakage fields inside the enclosure.

A good agreement over a broad frequency range up to 3GHz is observed between the results of the
hybrid model and the full-wave simulation software CST which is based on the TLM method for the
covered rectangular aperture and the covered square annular aperture respectively. Then, the hybrid
model is employed to analyze the effect of different factors including the thickness and conductivity
of the sheet on the SE. The hybrid model can also be extended to deal with other cases, including
the whole plate made of non-magnetic conductive material without apertures, finite thickness of the
aperture at the end of the enclosure and the aperture at the end of the enclosure covered by a non-
magnetic conductive sheet. There is a good agreement between the hybrid results in the three extended
cases and the CST results up to 3 GHz. In addition, the effect of the three extended cases on the SE is
compared with that of the original case; the reason and mechanism which cause it are also illuminated.
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2. THEORY

2.1. Hybrid Model

The geometry of the hybrid model is shown in Figure 1(a). It consists of two cascaded metallic
rectangular enclosures (enclosure 1 and enclosure 2) connected by a metallic plate with a rectangular
aperture (aperture 1) of size l1 × w1 covered by a non-magnetic conductive sheet of thickness d1,
conductivity σ1, electric permittivity ε1 (ε1 = ε0, ε0 is the electric permittivity of vacuum), and
magnetic permeability μ1 (μ1 = μ0, μ0 is the magnetic permeability of vacuum). There is also a
rectangular aperture (aperture 2) of size l2 ×w2 on the right wall of enclosure 2, and a very small wall
thickness of the two enclosures is chosen. It is assumed that the enclosure wall and metallic plate are
perfectly conductive. The dimensions of the two enclosures are both xe × ye × ze, respectively. The
center points of aperture 1 and aperture 2 are located at (x1, y1, z1) and (x2, y2, z2), respectively. The
interference source is a y-oriented electric dipole with a moment of I · dl, and located at (xs, ys, zs) in
the enclosure 1. The observation point is located at (x, y, z). Figure 1(b) shows the side view of the
hybrid model which is divided into three regions: region I (II) is the volume inside enclosure 1(2), and
region III represents the half free space outside the enclosures.
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Figure 1. (a) The geometry of the hybrid model when aperture 2 is zero thickness. (b) The
corresponding side view of (a).

According to Reference [14], the electric fields EI inside enclosure 1 (region I) with the aperture
short-circuited produced by the y-directed electric dipole has been know. By using the Faraday’s
electromagnetic induction law ∇×EI = −jωHI, the x-component and y-component of the corresponding
magnetic field in region I can be obtained as

HI
x(x, y, z) =

−Idl
xeyeze

∞∑
m=0

∞∑
l=0

Γml

(
ye

2k1

)
sin−1(k1ye)

×{cos k1(y + ys − ye) + cos k1(|y− ys| − ye)} (1)

HI
y(x, y, z) = 0 (2)

where I and dl are the current and length of the electric dipole, respectively; m and l are the mode
index numbers of the enclosure 1 along the x-axis and the z-axis, respectively, and

k1 =
√
k2
0 − (mπ/xe)2 − (lπ/ze)2 (3)

Γml = ε0mε0l

(
lπ

ze

)
cos

(
lπz

ze

)
sin

(
lπzs
ze

)
sin

(
mπx

xe

)
sin

(
mπxs

xe

)
(4)

where k0 is the wave number in vacuum, and ε0m(ε0l) = 1 for m(l) = 0,= 2 for m(l) �= 0.
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2.2. Electromagnetic Leakage Fields in Region II

The electromagnetic leakage fields inside enclosure 2 (region II) in terms of the electric vector potential
AII

m1 are given as [15]

EII = − 1
ε0

∇× AII
m1 (5)

HII = −−jω
k2
0

(
k2
0A

II
m1 + ∇ (∇ ·AII

m1

))
(6)

where ω is the angular frequency, ε0 is the permittivity in vacuum, and AII
m1 satisfies the inhomogeneous

wave equation
∇2AII

m1 + k2
0A

II
m1 = −ε0M1 (7)

where M1 denotes the equivalent magnetic current on the right surface (z = d1 plane) of the sheet, and
thus only has x- and y-components.

Using the surface equivalence principle and the image theory, the covered aperture can be replaced
by the equivalent surface magnetic current M1 of

M1 = 2
(
EII

tyey + EII
txex

) × ez

= 2EII
ty ex − 2EII

txey

= M1xex +M1yey

(8)

where EII
ty and EII

tx denote the y- and x-components of tangential electric fields on the z = d1 plane,
respectively. M1x = 2EII

ty, M1y = −2EII
tx.

