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Quasi-static Vertical Magnetic Field of a Large Horizontal Circular
Loop Located at the Earth’s Surface

Mauro Parise*

Abstract—In this work, an analytical expression is derived for the radial distribution of the quasi-
static vertical magnetic field of a current-carrying large circular loop placed on a homogeneous earth.
The obtained expression results from applying a rigorous procedure, which leads to cast the Hankel
transform describing the vertical magnetic field component into a form consisting of two elliptic integrals
and a fast-convergent sum of spherical Hankel functions. The derived solution ensures the same degree
of accuracy as the finite difference time domain method, but, as a purely analytical formula, has the
advantage of requiring less computational time. Numerical results are presented to illustrate the validity
of the developed formulation.

1. INTRODUCTION

In the last decades, the problem of evaluating the electromagnetic field distribution of a current-
carrying loop placed in close proximity to a homogeneous dispersive medium has attracted the interest of
researchers working in a number of scientific fields, including radio communication, radio remote sensing,
and diathermy [1–12]. For instance, accurate field computation is important in geophysical applications,
since comparison of the theoretical and measured vertical magnetic field produced by a close-to-the-
surface loop antenna permits to detect shallow buried objects like mines, metals, mineral resources or
other ground inhomogeneities [1, 4, 10]. In spite of the relevance of the problem, to date analytical
expressions for the spatial distributions of the generated fields still are not available. Thus, the problem
of a horizontal loop lying on a homogeneous ground is typically solved through numerical procedures,
which may consist of either integration techniques for evaluating the integral representations for the
fields (like Gaussian quadrature), or simulation tools for solving general electromagnetic boundary
value problems, like the finite difference time domain (FDTD) method [1]. Both techniques present
drawbacks. Numerical integration is made difficult and impractical by the highly oscillatory nature of
the integrals describing the fields, while tools like the FDTD method are subject to numerical dispersion
errors [8]. In an attempt to overcome the drawbacks of numerical techniques, some authors [13] recently
proposed a hybrid analytical-numerical approach for evaluating the field integrals, based on performing
analytical integration after replacing part of the integrand with a suitable rational function generated
by Newton’s iterative method. This approach has been shown to lead to highly accurate results, but
has the disadvantage to provide field expressions which are not completely analytical, but contain a
large set of numerical coefficients whose computation is time-consuming [13].

The present work introduces a procedure that allows to analytically evaluate the Hankel transform
describing the radial distribution of the quasi-static vertical magnetic field of a circular loop antenna
lying on the surface of a lossy earth structure. The procedure makes it possible to cast the field
integral into a form involving only two elliptic integrals and a fast-convergent sum of spherical Hankel
functions. Such a purely analytical solution permits to avoid usage of standard numerical procedures as
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well as the previously published quasi-analytical expression for the magnetic field of the loop [13]. The
derived formulation is also of practical use as an analytical benchmark for simulation tools employed
to solve electromagnetic boundary value problems, with applications in antenna design and radio
communication.

The validity of the proposed solution is demonstrated in Section 3, where it is used to compute
profiles of the amplitude of the vertical magnetic field against frequency and source-receiver distance.
The achieved results are seen to be in excellent agreement with the data from FDTD simulations.

2. FORMULATION

Consider a current-carrying horizontal circular loop lying on the surface of a homogeneous lossy ground,
as shown in Fig. 1. The emitter carries a uniform current equal to Iejωt. The dielectric permittivity
and electric conductivity of the medium are denoted by ε1 and σ1, respectively, while the magnetic
permeability is assumed to be everywhere that of free-space. In the quasi-static limit, that is when
the source-receiver distance is much smaller than the free-space wavelength (k0ρ � 1), the Hz-field
generated by the loop in the air space is described by the Hankel transform [8]
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being Jn(·) the nth-order Bessel function, and
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The aim of this work is to evaluate Eq. (1) at the air-ground interface (z=0+). To this end, we first
multiply the numerator and denominator of the integrand by (λ− u), so as to express the field integral
as
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where the subscript 0 denotes calculation at z=0+, and

P1 = −
[

∂

∂ρ

∫ ∞

0
λe−λzJ0(λρ)J1(λa)dλ

]
z=0+

, (5)

P2 =
[

∂

∂ρ

∫ ∞

0
ue−λzJ0(λρ)J1(λa)dλ

]
z=0+

. (6)

Notice that P1 and P2 are, respectively, above-surface ground wave and lateral wave terms [14]. Next,
use of the identity [16]

λJ1(λa) = −∂J0(λa)
∂a

(7)

allows to turn Eq. (5) into the expression

P1 =
∂2

∂ρ∂a

∫ ∞

0
J0(λρ)J0(λa)dλ, (8)

the integral on the right-hand side of which is tabulated in [3]. It reads∫ ∞

0
J0(λρ)J0(λa)dλ =

2
π (a + ρ)

K

(
2
√

aρ

a + ρ

)
, (9)

where

K(ξ) =
∫ π

2

0

(
1 − ξ2 sin2 φ

)−1/2
dφ (10)



Progress In Electromagnetics Research Letters, Vol. 62, 2016 31

is the complete elliptic integral of the first kind. Differentiating Eq. (9) with respect to ρ and a leads
to the explicit form of the ground-wave term P1, namely
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where
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is the complete elliptic integral of the second kind. On the other hand, to evaluate Eq. (6) it suffices to
move the ρ-derivative under the integral sign, as follows
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Next, after substituting the identity [15]
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allows to convert Eq. (15) into
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The integral on the right-hand side of Eq. (20) may be expressed as an infinite sum of spherical Hankel
functions of the second kind [9]. It reads∫ π

0

e−jk1R′′

R′′ cos φdφ= − jπk1

∞∑
l=1

(
k2
1aρ/2

)2l−1

l!(l − 1)!
h

(2)
2l−1(k1R̃)

(k1R̃)2l−1
, (21)

being R̃ =
√

R2 + ζ2, and, as a consequence, the lateral-wave term P2 becomes

P2 = jk1

∞∑
l=1

(
k2
1aρ/2

)2l−1

l!(l − 1)!

