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First Principles Cable Braid Electromagnetic Penetration Model

Larry K. Warne*, William L. Langston, Lorena I. Basilio, and William A. Johnson

Abstract—The model for penetration of a wire braid is rigorously formulated. Integral formulas
are developed from energy principles for both self and transfer immittances in terms of potentials for
the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient
manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles
with unknown coefficients that are determined by means of conditions arising from the wire surface
boundary conditions. Approximations are introduced to relate the local properties of the braid wires
to a simplified infinite periodic planar geometry. This is used to treat nonuniform coaxial geometries
including eccentric interior coaxial arrangements and an exterior ground plane.

1. INTRODUCTION

Electromagnetic penetration of shielded cables is an important and interesting subject with a long
history. Early work on solid shields can be found in Schelkunoff’s paper [1]. Eddy current penetration
of cable shields is discussed in Kaden’s book [2] along with some models for apertures in thick screens.
Measurements of braid coupling are given in [3]. A classic text on cable braids is Vance’s book [4].
Lee’s book [5] also has valuable information on cables and shielding. The porpoising contribution to
the transfer inductance of a cable braid was introduced by Tyni [6]. Various improvements in the
geometrical description were made by Sali [7] and a discussion of the low frequency diffusion is given
by Zhou and Gong [8]. Kley [9] improved and assembled all these contributions into a complete semi-
empirical model where some parameters were based on measurements of typical commercial cables. The
book by Tesche et al. [10] also has a nice summary of these models. These models are quite useful and
identify the fundamental penetration mechanisms. Nevertheless, a first principles model directly based
on the braid geometry would be desirable, particularly if a cable deviates at all from typical geometries
employed in commercial cables.

This paper rigorously formulates the cable braid penetration problem. The braid geometry is
illustrated in Figure 1, showing a surface mesh on the wires of the braid in a planar approximation to
the cylindrical geometry. We start with a coaxial topology shown in Figure 2(a) and use the electric
energy and elastance to define the self capacitance and the transfer capacitance. The integral quantities
for the transfer immittances, shown as sources in Figure 2(b), that describe the coupling, as well
as the self immittances, are identified. The immittances depend on the external (outside the metallic
conductors) potentials representing the fields. Approximations are introduced to make use of the solution
of the braid in a planar geometry with periodic symmetries (to simplify the analysis of the penetrations).
These approximate results make clear the dependence of the immittances on limiting potential constants
arising as one moves away from the braid; this approach facilitates a simple treatment of nonuniform
coaxial arrangements [11] such as an exterior ground plane and an interior eccentric coax. A line
multipole representation for the wire charges and currents is used to simplify the description. Images
of these charges are used to treat adjacent dielectric material surfaces. The electric coupling shown in
Figure 3(a) is treated first. Magnetic coupling is then treated; both hole, shown in Figure 3(b), and
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Figure 1. A planar approximation of a braid
(in this case a numerical mesh representation is
shown) highlighting the individual wires making
up the strip carriers.
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Figure 2. (a) Braided coax chassis topology.
(b) Transfer immittance source model for braided
cable. The upper conductor in the depicted model
represents, for example, the center conductor
of the inner coaxial transmission line, and the
direction of propagation is taken to the right, in
positive z.
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Figure 3. (a) Electric field penetration of a planar approximation to the braid, which is connected to the
transfer capacitance CT ; relatively low optical coverage braid illustrating the inherent braid apertures
(figure for Remee 1400 cable from [12]). (b) Magnetic penetration of braid apertures illustrated with
approximate planar braid model; ML is part of the transfer inductance LT ; medium optical coverage
braid (figure for Belden 9201 cable from [12]). (c) Intrabraid magnetic porpoising penetration; LG is
also part of the transfer inductance LT ; high optical coverage braid where the intrabraid porpoising
contribution is the dominant transfer impedance contribution (figure for Belden 8240 cable from [12]).

porpoising, shown in Figure 3(c), contributions are included in a self-consistent way. Magnetic energy
is used to define the self and transfer inductances. Next, the magnetic diffusion into the conductor is
introduced in the magnetic problem.

2. ELECTRIC COUPLING

This section formulates the transfer admittance per unit length YT or transfer capacitance per unit length
CT , of the braid penetration, as well as the inner coaxial admittance per unit length Y1, or capacitance
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per unit length C1. Even though the braid has a large but finite conductivity, the asymptotic form of
these local quantities for large conductivities can be arrived at by treating the braid wires as perfect
electric conductors. We will assume that there is enough incidental contact for the braid wires to locally
be at an equal potential, which for convenience we usually take to vanish. Time dependence e−iωt is
suppressed.

2.1. Energy Formulas for Elastances & Capacitances

We intend to take conductor 1 as the center conductor and conductor 2 as the chassis. It turns out to be
convenient to initially use the elastances [13] (because of the open circuit or zero charge side conditions
associated with these elements) defined by(

V1

V2

)
=
(
S11 S12

S21 S22

)(
Q1

Q2

)
(1)

The capacitance matrix (with the braid as a reference) is the inverse of the elastance matrix C = S−1.
In the case where S11S22 � S12S21 we find Cjj ≈ 1/Sjj, j = 1, 2 and in a reciprocal media

C12 = C21 = Cm ≈ −Sm/ (S11S22) ≈ −C11C22Sm (2)
where Sm = S12 = S21. The continuity equation yields a connection between net current I and charge
per unit length q on a conductor∮

S

J · ndS = − ∂

∂t

∫
V
ρvdV → ∂I

∂z
= −∂q

∂t
(3)

Hence we can determine the current changes over a short periodic section of length � along the line as

Ij (z + �) − Ij(z) = −dQj

dt
= − d

dt
(�qj) , j = 1, 2 (4)

The power removed from a periodic section of line is minus the derivative of the stored electric energy
We

V1 [I1 (z + �) − I1(z)] + V2 [I2 (z + �) − I2(z)] = − d

dt
We (5)

Taking two sources, and denoting the resulting electric fields due to these by subscripts 1 and 2
then by superposition the total electric field is E = E1 + E2. Equating electric energies in a region
(circuit to field quantities), where the constitutive relation between the displacement and electric field
is D = εE, gives

We =
1
2
S11Q

2
1 + SmQ1Q2 +

1
2
S22Q

2
2 =

1
2

∫
V
D ·EdV (6)

where ε is the electric permittivity, assumed to be piecewise constant. The 1 problem using the elastances
has a charge Q1 on the center conductor with an equal and opposite charge on the braid shield and no
charge on the chassis conductor. The 2 problem has a charge Q2 on the chassis with equal and opposite
charge on the braid shield and no charge on the center conductor. We can identify the self elastances
as

S11Q
2
1 =

∫
V
εE2

1dV = −
∫

V
∇φ1 ·D1dV (7)

where the volume V includes both the region between center conductor and braid and the region between
braid and chassis. From ∇× E = 0 we can set E = −∇φ, and use

∇ · (φ1D2) = ∇φ1 ·D2 + φ1∇ ·D2 = ∇φ1 ·D2 + φ1ρv2 (8)
where we also used Gauss’s law ∇·D = ρv. Then applying Eq. (8) (with the 2 replaced by 1) outside the
conductors (where the volume charge is zero) and using the divergence theorem (S is the closed surface
which includes the surfaces of the center conductor, braid wires, and chassis, as well as two surfaces at
fixed axial positions one braid period � apart along the line) gives (and similarly for S22).