EII
ty and EII

tx can be approximately obtained by employing boundary conditions at both sides (z = 0
plane and z = d1 plane) of the sheet 1 and calculating the intrinsic transfer impedance η(d1) of it [16].
A relation then is established between EII

ty (EII
tx) and the relative tangential magnetic field components

on the z = 0 plane using η(d1). Although Equation (9) is only valid for infinite sheets, it leads to
acceptable results in our method.

Figure 2 shows the geometry of an infinite conductive sheet against a plane wave of normal incidence,
considering that η(d1) is not relevant to the type of the source. When the plane wave in region I normally
incidents upon the sheet 1, there will be a reflected wave in region I from the left surface of the sheet
(z = 0 plane), and a transmitted wave in region II.

Figure 2. The geometry of an infinite conductive sheet against a plane wave of normal incidence.

⎧⎪⎨
⎪⎩

EII
ty = η(d1)HI

tx

EII
tx = −η(d1)HI

ty

η(d1) = (−2η1ηs)
/
[(η1 + ηs)ejksd1 − (η1 − ηs)e−jksd1 ]

(9)
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where HI
tx and HI

ty denote the x- and y-components of tangential magnetic fields on the z = 0 plane,
respectively. η1 =

√
μ0/ε0, ks = ω

√
μ0εs, εs = ε0 − j(σ1/ω), ηs =

√
μ0/εs.

Here, we use the corresponding HI
x and HI

y obtained in Section 2.1 instead of HI
tx and HI

ty, so EII
ty

and EII
tx can be represented as {

EII
ty = η(d1)HI

x

EII
tx = −η(d1)HI

y = 0
(10)

By using AII
m1 =

∫∫ ′
S Gm(r, r′)·M1(r′)ds′, where Gm(r, r′) is the dyadic Green’s function of region II;

r and r′ are, respectively, the observation and the equivalent magnetic current source vectors, and S′
denotes the area where the sheet 1 covers, Equation (7) is substituted as

∇2Gm(r, r′) + k2
0Gm(r, r′) = −ε0Iδ(r − r′) (11)

where the unit dyad I = exex + eyey.
According to Reference [17], the xx- and yy-components of Gm(r, r′) in Equation (11) can be

written as

Gmxx=−
∞∑

m′=0

∞∑
n′=0

ε0ε0m′ε0n′

xeyekz
sin(kxm′x) cos(kyn′y) sin(kxm′x′) cos(kyn′y′)

cos(kz(z−ze))
sin(kz(ze−d1))

δ(z′−d1) (12)

Gmyy =−
∞∑

m′=0

∞∑
n′=0

ε0ε0m′ε0n′

xeyekz
cos(kxm′x) sin(kyn′y) cos(kxm′x′) sin(kyn′y′)

cos(kz(z−ze))
sin(kz(ze−d1))

δ(z′−d1) (13)

where (m′, n′)are the mode index numbers of the region II; kxm′ = m′π/xe, kyn′ = n′π/ye, and

kz =
√
k2
0 − k2

xm′ − k2
yn′ ; ε0m′ , ε0n′ are the Neumann’s Numbers, and ε0m′(ε0n′) = 1 for m′(n′) = 0,

ε0m′(ε0n′) = 2 for m′(n′) �= 0.
Substituting Equations (8), (10), (12) and (13) into the expression of the electric vector

potentialAII
m1, the x- and y-components of it are obtained as

AIIx
m1 =

∫∫
S′

GmxxM1xds
′ = −2η(d1)

∞∑
m′=0

∞∑
n′=0

−ε0ε0m′ε0n′

xeyekz sin(kz(ze − d1))

×
∫∫
S′

HI
x(x′, y′, z′) sin(kxm′x′) cos(kyn′y′)ds′ × sin(kxm′x) cos(kyn′y) cos(kz(z − ze)) (14)

AIIy
m1 =

∫∫
S′

GmyyM1yds
′ = 0 (15)

The electromagnetic leakage fields in region II are then obtained from Equations (5) and (6) as

EIIx
M1

= 0 (16)

EIIy
M1

= −2η(d1)
∞∑

m′=0

∞∑
n′=0

ε0m′ε0n′

xeye sin(kz(ze − d1))
sin(kxm′x) cos(kyn′y) sin(kz(z − ze))