[
∂2

∂ζ2

h
(2)
2l−1(k1R̃)

(k1R̃)2l−1

]
ζ=0

= −jk3
1

∞∑
l=1

(
k2
1aρ/2

)2l−1

l!(l − 1)!
h

(2)
2l (k1R)

(k1R)2l
. (22)

Finally, combining Eqs. (11) and (22) with Eq. (1), and performing the ρ-derivative, provides the formula
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Figure 1. Sketch of a circular loop antenna on a
homogeneous ground.
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Figure 2. Amplitude-frequency spectrum of Hz,
computed at ρ=40 m from the loop axis.

3. RESULTS AND DISCUSSION

To check the accuracy of the presented approach, expression (23) is applied to the computation of the
time-harmonic Hz-field produced on the top surface of a homogeneous medium at distance ρ=40 m from
a circular loop, 20 m in radius, which carries 1 A of current. The electrical conductivity and dielectric
permittivity of the medium are σ1=10 mS/m and ε1=5ε0, respectively, and frequency is assumed to
range between 1 Hz and 1 MHz, where the quasi-static condition k0ρ � 1 is met. The calculations
are performed on a 2.33 GHz Intel Xeon e5345 processor, and the obtained results, depicted in Figs. 2
and 3, are compared with those resulting from FDTD simulations. The three-dimensional FDTD
mesh is configured with 300 × 300 × 6 cubic cells of size 25 cm, spanning a computational volume of
75 × 75 × 1.5 m centered at the origin. The grid is terminated by the PMLs in all three directions of
the Cartesian coordinate system. Fig. 2 shows the behavior of the frequency spectrum of |Hz| as the
number of terms of the sum of spherical hankel functions in Eq. (23) is increased. What emerges is that
convergence of the sum is fast, since 13 terms are enough to achieve a curve that perfectly matches the
exact FDTD data, denoted by points.

On the other hand, as the accuracy of the solution depends on the convergence of the infinite sum,
it is concluded that the contribution of the lateral wave field to the total field is not negligible. This
aspect is pointed out in Fig. 3, which illustrates the above-ground and lateral-wave fields produced by
the circular loop source in the quasi-static frequency range. The upper subfigure also shows the total
field resulting from the two contributions. Again, computations have been performed truncating the
infinite sum in (23) at l=13. A glance at the curves plotted in Fig. 3 reveals that the ground and
lateral waves interfere destructively, and that the destructive effect of the lateral wave becomes more
and more important as frequency decreases. At extremely low frequencies, the lateral wave has the
effect of reducing the vertical magnetic field by about three orders of magnitude.

As previously observed, the proposed formula ensures the same degree of accuracy as the FDTD

Table 1. Speed-up in computation time offered by the proposed formula over FDTD method.

Approach Time consumption (s) Speed-up RMS rel. error (%)
New (300 × 300) 94.2 1 0

3D FDTD (50 × 50 × 1) 32.3 0.34 12.11
3D FDTD (100 × 100 × 2) 144.8 1.54 6.42
3D FDTD (300 × 300 × 6) 2831.7 30.06 0.28
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Figure 3. Amplitude-frequency spectra of
ground wave (gw), lateral wave (lw), and total
vertical magnetic field generated by the loop
source, computed at ρ=40 m from the loop axis.
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Figure 4. Radial distributions of the magnitudes
of ground wave (gw), lateral wave (lw), and
total vertical magnetic field generated by the loop
source, computed at the frequency of 10 kHz.

method. One would ask which of the approaches is less time consuming. This comparison is illustrated
in Table 1, which shows the computation time for the each method, that is the time taken to compute
the vertical magnetic field at the observation grid points lying on the 75 × 75 m square centered at the
origin. The loop is assumed to operate at the frequency of 10 kHz. Table 1 also depicts the ratio of the
time taken by the FDTD scheme to that required by (23), that is the gain in computation time (speed-
up). It can be noticed that, accuracy being equal, the speed-up offered by (23) is about 30. Conversely,
the FDTD procedure may become faster than the proposed approach, but only at the price of using a
coarse mesh (50 × 50 × 1), which cannot give rise to accurate results. This is confirmed by the entries
in the fourth column of Table 1, which contain the root-mean-square (RMS) relative errors that result
from calculating the Hz-field of the loop by using the FDTD method rather than the proposed field
expression. The mean is taken over the set of grid points on the 75×75 m square centered at the origin.
Finally, Fig. 4 shows the amplitude of Hz against the source-receiver distance ρ. The calculations have
been performed assuming that the loop source, 200 m in radius, is positioned on the same medium as
in the previous examples, and that it still operates at 10 kHz. As seen, the profiles of the ground and
lateral wave fields are similar, and both exhibit an in-loop region, where the field weakly depends on ρ,
and an offset loop region, where the field rapidly decays with increasing ρ. In particular, the ground
wave predominates over the lateral wave at all the field points, except in close proximity to the edge of
the loop, where they almost cancel out.

4. CONCLUSION

The aim of this work is to present an analytical expression that allows to accurately calculate the radial
distribution of the quasi-static vertical magnetic field generated by a large circular loop located on a
homogeneous ground. The derived expression consists of two elliptic integrals plus a fast-convergent
sum of spherical Hankel functions and has the advantage of requiring less computational time than
standard simulation tools for solving boundary value problems, as the FDTD method.
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