S11Q
2
1 = −

∮
S

n · (φ1D1) dS = V1Q1 (9)
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or S11 = V1/Q1 with Q2 = 0.
The mutual elastance is identified as

Q1Q2Sm =
∫

V
εE1 · E2dV = −

∫
V
∇φ2 ·D1dV (10)

Figure 4(a) shows the field E1 generated by a positive charge Q1 on the center conductor with no net
charge on the chassis, as well as the field Esh = E2 generated by a positive charge Qsh = −Q2 on the
braided shield with no net charge on the chassis; in this case the voltage is taken to be Vsh = −V2.
We see from Figure 4(a) that the potential V1 on the center conductor will be negative with respect
to the braided shield (taken to have zero potential) when the center conductor is uncharged (Q1 = 0)
and the braided shield is positively charged (Qsh > 0); hence we expect Sm > 0. The distributed self
capacitances per unit length are C11 = �C1 and C22 = �C2 = �Csh with Q1 = q1� and the transfer
capacitance per unit length is related by Cm = −�CT with Qsh = qsh�.
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Figure 4. (a) Field E1 generated by charge Q1 and field Esh generated by charge Qsh. (b) Field H1

generated by I1 and field Hsh generated by Ish.

Using (8) we can rewrite the mutual elastance as

Q1Q2Sm = −
∮
S

φ2D1 · ndS = −
∫

Sc

φ2D1 · ndS = V12Q1 (11)

where Sc is the center conductor surface, which is (V12 is the voltage on the open circuited conductor
1, or V1, excited by a charge on conductor 2) Sm = V1/Q2 with Q1 = 0. If we selected φ1 and D2
we would end up with V2/Q1 with Q2 = 0. Depending on which field we choose to represent with the
potential we will end up with a different surface integral in the end. In the first case the closed surface
integral is focused on the 1 region inside the braid because the field D1 is generated by charge on the
center conductor (in the second case the closed surface integral is focused on the 2 region outside the
braid because the field D2 is generated by charge on the chassis).

The transmission line equation for the interior current is

dI1
dz

= −Y1V1 − YTVsh = −Y1V1 + iω (CT /Csh) qsh (12)

with self admittance Y1 = −iωC1 and transfer admittance YT = −iωCT . In situations where the exterior
region is not strictly a transmission line, it is often convenient to avoid using an exterior transmission
line voltage as the drive and instead use the exterior charge per unit length connected to the exterior
shield current by means of the continuity equation

∇ · Jsh = iωρsh → dIsh
dz

= iωqsh (13)
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2.1.1. Self Capacitance Approximate Evaluation

The self capacitance for nonuniform geometries is estimated for the 1 problem by breaking up the volume
V into two parts V = V0 + ΔV , selecting an auxiliary volume V0 to extend from the center conductor
to a distance out near the braid

S11Q
2
1 =

(∫
V0

+
∫

ΔV

)
D1E1dV ≈

∫
V0

D1E0dV +
∫

ΔV
D1E1dV (14)

where we approximate the electric field in the V0 region by E0 the field for a solid shield at the boundaries
of V0. The auxiliary problem is taken to have the same charge Q0 = Q1 but the center conductor
potential with a solid shield at the inner and outer boundaries of the closed surface S0 (bounding
volume V0) is slightly different than with the braid (potential V0 �= V1). Using scalar potentials and (8)
(with the 1 replaced by 0 and the 2 replaced by 1) we obtain∫

V0

D1E0dV ≈ −
∮
S0

φ0D1 · ndS = −
(∫

Sc

+
∫

S0

)
φ0D1 · ndS (15)

where S0 (with a standard integral symbol) represents the outer cylinder of the closed surface S0 stood
off from the braid wires. If we note that φ0 should be constructed to vanish on the solid auxiliary shield
S0 then the final term vanishes. We have used periodicity of the fields and potential to drop the surface
integrals on the ends of the periodic region in z. Also with the potential φ1 and using (8) (with the 2
replaced by 1) gives∫

ΔV
D1E1dV = −

∮
ΔS

φ1D1 · ndS = −
(∫

S0

+
∫

Sw

+
∫

Schassis

)
φ1D1 · ndS (16)

Noting that φ1 should be constructed to vanish on the braid wire surface Sw, the integral on Sw

vanishes; the chassis is open circuited in the 1 problem and hence on this surface Schassis we expect∫
Schassis

D1 · ndS = 0; with φ1 equal to a constant on Schassis the final integral also vanishes. Hence we
finally have

S11Q
2
1 ≈ −

∫
Sc

φ0D1 · ndS −
∫

S0

φ1D1 · ndS ≈ V0Q1 −
∫

S0

φ1D1 · ndS (17)

where φ0 = V0 (not to be confused with the auxiliary volume V0) on Sc and the integral yields minus
the center conductor charge.

Now near the braid, but still far from the individual braid wires, we have the local behavior (where
ρ = xex + yey is the two-dimensional position vector and the nearest local braid mean position is
ρ

m
= xmex + ymey, where n× (ρ− ρ

m
) = 0) (in this asymptotic expression we define n as pointing in

from the exterior chassis region)

φ1 ∼ −E0 ·
(
ρ− ρ

m
+ nφb/E0

)
(18)

For a fixed standoff distance on S0 from we can set

d0 = n ·
(
ρ

0
− ρ

m

)
(19)

For a circular shield like in the eccentric coax with E0 = Eρeρ = E0eρ we have φ1 ∼ E0(b − ρ) + φb

and with n = −eρ we have d0 = b − b0 where b is the mean braid radius and b0 is the radius of S0.
Note that the electric field E0 and the potential φb are in general varying around the circumference (for
example, in the eccentric coax) but the ratio φb/E0 is a constant dependent only on the local braid wire
geometry (in the planar approximation to the braid). Then (noting that n = −eρ on S0 from the ΔV
region) inserting the local potential (18)

S11Q
2
1 ≈ (C00V0)

2 /C11 ≈ V0Q1− (d0 + φb/E0)
∫

S0

E0D1 ·ndS ≈ C00V
2
0 +(d0 + φb/E0)

∫
S0

εE2
0dS (20)

where the charge in the auxiliary problem is taken to be the same Q1 = Q0 = C00V0 and we have
used the approximation S11 ≈ 1/C11. Now dividing the second and final equalities of (20) by C00V

2
0 ,
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inverting both sides of the resulting expression, and changing to capacitances per unit length (with
C00 = �C0) we have

C1 ≈ C0 − (d0 + φb/E0)
∫

S0

ε (E0/V0)
2 dS/� (21)

We can write a similar expression for the exterior capacitance per unit length of the chassis to braid C2.