×
∫∫

S′
HI

x(x
′, y′, z′) sin(kxm′x′) cos(kyn′y)ds′ (17)

EIIz
M1

= −2η(d1)
∞∑

m′=0

∞∑
n′=0

ε0m′ε0n′kyn′

xeyekz sin(kz(ze − d1))
sin(kxm′x) sin(kyn′y) cos(kz(z − ze))

×
∫∫

S′
HI

x(x
′, y′, z′) sin(kxm′x′) cos(kyn′y)ds′ (18)
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HIIx
M1

= 2η(d1)
jω

k2
0

∞∑
m′=0

∞∑
n′=0

ε0ε0m′ε0n′
(
k2
0 − k2

xm′
)

xeyekz sin(kz(ze − d1))
sin(kxm′x) cos(kyn′y) cos(kz(z − ze))

×
∫∫

S′
HI

x(x
′, y′, z′) sin(kxm′x′) cos(kyn′y)ds′ (19)

HIIy
M1

= −2η(d1)
jω

k2
0

∞∑
m′=0

∞∑
n′=0

ε0ε0m′ε0n′kxm′kyn′

xeyekz sin(kz(ze − d1))
cos(kxm′x) sin(kyn′y) cos(kz(z − ze))

×
∫∫

S′
HI

x(x
′, y′, z′) sin(kxm′x′) cos(kyn′y)ds′ (20)

HIIz
M1

= −2η(d1)
jω

k2
0

∞∑
m′=0

∞∑
n′=0

ε0ε0m′ε0n′kxm′

xeye sin(kz(ze − d1))
cos(kxm′x) cos(kyn′y) sin(kz(z − ze))

×
∫∫

S′
HI

x(x
′, y′, z′) sin(kxm′x′) cos(kyn′y)ds′ (21)

2.3. Electromagnetic Leakage Fields in Region III

When the thickness of the aperture 2 is very small which can be seen as zero thickness, the tangential
electric field of this rectangular aperture on z = ze plane can be represented by the following modal
expansion [18]

Eapt =
∞∑
p,q

Apq sin
(
pπ

l2

(
x+

l2
2
− x0

))
cos

(
qπ

w2

(
y +

w2

2
− y0

))
ey

+
∞∑
p,q

Bpq cos
(
pπ

l2

(
x+

l2
2
− x0

))
sin

(
qπ

w2

(
y +

w2

2
− y0

))
ex (22)

where (p, q) are the mode index numbers of the aperture; Apq and Bpq are the unknown amplitudes of
the pqth mode.

According to the surface equivalence principle, aperture 2 can be replaced by the equivalent
magnetic current of M2 = Eapt × ez, so the equivalent magnetic current can be expressed as

M2 =
∞∑
p,q

Apqψpqex −
∞∑
p,q

Bpqϕpqey = M2xex −M2yey (23)

where ψpq = sin(pπ
l2

(x+ l2
2 − x0)) cos( qπ

w2
(y + w2

2 − y0)), ϕpq = cos(pπ
l2

(x+ l2
2 − x0)) sin( qπ

w2
(y + w2

2 − y0)).

Using the magnetic dyadic Green’s function GHM of region II, and the electromagnetic fields in
region II generated by M2 are given as

EII
M2

= −
∫∫ ′′

S
∇×GHM · (−M2)ds′′ (24)

HII
M2

= −jωε0
∫∫ ′′

S
∇×GHM · (−M2)ds′′ (25)

According to Equation (25), the magnetic fields in region II can be obtained as

HIIx
M2

= −jωε0
∞∑

m′′,n′′

2(2 − δm′′n′′)
xeyek2

0k
′′
z sin(k′′z (ze − d1))

[(
k2
0 − k2

xm′′
)
Im

′′n′′
x − kxm′′kyn′′Im

′′n′′
y

]

× sin(kxm′′x) cos(kyn′′y) cos(k′′z z) (26)

HIIy
M2

= −jωε0
∞∑

m′′,n′′

2(2 − δm′′n′′)
xeyek2

0k
′′
z sin(k′′z (ze − d1))

[
−kxm′′kyn′′Im

′′n′′
x − (

k2
0 − k2

yn′′
)
Im

′′n′′
y

]

× cos(kxm′′x) sin(kyn′′y) cos(k′′z z) (27)
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HIIz
M2

= jωε0

∞∑
m′′,n′′

2(2 − δm′′n′′)
xeyek2

0 sin(k′′z (ze − d1))

[
kxm′′Im

′′n′′
x + kyn′′Im

′′n′′
y

]