2.1.2. Transfer Capacitance Approximate Evaluation

The mutual or transfer capacitance is determined for nonuniform geometries from the cross terms. We
break up the volume into two parts (where we approximate E1 ≈ E0 in the auxiliary volume V0 and n
points out of V0 and ΔV )

SmQ1Q2 =
∫

V
εE1 ·E2dV ≈

∫
V0

D2 ·E0dV +
∫

ΔV
E2 ·D1dV = −

∮
S0

φ0D2 · ndS −
∮

ΔS

φ2D1 · ndS

≈ −
(∫

Sc

+
∫

S0

)
φ0D2 · ndS −

(∫
S0

+
∫

Sw

+
∫

Schassis

)
φ2D1 · ndS (22)

where in V0 we have used the scalar potential φ0 and Eq. (8) (with 1 replaced by 0), and in ΔV we have
used the scalar potential φ2 and Eq. (8), along with the divergence theorem. If we note that φ0 should
be constructed to vanish on the auxiliary shield S0 then the second integral vanishes. Also, since φ2 is
constructed to vanish on the braid wire surface the integral over Sw of the preceding equation vanishes.
In addition in this section, φ1 is constructed with an open circuited chassis surface in the 1 problem, so
there is no net charge on Schassis giving

∫
Schassis

D1 ·ndS = 0 (where φ2 is constant on Schassis), and φ2 is
constructed with an open circuited center conductor surface in the 2 problem, so there is no net charge
on Sc giving

∫
Sc
D2 · ndS = 0 (where φ1 and φ0 are constant on Sc). Hence the V0 integration entirely

vanishes and in the final line of the preceding ΔS integration the chassis term also vanishes. Therefore
we can write the mutual elastance as

SmQ1Q2 =
∫

V
εE1 ·E2dV ≈

∫
ΔV

E2 ·D1dV = −
∫

S0

φ2D1 · ndS (23)

Now we note that near S0 we can write the potential in the 2 problem as (since there is no charge
on the center conductor in the 2 problem)

φ2 ∼ −φc ≈ (nφc/E0) · Esh
0 (24)

where here we take n again to point inward toward the center conductor region which is consistent
with the sign from the ΔV integration (we usually evaluate the outward exterior field Esh

0 = −Esh
0 n at

the mean braid wire location of Sw for a solid shield rather than on S0 since this field exists exterior
to the braid shield) the ratio −φc/E0 is a constant for a given braid geometry (in the local planar
approximation to the braid excited by E0) and the normal field Esh

0 in general varies around the braid
shield (which can be determined from the exterior potential φsh for a solid shield at the braid center
line as −Esh

0 = −∂φsh/∂n). Then the mutual elastance is

Sm ≈ − (−φc/E0)
1

Q1Q2

∫
S0

Esh
0 D1 · ndS (25)

where the center conductor charge Q1 normalizes the integration of the normal component of the
interior displacement in the 1 problem and the chassis charge Q2 normalizes the normal component of
the exterior field level at the braid shield location. Now we approximate the field D1 ≈ D0 on S0 and
replace Q1 = Q0 and Q2 = −Qsh, where Qsh = Csh

00Vsh, Csh
00 = �Csh and Vsh is the exterior voltage

from the approximate solid shield to the chassis

Sm ≈ (−φc/E0)
1

Q0Csh
00

∫
S0

(
Esh

0 /Vsh

)
D0 · ndS (26)
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Now setting Q0 = �q0, D0 = −D0 · n, and using (2) with Cm = −CT �, gives

CT ≈ (φc/E0)C1

∫
S0

(
Esh

0 /Vsh

)
(D0/q0) dS/� (27)

where we have approximated C22 ≈ Csh
00 and C11 = �C1.

2.1.3. Uniform Cylindrical Geometry

The simple case where the geometry is a uniform cylinder both inside and outside has field

εE0/ (C0V0) = D0/q0 = 1/ (2πb0) (28)

εEsh
0 / (CshVsh) = 1/ (2πb) (29)

and capacitance per unit length C0 = 2πε/ ln(b0/a). Inserting (28) into (21) gives

C1 ≈ C0 + {(b− b0) + φb/E0} ∂C0

∂b0
≈ C0 (b0 → b+ φb/E0) =

2πε
ln [(b+ φb/E0) /a]

(30)

The transfer capacitance is determined by inserting the fields from Eqs. (28) and (29) into Eq. (27)

CT ≈ (φc/E0)
C1Csh

2πbε
(31)

A physical picture of these quantities for a circular coax is simple. The self capacitance per unit
length is preserved by the replacement of radial position b by the effective position b+ φb/E0. For the
transfer capacitance, when the braid is driven from the outside with a field Eρ = Esh

0 = VshCsh/(2πbε)
at ρ = b, giving rise to an interior potential receding from the braid toward the interior, which
asymptotically is −φc (where φc/E0 is the shadow-side constant determined, say, approximately from the
planar problem) on the open circuited center conductor, then the resulting center conductor charge per
unit length which must be supplied to bring this conductor to zero potential is qs = CTVsh = −C1φc,
where C1 is the capacitance per unit length of the inner coax; the source current is minus the time
derivative of this charge.

2.1.4. Other Cable Cross Sections

The preceding integral forms Eqs. (27) and (21) can be applied to nonuniform geometries. The first
case of an exterior ground plane is the most common type of exterior arrangement. The second case of
an eccentric coax represents a starting point for considering interior multiconductor arrangements.
Exterior Ground Plane Case When the exterior transmission line problem consists of a solid circular
cable of radius b, with center height h above a ground plane the exterior capacitance per unit length is

Csh = qsh/Vsh = 2πε/ ln
√
h+ he

h− he
= 2πε/Arccosh (h/b) (32)

where he =
√
h2 − b2 is the effective line charge position. Taking a cylindrical coordinate system to be

at the center of the cylinder, the radial field at the outer shield surface is

Eρ (b, ϕ) =
qsh

2πεb
he

h+ b sinϕ
= Esh

0 (33)

Inserting the fields from Eqs. (28) and (33) into Eq. (27) gives

CT ≈ (φc/E0)
C1Csh

2πεb
1
2π

∫ π

−π

he

h+ b sinϕ
dϕ ≈ (φc/E0)

C1Csh

2πbε
(34)

where we have used the identity that the average of the integrand over the azimuth is unity [14].
Note that in this simplified approach we have taken only the symmetric (m = 0) part of the interior

potential of the cylindrical coax. Although other azimuthal modes will exist, due to the asymmetric
exterior excitation, the net source charge qs should be determined by this symmetric component.
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Interior Eccentric Coax In addition to the ground plane exterior let us consider the situation when
the interior is an eccentric coax [13]. We place a cylindrical coordinate system at the center of the outer
cylinder of radius b0 (we will take this cylinder to be a height h above an exterior ground plane). The
center of the inner cylinder of radius a is displaced a distance d from the center of the outer cylinder.
Initially we orient the displacement d to be downward toward the ground plane, however later we also
consider the case where it is rotated by π/2 with respect to the ground plane. The potential is taken to
vanish on the outer cylinder and equal V0 on the inner cylinder. The capacitance per unit length is [13]

q0/V0 = C0 (b0) = 2πε/Arccosh
(
a2 + b20 − d2

2ab0

)
(35)

where q0 is the charge per unit length on the inner cylinder. The radial electric field at the outer cylinder
boundary is

1
q0
E0ρ (b0, ϕ) =

1
2πεb0

yc

y1 + b0 sinϕ
(36)

where (the primed quantities replace b0 by b and will be used shortly)

2ycd =
√[

(b0 − a)2 − d2
] [

(b0 + a)2 − d2
]
; 2y′cd =

√[
(b− a)2 − d2

] [
(b+ a)2 − d2

]
(37)

y1 =
√
y2

c + b20 =
(−a2 + b20 + d2

)
/(2d); y′1 =

√
y′2c + b2 (38)

The self capacitance from Eq. (21), using interior field Eq. (36), is

C1 ≈ C0 − [(b− b0) + φb/E0]
1

2πb0ε
C2

0

1
2π

∫ π

−π

(
yc

y1 + b0 sinϕ

)2

dϕ

≈ C0 + [(b− b0) + φb/E0]
∂C0

∂b0
≈ C0 (b+ φb/E0) = 2πε/Arccosh

[
a2 + (b+ φb/E0)

2 − d2

2a (b+ φb/E0)

]
(39)

where we used the identity that the average of the integrand over the azimuth is y1/yc.
The transfer capacitance from Eq. (27), using exterior field Eq. (33) and interior field Eq. (36), is

given by

CT ≈ (φc/E0)
C1Csh

2πεb
1
2π

∫ π

−π

(
he

h+ b sinϕ

)(
yc

y1 + b0 sinϕ

)
dϕ ≈ (φc/E0)

C1Csh

2πεb

(
byc − b0he

by1 − b0h

)
(40)

where we used the identity that the average of the integrand over the azimuth is (byc−b0he)/(by1−b0h).
To avoid introducing a somewhat arbitrary b0 ∼ b in this result we make the replacement b0 → b using
the primed quantities in Eqs. (37) and (38)

CT ≈ (φc/E0)
C1Csh

2πεb

(
y′c − he

y′1 − h

)
(41)

Note that the final ratio in Eq. (41) is unity if d = 0 (which makes the field of the interior problem
uniform in azimuth) or if h→ ∞ (which makes the field of the exterior problem uniform in azimuth).

We can rotate the angle ϕ in the interior field formula (36) versus in the exterior field formula (33)
in order to rotate the displacement d in the eccentric coax relative to the outer short circuit field; such
a rotation by π/2 gives the transfer capacitance

CT ≈
(
φc/E

sh
0

) C1Csh

2πεb
1
2π

∫ π

−π

he

h+ b sinϕ
yc

y1 + b0 cosϕ
dϕ ≈

(
φc/E

sh
0

) C1Csh

2πεb
b2y1yc + b20hhe

y2
1b

2 + h2
eb

2
0

(42)

where we have used the identity that the average of the integrand over the azimuth is (b2y1yc +
b20hhe)/(y2

1b
2 + h2

eb
2
0). Again to avoid having a somewhat arbitrary b0 ∼ b it is probably better to

simplify the final expression by letting b0 → b

CT ≈
(
φc/E

sh
0

) C1Csh

2πεb
y′1y′c + hhe

y′21 + h2
e

(43)
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Figure 5. (a) Illustration of the braid transfer potential φc with drive field E0. (b) Dielectric materials
surround the planar braid layer. (c) Illustration of planar braid driven by uniform magnetic field to
determine magnetic flux per unit length constants.
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+

Figure 6. A sequence of line multipole charges to represent the transverse variations of the electric
field.

2.2. Electric Multipole Representation

In the preceding sections, we have assumed that the values of φc/E0 and of φb/E0 have been determined.
The way we will actually determine these quantities is by solving for the potential surrounding a periodic
cell of the braid. This could be done in the actual cylindrical braid, but as an approximation, and because
the planar shield is of interest in its own right, we will concentrate at present on the planar problem as
depicted in Figure 5(a). The drive potential in the planar problem will be taken as φinc = E0y where
y = 0 is at the braid center.

It is efficient to represent the electric scalar potential by an electric multipole summation as shown
in Figure 6 to capture the transverse field behavior [15]. The potential for an axially varying line charge
q(s′) is

φscatt =
1

4πε

∫
q (s′)
|r − r′|ds

′ = − qn
4πε

ln

⎡
⎣(s− sn/2) +

√
ρ2 + (s− sn/2)2

(s+ sn/2) +
√
ρ2 + (s+ sn/2)

2

⎤
⎦ (44)

where the charge is discretized as pulses of strength qn, we take the end positions of the N wire segments
to be denoted by r±n , n = 1, . . . , N , the segment length is sn, the vector along the axis of the segment is
sn = r+n − r−n with unit vector esn = sn/sn, the center location of the segment is rc

n = (r+n + r−n )/2, the
projected distance along the segment is denoted by s = esn · (r − rc

n), and ρ is the transverse distance
from the segment axis, with the vector distance perpendicular to the segment ρ = −esn× [esn×(r−rc

n)].
The lattice parameters are now used to image this potential contribution in one periodic cell over

the planar braid model. The two lattice vectors associated with the two carrier directions are taken as
u and v. The components of the lattice vectors along and perpendicular to the direction of a particular
braid segment are taken as u = usnesn + uρn and v = vsnesn + vρn. Thus we have the total potential

φtot
scatt =

N∑
n=1

qn
4πε

∞∑
j=−∞

∞∑
k=−∞

ln

[
(s− sn/2 − jusn − kvsn) + |r − r+n − ju− kv|
(s+ sn/2 − jusn − kvsn) +

∣∣r − r−n − ju− kv
∣∣
]