× cos(kxm′′x) cos(kyn′′y) sin(k′′z z) (28)

where kxm′′ =m′π/xe, kyn′′ =n′′π/ye, and k′′z =
√
k2
0 − k2

xm′′ − k2
yn′′ ; δm′′n′′ =

{
1, m′′ or n′′=0,
0, else. ; Im

′′n′′
x =∫∫ ′′

S M2x(x′′, y) sin(kxm′′x′′) cos(kyn′′y′′)ds′′; Im
′′n′′

y =
∫∫ ′′

S M2y(x′′, y′′) cos(kxm′′x′′) sin(kyn′′y′′)ds′′.
The electromagnetic leakage fields in region III can be calculated by the scattered electromagnetic

fields generated by the equivalent magnetic current M2

EIIIx
M2

=
−1
4π2

∞∑
p,q

Bpq

+∞∫
−∞

+∞∫
−∞

ϕ′
pqe

−jk′′
z |z−z′′|ej(kxm′′x+kyn′′y)dkxm′′dkyn′′ (29)

EIIIy
M2

=
1

4π2

∞∑
p,q

Apq

+∞∫
−∞

+∞∫
−∞

ψ′
pqe

−jk′′
z |z−z′′|ej(kxm′′x+kyn′′y)dkxm′′dkyn′′ (30)

EIIIz
M2

=− 1
4π2

∞∑
p,q

+∞∫
−∞

+∞∫
−∞

(Bpqkxm′′ϕ′
pq −Apqkyn′′ψ′

pq)
k′′z

e−jk′′
z |z−z′′|ej(kxm′′x+kyn′′y)dkxm′′dkyn′′ (31)

HIIIx
M2

=
ωε0

4π2k2
0

∞∑
p,q

+∞∫
−∞

+∞∫
−∞

Apqψ
′
pq(k

2
xm′′−k2

0)+Bpqkxm′′kyn′′ϕ′
pq

k′′z
e−jk′′

z |z−z′′|ej(kxm′′x+kyn′′y)dkxm′′dkyn′′(32)

HIIIy
M2

=
ωε0

4π2k2
0

∞∑
p,q

+∞∫
−∞

+∞∫
−∞

Apqkxm′′kyn′′ϕ′
pq+Bpqψ

′
pq(k2

yn′′−k2
0)

kz′′
e−jk′′

z |z−z′′|ej(kxm′′x+kyn′′y)dkxm′′dkyn′′(33)

HIIIz
M2

=
ωε0

4π2k2
0

∞∑
p,q

+∞∫
−∞

+∞∫
−∞

(Apqkxm′′ϕ′
pq +Bpqψ

′
pqkyn′′)e−jk′′

z |z−z′′|ej(kxm′′x+kyn′′y)dkxm′′dkyn′′ (34)

where ψ′
pq =

∫∫ ′′
S ψpqe

−j(kxm′′x+kyn′′y)dkxm′′dkyn′′ , ϕ′
pq =

∫∫ ′′
S ϕpqe

−j(kxm′′x+kyn′′y)dkxm′′dkyn′′ .
In order to determine the coefficients M2x and M2y of the equivalent magnetic current M2, we

apply the continuity of tangential magnetic field at z = ze plane

HIIx
M1

∣∣
z=ze

+ HIIx
M2

∣∣
z=ze

= HIIIx
M2

∣∣
z=ze

(35)

HIIy
M1

∣∣∣
z=ze

+ HIIy
M2

∣∣∣
z=ze

= HIIIy
M2

∣∣∣
z=ze

(36)

For Equations (35) and (36), we choose ψp′q′ and ϕp′q′ as the testing functions separately, and use
Galerkin’s method to calculate equations

Ixp′q′ =
∑∞

p,q

(
ApqY

aa
pqp′q′ +BpqY

ab
pqp′q′

)
(37)

Iyp′q′ =
∑∞

p,q

(
ApqY

ba
pqp′q′ +BpqY

bb
pqp′q′

)
(38)

where Ixp′q′ =
∫∫ ′′

S H
IIx
M1
ψp′q′ds

′′, Iyp′q′ =
∫∫ ′′

S H
IIy
M1
ϕp′q′ds

′′; the admittance coefficients Y aa
pqp′q′ , Y

ab
pqp′q′ ,

Y ba
pqp′q′ and Y bb

pqp′q′ can be represented according to some related functions, where Ixpqm′′n′′ =∫∫ ′′
S ψpq sin(kxm′′) cos(kyn′′)dx′′dy′′; Iypqm′′n′′ =

∫∫ ′′
S ϕpq cos(kxm′′) sin(kyn′′)dx′′dy′′.