(45)
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The constant potential condition on each n segment φtot + φinc = Vn′ around the braid wires uses the
evaluation s = sn′ and ρ = ρ

n′ or r = rn′ where the observation or match points are (a is the braid wire
radius) taken as sn′ = esn · (rn′ − rc

n), ρ
n′ = −esn × esn × (rc

n′ − rc
n) + aeρn′ , and rn′ = rc

n′ + aeρn′ . To
construct the unit vector perpendicular to the n′ wire eρn′ we need a vector r0 linearly independent of
sn′ . Then we can take (the choice is obviously not unique)

eρn′ = −esn′ × esn′ × (r0 − rc
n′) / |esn′ × esn′ × (r0 − rc

n′)| (46)

We can rotate the vector to obtain other observation points around the wire

em
′

ρn′ = cos
(
m′π/M

)
eρn′ + sin

(
m′π/M

)
esn′ × eρn′ , m′ = 0, 1, . . . , 2M − 1 (47)

where ρ(m′)
n′ and r(m

′)
n′ go with this generalization of the vectors for m′ = 0.

The monopole moments are not sufficient to match the potential condition at many points around
the wire so we include a series of line multipole moments in the potential, which for a given position n,
is written as (where qn = p(0))

φn
scatt = − 1

4πε

M∑
m=0

p(0)p(1) . . . p(m) · ∇m
t ln

⎡
⎣(s− sn/2) +

√
ρ2 + (s− sn/2)

2

(s+ sn/2) +
√
ρ2 + (s+ sn/2)

2

⎤
⎦ (48)

where ∇t = ex∂/∂x + ey∂/∂y is the “del” operator transverse to the particular wire segment and the
meaning of the “dot” product notation will be made clear on the following pages. Analogous to Eq.
(45) the total potential is

φtot
scatt =

N∑
n=1

∞∑
j=−∞

∞∑
k=−∞

φn
scatt (49)

Now the final matching equation to determine the 2M multipole moments on each of N segments
imposes the constant Vn′ = φ = φtot

scatt + φinc with s = sn′ and r = r
(m′)
n′ with n′ = 1, . . . , N and

m′ = 0, 1, . . . , 2M −1. Note that the above matching positions (ρ
n′ , sn′) depend on the the source point

n, m as well as the observation point n′,m′.
Once the potential φ is found, with the potential on the braid taken, say, to vanish Vn′ = 0, we

can then proceed to find the potential constant behaviors of interest. For y < 0 (the shadow side of
the shield) we evaluate the total potential far from the braid to find φ → φc, y → −∞. For y > 0 (the
illuminated side of the shield) we evaluate the potential to find φ → E0y + φb, y → +∞. Normalizing
by the drive field E0 we find the desired constants φc/E0 and φb/E0.

2.2.1. Multipole Evaluation

The transverse derivatives in Eq. (48) are needed to obtain the line multipole moments. Writing the
derivatives of the transverse “del” operator in local cylindrical coordinates of the segment and taking
∂/∂ϕ = 0 (as in the monopole term) the dipole term is found by applying

p(1) · ∇t =
(
p(1)

x cosϕ+ p(1)
y sinϕ

) ∂

∂ρ
(50)

There are two independent terms here: sinϕ and cosϕ; there is only a single independent function of
ρ. Next the quadrupole term is

p(1)p(2) · ∇t∇t =
1
2

(
p(1)

x p(2)
x + p(1)

y p(2)
y

)( ∂

∂ρ
+

1
ρ

)
∂

∂ρ

+
1
2

[(
p(1)

x p(2)
x −p(1)

y p(2)
y

)
cos(2ϕ)+

(
p(1)

x p(2)
y + p(2)

x p(1)
y

)
sin(2ϕ)

] ( ∂

∂ρ
− 1
ρ

)
∂

∂ρ
(51)

There are only three independent terms here: a constant 1, sin 2ϕ, and cos 2ϕ; there are only two
independent functions of ρ. This follows from having ∂2/∂x2, ∂2/∂y2, and ∂2/∂x∂y derivatives taken.
Note that the functions sin(mϕ) and cos(mϕ) have the same functional form of ρ for each value of m.



Progress In Electromagnetics Research B, Vol. 66, 2016 73

For long segments compared to their radius we could also introduce a two-dimensional redundancy
between double x and double y derivatives by virtue of the two-dimensional Laplace equation. This
would imply only two independent quantities for each value of m because ∂2/∂x2 = −∂2/∂y2. In
the preceding expression we would select p(1)

x p
(2)
x + p

(1)
y p

(2)
y = 0 so that the constant term vanishes.

This relation can be imposed on all coefficients so that additional higher order multipole terms do not
influence lower order Fourier terms.
Radial Derivatives Because the logarithm is only a function of ρ our starting point for these terms
is the radial derivative of the monopole. We can write this as (where we impose the two-dimensional
Laplace relation between the coefficients used to generate the multipole terms) [16]

φn =− 1
4πε

M∑
m=0

[
p(m)

e cos(mϕ) + p(m)
o sin(mϕ)

]
Lm

(
ρ,

∂

∂ρ

)
ln

⎡
⎣(s− sn/2) +

√
ρ2 + (s− sn/2)

2

(s+ sn/2) +
√
ρ2 + (s+ sn/2)

2

⎤
⎦ (52)

2.3. Electric Multipoles with Dielectric Materials

Now we consider the electric problem when dielectric materials are present. With the approximate local
planar model we take two dielectric half spaces (the exterior 2 half space could also be truncated into a
finite thickness layer to model the outer jacket) about the braid as shown in Figure 5(b). Because we are
representing the braid wires by line multipole moment segments, these charge multipoles can be imaged
in the dielectric interfaces. We first decompose the total field into a uniform electric displacement in the
y direction D0 = εE0 (where ε is equal to εj with j = 0, 1, 2 depending on which region the observation
is made) in addition to a field generated by the multipolar charges. These charges can be imaged in
the dielectric interfaces to represent the potential in the various regions. Let us consider a charge q in
the center region at y = 0 and the interfaces are at y = h2 and y = −h1 with respect to this charge
position. The incident uniform field potential can be written as the linear functions φinc = yD0/ε0,
−h1 < y < h2 or φinc = (y−h2)D0/ε2 + h2D0/ε0, y > h2 or φinc = (y+ h1)D0/ε1 −h1D0/ε0, y < −h1.
If driven from above (transfer capacitance problem) we would have D0 = ε2E0 whereas when driven
from below (self capacitance of inner coax problem) we would have D0 = ε1E0.

When viewed from the central braid region the potential due to this charge can be written as(
4πε0
q

)
φ =

1√
x2 + y2 + z2

+ . . . +
ε0 − ε2
ε0 + ε2

1√
x2 + (y − 2h2)

2 + z2

+
ε0 − ε1
ε0 + ε1

1√
x2 + (y + 2h1)

2 + z2

+
ε0 − ε2
ε0 + ε2

ε0 − ε1
ε0 + ε1

1√
x2 + (y + 2h2 + 2h1)

2 + z2

+
ε0 − ε1
ε0 + ε1

ε0 − ε2
ε0 + ε2

1√
x2 + (y − 2h1 − 2h2)

2 + z2

(53)

Notice if there is no outer dielectric jacket material ε2 = ε0 we end up with only two terms (the source
and one image in ε1).

This same structure of images applies to the multipolar charges of the braid wires (the image
placement is the same but the rate of decay increases with the order of the multipole). Hence we can
modify the preceding potential distributions to include the image charges in order to construct the
potential near the braid wires with the dielectric interfaces present. We can further approximate the
sum of images generated by the multipole dielectric interfaces since the higher-order multipole moments
have increasing rates of fall-off with distance. Such an image potential construction then allows us to
match the equipotential boundary condition on the braid wires to determine the appropriate multipole
moments in the presence of adjacent locally planar dielectric regions.

3. MAGNETIC COUPLING

The goal of this section is to formulate the transfer impedance (ZT ) or inductance per unit length LT

of the braid penetration as well as the inner coaxial impedance (Z1) or inductance per unit length L1.
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In this section we begin with the simplification of a perfectly conducting braid.

3.1. Magnetic Flux Boundary Conditions & Braid Wire Currents

The currents on the braid wires within a strip carrier could be taken to be fixed along the wires if
they are insulated from each other, or they could be allowed to vary due to contact between wires
if the contact impedance were known. In the perfectly conducting case, contact between wires in a
carrier strip would mean that the electric field or magnetic flux between wires vanishes and thus the
net magnetic flux between wires in a carrier strip vanishes. (In the finitely conducting case the wire
internal impedance also plays a role in selecting the current distribution of the wires in a carrier strip
to prevent the combination of inductive and resistive voltage drops between wires in the carrier strip.)
Incidental contact between carrier strips could allow the total current in a strip to vary. However,
incidental contact between strips may involve a substantial impedance, and periodicity between strips
in a cylindrically symmetric geometry might indicate that there is no preferred carrier. If the current is
confined to the carriers, then the total wire current in a strip carrier is fixed, and for the cylindrically
symmetric case would be taken to be the total braid current divided by the number of carriers; the
individual wire currents could then be taken to conform with an arrangement that is dictated by no
potential difference between wires in a carrier (at least over a braid period �). Alternatively, if there is
no contact between wires in a carrier, we could use the same current division between wires to assure
no net magnetic flux over a period to prevent accumulation of voltage differences between individual
wires along the cable, assuming they are connected together at the drive and load points. If we take
the contour (54) to be along the surface of two of the braid wires over an axial period � we can use
periodicity to eliminate the ends of the contour and equate the integral of the vector potential along
the braid wires. Using the potential representation B = ∇×A the magnetic flux is defined by

Φ =
∫

S
B · ndS =

∮
C

A · d�→
∫

Cpj

A · d� = constant for the braid wires (54)

where the contour Cpj extends over an axial period on the surface of the jth braid wire. Because the
currents are assumed to be periodic over a short axial distance � we construct the vector potential A to
be also.

3.2. Magnetic Energy & Inductance Per Unit Length

The magnetic flux current relations in a two port can be written as(
Φ1

Φ2

)
=
(

L11 M12

M21 L22

)(
I1
I2

)
(55)

From Faraday’s law in integral form∮
C

E · d� = −
∫

S

∂

∂t
BdS → ∂V

∂z
= −∂Φ

∂t
(56)

The voltage current relations in a two port inductive circuit can thus be written as

Vj (z + �) − Vj(z) = −∂Φj

∂t
= iωΦj , j = 1, 2 (57)

In a reciprocal media the cross terms are equal M12 = M21 = M . The power removed from a periodic
section is minus the derivative of the magnetic energy Wm

[V1 (z + �) − V1(z)] I1 + [V2 (z + �) − V2(z)] I2 = − d

dt
Wm (58)

Taking two sources we write the total magnetic field as H = H1 +H2 and take the constitutive relation
to be that of free space B = μ0H. The 1 problem is defined to have a current I1 on the center conductor
and z directed with return on the braid and the chassis open circuited (no current); the 2 problem is
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defined to have a current I2 on the chassis and z directed with return on the braid and the center
conductor open circuited (no current). Equating the energies from the circuit and field gives

Wm =
1
2
L11I

2
1 +MI1I2 +

1
2
L22I

2
2 =

∫
V

1
2
μ0H

2dV (59)

The self inductances L11 = �L1 and L22 = �Lsh (where Lsh is the inductance per unit length in the
outer transmission line) are the first and final terms

L11I
2
1 = �L1I

2
1 =

∫
V

1
2
μ0H

2
1dV (60)

(L22 is similar). The mutual inductance M is the cross term

MI1I2 =
∫

V
μ0H1 ·H2dV (61)

The sign of the mutual inductance in the preceding expressions depends on whether the magnetic flux
generated in circuit 1 by the current I2 has the same sign as the flux generated by current 1 in circuit
1; referring to Figure 4(b) we see that with I2 = −Ish positive the field H2 = Hsh will reinforce H1
and the sign of M is positive. We take the current I2 = Ichassis = −Ish to be negative (where Ish is
the positive z directed braid current) with Φ2 = −Φsh and define the transfer inductance by means of
M = LT � (also in the magnetic problem we do not reverse the sign of the field even though we have
reversed the sign of the current relative to the 2 problem)

LT = − 1
�I1Ish

∫
V
μ0H1 ·HshdV (62)

Now as shown in Figure 4(b) if we suppose the braid has a large aperture we see that the penetrant
magnetic field Hsh, for positive shield current Ish, produces a magnetic flux around the center conductor
of the inner line with the opposite sign as that produced by the center conductor current I1 and thus
the minus sign introduced in the mutual magnetic flux to make LT positive for low optical coverage
cables (the negative porpoising contribution will result in negative values of LT for high optical coverage
cables); the sign of the voltage source in the transmission line equation is positive for increasing current
Ish (the positive reference of this source voltage is on the positive z side of the elements since the inner
transmission line equation is written as)

dV1

dz
+ Z1I1 = −iωLT Ish = ZT Ish (63)

3.2.1. Self Inductance Per Unit Length & Vector Potential

Here we take the chassis to be open circuited and use the vector potential to replace the magnetic
induction

�L1I
2
1 =

∫
V

1
2
H1 · B1dV =

∫
V

1
2
H1 · (∇×A1) dV (64)