Equations (37) and (38) can be written in the form of the matrix equation[
Y aa

pqp′q′ Y ab
pqp′q′

Y ba
pqp′q′ Y bb

pqp′q′

][
Apq

Bpq

]
=

[
Ixp′q′

Iyp′q′

]
(39)
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Finally, we can solve the matrix Equation (39) to calculate the unknown coefficients Apq and Bpq.
Then, substituting Apq and Bpq into the Equations (29)–(34), and the electromagnetic leakage fields
outside the enclosure can be obtained.

In order to help understand the calculation process thoroughly, Figure 3 shows the flowchart of
calculating the leakage fields in region III. Although we have ignored EIIy

M2
and EIIx

M2
when calculating

M1x and M1y, this approximation works well for the problem.

1ME
1MH

2ME 2MH

2

I

ME

(Galerkin s Method)

2

I

MH

xH yH

Figure 3. The flowchart of calculating the leakage fields in region III.

2.4. The Thickness of Aperture 2 is Finite

In fact, the enclosure wall often has a finite thickness which may directly influence the SE of the
enclosure. Therefore, we can get a more precise result by taking the finite wall thickness into account.
Based on Figure 1, Figures 4(a) and (b) respectively show the geometry of the enclosures and its side
view when the thickness of the aperture 2 is infinite of d2. Region IV is volume inside the aperture 2
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Figure 4. (a) Geometry of the enclosures when the thickness of aperture 2 is finite. (b) The
corresponding side view of (a). (c) Equivalent magnetic currents M l
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2 at both sides of aperture 2.
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as shown in Figure 4(b).
In order to calculate the leakage field in region III, we represent the aperture 2 on z = ze–d2 plane

and z = ze plane with the surface equivalent magnetic currents M l
2 and M r

2 respectively, shown as in
Figure 4(c). In this case, the total leakage field in region II is the sum of the radiated fields from M1

and M l
2, and the total field in region IV is the sum of the radiated fields from −M l

2 and −M r
2 , and the

total field in region III is from the radiated field M r
2 . Similar to Section 2.3, by applying the continuity

of tangential magnetic field at both sides of the aperture 2 and calculating the integral equations in the
form of matrix based on the generalized model MoM, we can finally obtain the components M l

2x, M l
2y,

M r
2x, M r

2y and therefore the leakage field in region III.

2.5. Aperture 2 is Covered by a Non-magnetic Conductive Sheet

Actually, the aperture 2 can also be covered by a non-magnetic conductive sheet 2 in order to improve
the SE and suppress the electromagnetic leakage further. Based on Figure 4, Figures 5(a) and (b)
respectively show the geometry of the enclosures and its side view when the aperture 2 is also covered
by a sheet 2 of thickness d2, conductivity σ2, electric permittivity ε0 and magnetic permeability μ0.
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Figure 5. (a) Geometry of the hybrid model when aperture 2 is also covered by a non-magnetic
conductive sheet 2. (b) The corresponding side view of (a).

In order to predict the electromagnetic leakage fields in region III through the two covered apertures,
we should first calculate the electric vector potential AIII

m2 according to Equation (5)

AIII
m2 =

ε0
4π

∫∫ ′′

S

M3 (r′′) e−jk0|r−r′′|

|r − r′′| ds′′ (40)

where S′′ denotes the area where sheet 2 covers, and M3(r′′) is the equivalent magnetic current of the
right surface of the sheet 2, which has both the x- and y-components.

According to Equations (12) and (13), the x-component and the y-component of M3(r′′) are
respectively obtained as

M3x = 2EIII
ty = 2HIIx

M1
η(d2) (41)

M3y = −2EIII
tx = −2HIIy

M1
η(d2) (42)

Therefore, we can obtain the leakage electric fields in region III by the light of Equation (5) as

EIIIx
M3

=
−1
4π

∫∫ ′′

S

e−jk0|r−r′′|(1 + jk0|r − r′′|)
|r − r′′|3 (z − z′′)M3y(r′′)ds′′ (43)

EIIIy
M3

=
−1
4π

∫∫ ′′

S

e−jk0|r−r′′|(1 + jk0|r − r′′|)
|r − r′′|3 (z − z′′)M3x(r′′)ds′′ (44)

EIIIz
M3

=
1
4π

∫∫ ′′

S

e−jk0|r−r′′|(1 + jk0|r − r′′|)
|r − r′′|3

[
(x− x′′)M3y(r′′) − (y − y′′)M3x(r′′)

]
ds′′ (45)

It should be noted that we have ignored the tangential magnetic fields HIIx
M3l

and HIIy
M3l

in enclosure 2
generated by the magnetic current M3l on the left surface of sheet 2 when calculating EIII

ty and EIII
tx
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in Equations (41) and (42), but the approximation works well for the problem. This is due to when
aperture 2 is also covered by a conductive sheet 2, the fields in region III decrease notably compared
with the case that it is not covered. As a result, M3l is much smaller, and the corresponding HIIx

M3l
and

HIIy
M3l

are much smaller than the tangential magnetic fields HIIx
M1

and HIIy
M1

generated by the magnetic
current M1 on the right surface of sheet 1.

3. THE VALIDATION AND ANALYSIS OF THE HYBRID MODEL

In this section, the SE of the observation point is calculated by using the hybrid model proposed in
Figure 1 for the intermediate analysis of the leakage field in region III. Since the electric dipole is oriented
along the y-axis in the model, the y component dominates among the three electric field components,
and we only consider EIII

y in calculating the SE. In order to verify these models, our results are compared
with those from a full-analysis commercial software CST based on the TLM technique in the frequency
range 0.1 ∼ 3 GHz respectively.

It is assumed that dimensions of enclosure 1 and 2 are both 300mm × 120mm × 300 mm, and the
wall thickness of them is t = 0.1 mm. Size of aperture 2 is l2 × w2 = 30 × 20 mm. The electric dipole
has a moment of I · dl = 1A·m, and located at (152.5, 20,−147.5) mm. The center point of aperture 1
and 2 are located at (150, 60, 0.5) mm and (150, 60, 300) mm, respectively. The observation point of SE
is located at (150, 60, 450) mm.

First, we consider a rectangular aperture 1 (Figure 6(a)) of length l1 = 50 mm and width
w1 = 40 mm covered by a conductive sheet 1 of thickness d1 = 1 mm and conductivity σ1 = 100 S/m.
Then, we consider a covered square annular aperture 1 (Figure 6(b)) of which the outer size is
lb1 × wb1 = 50 × 50 mm, and the inner size is la1 × wa1 = 20 × 20 mm, and sheet 1 thickness is
also d1 = 1 mm.
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Figure 6. (a) The geometry of a ×50mm × 40 mm rectangular aperture 1 covered by a conductive
sheet 1 of thickness d1 = 1 mm. (b) The geometry of a square annular aperture 1 (outer size 50×50 mm
and inner size 20 × 20 mm covered by a conductive sheet 1 of thickness d1 = 1mm.

Figures 7(a) and (c) show the comparison of SEs of rectangular aperture 1 using the hybrid model
and the results from the CST for different sheet conductivities σ1 = 100 S/m and 10 S/m, respectively.
It can be seen that the two curves are in good agreement up to 3 GHz in both figures. There are
minimum values where the SEs decrease sharply due to the enclosure resonance effect. Frequencies of
resonances fmnl can be calculated by the following equation

fmnl =
1√
μ0ε0

√(
m

2xe

)2

+
(
n

2ye

)2

+
(

l

2ze

)2

(46)

where m, n, and l denote the resonance mode index numbers.
In our results all resonance modes have been identified corresponding to Equation (46), including

the TM101 resonance at 0.71 GHz, the TM102 resonance at 1.12 GHz, the TM103 resonance at 1.58 GHz,
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Figure 7. Comparison of SEs using the hybrid model and the results from the CST for (a) rectangular
aperture 1 with sheet conductivity σ1 = 100 S/m, (b) square annular aperture 1 with sheet conductivity
σ1 = 100 S/m, (c) rectangular aperture 1 with sheet conductivity σ1 = 10 S/m, (d) square annular
aperture 1 with sheet conductivity σ1 = 10 S/m.

the TM302 resonance at 1.80 GHz, the TM311 resonance at 2.02 GHz, the TM303 resonance at 2.12 GHz,
the TM412 resonance at 2.56 GHz, the TM122 resonance at 2.73 GHz, the TM511 resonance at 2.83 GHz,
and the TM305 resonance at 3.91 GHz. At the same time, we can see there are maximum values where
the SEs increase sharply on account of the standing-wave’s zero effect, which can be attributed to the
following two main possible reasons, one is that the electric dipole is at the position where the EIII

y is
zero, which makes the coupling between the source and the leakage field very weak; the other is that
aperture 1 is at the position where the HI

x is zero, and the equivalent magnetic current M1 only has the
M1x component (M1x = 2η(d1)HI

x), which makes M1 zero, and thus the leakage fields reduce greatly
accordingly.