Then using Ampere’s law ∇×H = J and

∇ · (A2 ×H1) = H1 · (∇×A2) −A2 · (∇×H1) = H1 · (∇×A2) −A2 · J1 (65)

(in this case replacing 2 by 1) we find

�L1I
2
1 =

∮
S

(A1 ×H1) · ndS =
(∫

Sc

+
∫

Sw

+
∫

Schassis

)
A1 · (n×H1) dS

= �I1Az (Sc) −
∫

Sw

A1 · (n×H1) dS (66)

where we have dropped the chassis integral in the final line because
∫
Sshassis

ez · (n×H1)dS = 0.
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On the surface of the braid wires the surface current density is K = −n ×H (note here that the
unit normal n points into the conductor) and then

L1I
2
1 = I1Az (Sc) +

∫
Sw

A ·KdS/� (67)

Now in the cylindrical case by symmetry we assume that the contribution from each of the Ns strip
carriers is the same (only true on cylindrical conductor geometry, not on asymmetric geometries). This
result in Eq. (67) defines the inductance per unit length L1 in terms of the vector potential solution of
the coax. The surface integral is over the wire conductors in the braid carrier strips for an axial braid
period. In the perfectly conducting case the normal component of the magnetic field vanishes on the
surface of the braid wires

n · B = 0 (68)

and hence the normal magnetic flux on any wire surface vanishes. This means that contour integrals
on the conductor surface are independent of the integration path and only depend on the end points
(because we can always add a vanishing closed contour integral to change to another path).

The electric field is E = −∇φ+ iωA with axial component Ez = −∂φ/∂z + iωAz = −iΓφ+ iωAz

where the propagation constant of the interior cable transmission line Γ = ω
√
L1C1 is assumed to have

a small value such that Γb
 1. On the braid wire surfaces we take the scalar potential to vanish, and
the tangential components of the electric field to vanish also

0 = n× E = iωn×A (69)

Hence the tangential components of the vector potential vanish, and Eq. (67) becomes L1I1 = Az(Sc).
Thus the self inductance is determined from the magnetic flux passing between the center conductor
and the braid wires. If the scalar potential is selected not to vanish on the braid then neither does the
tangential vector potential and the inductance reverts back to Eq. (67).

3.2.2. Transfer Inductance Per Unit Length & Vector Potential

Using the vector potential gives

LT =
1

�I1I2

∫
V
μ0H1 ·H2dV =

1
�I1I2

∫
V
H1 · (∇×A2) dV (70)

Now using the identity in Eq. (65), setting I2 = −Ish and H2 = Hsh with A2 = Ash, gives

LT =
1

�I1Ish

∮
S

Ash · (n×H1) dS = − 1
�I1Ish

∫
Sc

Ash ·K1dS − 1
�I1Ish

∫
Sw

Ash ·K1dS (71)

where periodicity again eliminates the end surfaces and the surface integral on the chassis is not present
with the choice A2 because Ash ∼ Ashzez, with Ashz asymptotically constant on this perfect conductor
(since there is no normal magnetic field), and there is no net current on the chassis in the 1 problem.
On the surface of the center conductor Sc we can approximate the integral and find

LT ≈ − 1
Ish

Ashz (Sc) − 1
I1Ish

∫
Sw

Ash ·K1dS/� (72)

The current K1 is negative z directed on the braid wires. Hence the final term is the appropriate
subtraction (relative to the first term) of the potential Ash on the braid wires weighted by the current
density on the braid wires with a distribution appropriate to the interior coaxial mode.

Again on the braid wire surfaces if we take the scalar potential to vanish, and because the tangential
components of the electric field vanish, the tangential components of the vector potential do also,
hence Eq. (72) becomes LT Ish ≈ −Ashz(Sc). Thus the transfer inductance is determined from the
magnetic flux passing between the center conductor and the braid wires due to the drive from the
current on the outer transmission line; the negative sign results from the fact that this flux has the
opposite orientation from the flux associated with the inner transmission line with positive current I1.
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3.2.3. Braid Wire Current Distribution

The above argument of zero net flux between braid wires, for determining the braid wire current
distribution can be replaced by an energy argument. We determine the braid wire current distribution
by minimizing the preceding magnetic energy

0 =
∂

∂Ij

(
L1I

2
)

= − ∂

∂Ij

∮
S

A1 · (n×H1) dS, j = 2, . . . , NsNw (73)

with the total braid wire current given
NwNs∑
j=1

Ij = I (74)

where Nw is the number of wires in a carrier strip and Ns is the number of carrier strips. This would
have to be applied to determine the braid wire current distribution both for the problem where the
inner coax is driven I = Ic with Ish = 0 and for the problem where the outer coax is driven I = Ish with
Ic = 0. This approach results in a system of equations where the coefficients only involve integration on
the conductor surfaces S. This is more useful in the mixed potential approach to follow. In the uniform
cylindrical case the total strip current is constrained by symmetry to the total braid current divided by
the number of carrier strips

∑Nw
n=1 In = I/Ns.

3.2.4. Evaluation of Energy Formulas Using Approximate Planar Form of Potentials

It is instructive to show how the preceding formulas can be approximated for nonuniform geometries.
This is done by applying the preceding energy formulas stood off from the surface of the braid using
an approximate planar evaluation of the potential near the braid to evaluate the self and transfer
inductances.
Self Inductance Approximate Evaluation Let us decompose the volume into two regions, the auxiliary
part V0 and the part ΔV where V = V0 + ΔV

L11I
2
1 = �L1I

2
1 =

∫
V0

μ0H
2
1dV +

∫
ΔV

μ0H
2
1dV ≈

∫
V0

μ0H
2
0dV +

∫
ΔV

μ0H
2
1dV (75)

where we have approximated the magnetic field in the volume V0 (which has a surface spaced off from
the braid wires) by the auxiliary field H0 with K0 = −n × H0 and I0 = I1 on the center conductor.
Using the vector potential representation and the identity in Eq. (65) (in the first integral with the 1
and 2 replaced by 0 and in the second integral with the 2 replaced by 1) and the divergence theorem (on
the first S0 integral, resulting from V0, n points outward from the center conductor, but in the second
S0 integral, resulting from ΔV , n points inward toward the center conductor)

L1I
2
1 ≈

∮
S0

(A0 ×H0) · ndS +
∮

ΔS

(A1 ×H1) · nd ≈ −
(∫

Sc

+
∫

S0

)
A0 · (n×H0) dS/�

−
∫

S0

A1 · (n×H0) dS/�−
(∫

Sw

+
∫

Schassis

)
A1 · (n×H1) dS/� (76)

where we take the auxiliary potential to be z directed A0 = A0zez and we have approximated the
magnetic field H1 by the auxiliary magnetic field H0 on the auxiliary surface S0. We then drop
the chassis integral because this conductor is here taken to be open circuited, the current density
K1 = −(n×H1) is assumed to be nearly z directed on the chassis (and A1 ∼ A1zez is constant on this
conductor), and we take the auxiliary potential to vanish on S0 and to have a constant value on the
perfect center conductor (n points inward toward the center conductor on S0)