Figures 7(b) and (d) show the comparison of SEs of the square annular aperture 1 using the
hybrid model and the results from the CST for different sheet conductivities σ1 = 100 S/m and 10 S/m,
respectively. It can be seen that the two curves are in good agreement within most of the frequency
range up to 3 GHz in both figures, indicating that the hybrid model proposed is not limited to the
general rectangular apertures. This limitation is eliminated by replacing the right surface of the covered
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aperture 1 with equivalent magnetic current, and thus we only need to change the area the sheet 1 covers
in calculating its contribution to the electromagnetic leakage fields in region II for different aperture
shapes. Except for the rectangular and square annular aperture, the hybrid model can also handle other
cases including the circular and the ellipse aperture or the combinations of these shapes.

There are accurate and efficient advantages when using the hybrid model to solve the
electromagnetic leakage problem from the apertured complex enclosures. All the computations are
completed on the same computer with the CPU for Intel R© Core (TM) I5-4200 M @3.1 GHz and 8GB
memory, the CST consumes about 25129 s completing the simulation while the hybrid model consumes
only about 282 s on average. It is found that the calculation speed of the hybrid model improves
about 88 times. This comparison concludes that the proposed model performs better efficiency without
sacrificing much calculation accuracy.

In the following discussion, we focus on the case that aperture 1 is rectangular, and analyze
respectively the thickness and the conductivity of sheet 1 on the leakage field in region III by using
the verified hybrid model. Figure 8(a) shows the SEs calculated for different sheet 1 thicknesses of
d1 = 2 mm, 3mm and 4 mm. Figure 8(b) shows the SEs calculated for different sheet 1 conductivities
of σ1 = 30 S/m, 50 S/m and 70 S/m. It can be seen that the larger the thickness and the conductivity
of sheet 1 are, the higher the SEs are, and the less the electromagnetic leakage field in region III. The
reason is that when other parameters keep unchanged, the leakage field in region II is determined by the
function |η(d1)| according to Equations (16)–(21), which is a monotonic decreasing function, as is shown
in Figures 9(a) and (b) which describe the variations of absolute value |η(d1)| with the frequency change
for different thicknesses and conductivities of sheet 1. From the Equations (8) and (10), it can also be
seen that the equivalent magnetic current M1 is related to the function |η(d1)| (M1 = 2η(d1)HI

xex).
Therefore, with the increase of the value of sheet 1 thickness or its conductivity, the value of function
|η(d1)| decreases, and then the absolute value of M1 reduces, leading to less leakage field in region II,
finally there is a decrease of the leakage field in region III.
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Figure 8. Variations of SEs calculated with the frequency change for (a) three different sheet 1
thicknesses d1 = 2mm, 3mm, 4mm, (b) three different sheet 1 conductivities σ1 = 30 S/m, 50 S/m,
70 S/m.

In order to reflect the relation between the SEs versus thickness and conductivity of sheet 1,
Figures 10(a) and (b) show the variations of the SEs calculated at three resonant frequencies (0.71 GHz,
1.58 GHz and 2.12 GHz) with respect to thickness and conductivity of sheet 1, respectively. From
Figures 10(a) and (b), we can clearly see that with the increase of the thickness and conductivity
values, the SEs increase accordingly.
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(a) (b)

Figure 9. Variations of absolute value |η(d1)| calculated with frequency change for (a) different sheet
1 thicknesses, (b) different sheet 1 conductivities.
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Figure 10. Variations of the SEs calculated at three resonant frequencies with (a) sheet 1 thickness
d1, (b) sheet 1 conductivity σ1.

4. ELECTROMAGNETIC LEAKAGE UNDER DIFFERENT CONDITIONS USING
THE HYBRID MODEL

4.1. The Metallic Plate is Made of Conductive Material without Apertures

Figures 11(a) and (b) respectively show the geometry and side view of the enclosures in the case of
the whole plate in the middle, which is made of non-magnetic conductive material without apertures.
Keeping other parameters unvaried, the plate conductivity is σ1 = 100 S/m and the thickness d1 = 1 mm.
Figure 12 shows the comparison of SEs using the hybrid model and the results from the CST. It can be
seen that the hybrid results are in good agreement with those from the CST. Compared with the case
of Figure 1, there are three differences: 1) the SEs in Figure 11 decrease in the whole frequency range,
because the shielding effect in this case is much poorer than that of the perfect metallic conductor. 2)
Some resonance modes disappear, such as resonances TM302, TM511 and TM122. The reason is that the
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Figure 11. (a) Geometry of the enclosures when the whole plate between enclosure 1 and enclosure 2
is made of non-magnetic conductive material without apertures. (b) The corresponding side view of
(a).
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Figure 12. Comparison of SEs using the hybrid model and the results from the CST when the whole
plate in the middle is made of non-magnetic conductive material without apertures.

electric field component EIII
y in the frequencies corresponding to these resonances is zero in the position

of the electric dipole, and thus these vanished modes cannot be inspired. 3) There are no maximum
values in some frequency ranges such as 1.8 ∼ 2.1 GHz and 2.5 ∼ 2.9 GHz, and the reason that the SEs
do not increase sharply is that the zero effect of standing-wave is suppressed greatly in these frequency
ranges. When the whole plate is composed of non-magnetic conductive material without apertures, the
equivalent magnetic current on the z = d1 plane increases greatly, which causes an increase of the leakage
field in region II and region III, and thus the coupling between the dipole and the electromagnetic modes
is enhanced.

4.2. The Thickness of Aperture 2 Is Finite

In the case of Figure 4, rectangular aperture 2 is finite with thickness d2 = 5 mm, and other parameters
keep unvaried.

The SEs respectively obtained from our model and the CST are compared in Figure 13(a). It
can be seen that the two curves present good agreement in most of the frequency range up to 3 GHz.
Figure 13(b) shows the comparison of SEs calculated for the cases in Figure 1 and Figure 4, and it can
be seen that the SEs increase notably as the aperture thickness is added to 5 mm.
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Figure 13. (a) Comparison of SEs using the hybrid model and the results from the CST when the
thickness of aperture 2 is infinite. (b) Comparison of SEs calculated when aperture 2 thickness is
d2 = 0.1 mm and d2 = 5mm.

4.3. Aperture 2 Is Covered by a Non-Magnetic Conductive Sheet

In the case of Figure 5, aperture 2 is covered by a non-magnetic conductive sheet 2 of thickness d2 = 1mm
and conductivity σ2 = 100 S/m. Figure 14(a) shows the comparison of SEs using our model and the
results from the CST. It can be seen that the two curves are in good agreement in most of the frequency
range up to 3 GHz. At the same time, we also give the comparison of cases in Figure 1 and Figure 5, as
depicted in Figure 14(b). It can be seen that the SEs in the case of Figure 5 are higher than that of the
case of Figure 1, especially in the frequency range 2.1 ∼ 2.5 GHz, indicating that the electromagnetic
leakage to the outside decreases apparently when aperture 2 is also covered by conductive sheet 2.
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Figure 14. (a) Comparison of SEs using our model and the results from the CST when aperture 2 is
also covered with a conductive sheet 2. (b) Comparison of SEs calculated when aperture 2 is covered
by a conductive sheet 2 or not.
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5. CONCLUSION

In this paper, an efficient and accurate hybrid model has been developed to predict the electromagnetic
leakage field from complex metallic enclosures through apertures covered by a conductive sheet using
the SE as the measurement of the leakage field. First, we use the dyadic Green’s function and the
boundary condition of a sheet with infinite extension against a plane wave of normal incidence in order
to derive the leakage fields excited by an internal electric dipole. Then, we derive the leakage fields
outside the enclosure based on the generalized MoM. All the results calculated by the hybrid model
are in good agreement with those from the full-wave simulation software CST within broad frequency
range up to 3.0 GHz. At the same time, the model is employed to analyze the effect of different factors
on the SE, including the thickness and conductivity of the sheets. Results show both of the thickness
and conductivity have a significant influence on the amplitude of the SE; the larger the thickness and
the conductivity are, the higher the SE is, and thus the less the leakage field is. Finally, the hybrid
model is extended to handle other cases, including the whole plate made of conductive material without
apertures, finite thickness of the aperture at the end of the enclosure and the aperture at the end of
the enclosure covered by a conductive sheet. Results show that the electromagnetic leakage field is the
most for the first case, while for the other two cases the shielding effect is much better than the case
that the thickness of the aperture at the end of the enclosure is a very small value, indicating that the
electromagnetic leakage field is suppressed effectively.
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