L1I
2
1 ≈ A0z (Sc) I1 −

∫
S0

A1 · (n×H0) dS/�+
∫

Sw

A1 ·K1dS/� (77)

The first term is the auxiliary problem magnetic flux per unit length L0I1 times the current I1. The
third term vanishes if the vector potential is set consistently with the dynamic electric field of the
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problem; in general it may not vanish if a static representation is used (as discussed previously). In
the second term the local approximations of the vector potential A1 ∼ A1zez at a distance from the
braid wires can be used to evaluate the potential on the auxiliary shield surface S0 (in this asymptotic
expression n points in toward the center conductor)

A1z ∼ −
[(
ρ− ρ

m
+ nAb/B0

)
×B0 (xm, ym)

]
· ez (78)

where the constant position Ab/B0 is defined relative to the mean braid center line and we have
approximated the field in the formula by the field of a solid shield conductor B1 ∼ (I1/I0)B0 = B0 (in
this case at the braid center line). Plugging this into the integral on S0 will require us to set ρ→ ρ

0
on

the auxiliary shield

(L1 − L0) I2
1 = ΔLI2

1 ≈ −
∫

S0

A1 · (n×H0) dS/�

≈ μ0

∫
S0

[{(
ρ

0
− ρ

m

)
· n+Ab/B0

}]
[ez · (n×H0)]

2 dS/�

= μ0

∫
S0

(d0 +Ab/B0)H0 ·H0dS/� (79)

where d0 is the distance from the auxiliary shield to the braid center line in Eq. (19).
Transfer Inductance Approximate Evaluation Decomposing the original volume which consists of both
regions about the braid wires into the auxiliary volume V0 from the center conductor outward toward
the braid wires plus ΔV = V − V0 and approximating the field H1 in region V0 by H0

M = LT � ≈ 1
I0I2

∫
V0

μ0H0 ·H2dV +
1
I1I2

∫
ΔV

μ0H1 ·H2dV (80)

In the first V0 integral we use Eq. (65) (with the 2 replaced by 0 and the 1 replaced by 2) to find∫
V0

μ0H0 ·H2dV =
∮
S0

(A0 ×H2) · ndS = −
(∫

S0

+
∫

Sc

)
A0 · (n×H2) dS

∼ −
∫

S0

A0zez · (n×H2) dS −
∫

Sc

A0zez · (n×H2) dS (81)

where the final expression results because the auxiliary field is z directed. We can take the auxiliary
potential A0z to vanish on the auxiliary surface S0 and the first term is zero. The auxiliary potential is
constant on the center conductor, but because we again take the center conductor to be open circuited
in the 2 problem the net current is zero and the second term vanishes.

In the second ΔV integral we use Eq. (65) to find∫
ΔV

μ0H1 ·H2dV =
∮

ΔS

(A2 ×H1) · ndS = −
(∫

S0

+
∫

Sw

+
∫

Schassis

)
A2 · (n×H1) dS

∼ −
∫

S0

A2 · (n×H1) dS−
∫

Sw

A2 · (n×H1) dS−
∫

Schassis

A2zez · (n×H1) dS (82)

where the final result follows because the potential approaches a scalar z directed quantity far from the
local braid region on the chassis. Because the vector potential A2z is a constant on the perfect chassis,
and because we take the chassis to be open circuited in the 1 problem, the final integral vanishes

LT �I1I2 = −
(∫

S0

+
∫

Sw

)
A2 · (n×H1) dS (83)

Replacing the magnetic field H1 ≈ H0 on S0 (note here that n points inward on S0 toward the center
conductor since it arose from ΔV , however on Sw the unit vector n points into the wires) and setting
I2 = −Ish and A2 = Ash, gives

LT ≈ 1
I0Ish

∫
S0

Ash · (n×H0) dS/�+
1

I1Ish

∫
Sw

Ash · (n×H1) dS/� (84)
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The current density on the auxiliary shield is K0 = n ×H0, and the current density on these wires is
K1 = −n×H1. The vector potential from the exterior drive Ash can be selected so that on the perfect
conductors of Sw, noting that n × Ash = 0 because of the vanishing of the tangential electric field on
the braid perfect conductors, the final term vanishes (n points inward in this expression)

LT ≈ 1
I0Ish

∫
S0

Ash · (n×H0) dS/� ≈
1

I0Ish

∫
S0

AshzK0zdS/� (85)

where in the final expression we have used the fact that the auxiliary problem has z directed current
density on the surface of the perfect conductors K0 = K0zez. In this case we then insert the form of
the potential in the vicinity of the auxiliary shield (this asymptotic potential is on the interior side of
the shield and has n pointing inward toward the interior center conductor region, but the field Bsh0 is
on the exterior side of the shield when the shield is replaced by a solid conductor at the auxiliary shield
position)

Ashz ∼ (Ac/B0) ez · [n×Bsh0 (xm, ym)] (86)

to find

LT ≈ 1
I0Ish

∫
S0

(Ac/B0) ez · [n×Bsh0] ez · (n×H0) dS/� ≈
1

I0Ish

∫
S0

(μ0Ac/B0)Hsh0 ·H0dS/� (87)

3.3. Scalar Potential and Magnetic Vector Potential Construction

To set up the magnetic braid problem in a manner similar to the electric problem, we use a combination
of the magnetic vector potential and magnetic scalar potential. The magnetic vector potential is used
to represent the net current carried by each braid wire, while the magnetic scalar potential matches
the boundary conditions on the wire surface. Because the magnetic scalar potential represents the
difference problem where the braid wire carries no net current, the branch surfaces from the braid wires
are avoided, while retaining the simplicity of the scalar description. We take the vector potential to
be generated by current filaments at the centers of the wires and denote this potential as Af . This
formulation includes both axial and transverse components of the current on the wire surfaces. The
magnetic induction and magnetic field are then given by

B = μ0H = −μ0∇φm + ∇×Af (88)

In the perfectly conducting case the magnetic scalar potential is used to restore the boundary condition
of zero normal magnetic field on the metallic surfaces (68) on each of the braid wire segments. The
magnetic flux Φ through a surface S from this representation is the sum

Φ =
∮

C
Af · d�− μ0

∫
S
∇φm · ndS (89)

The ϕ directed magnetic flux of interest is that between a single wire of a single strip of the braid and
the center conductor of the coax.

3.3.1. Flux Constants

From the preceding vector potential formulation, and in particular the local planar approximation,
we see that our objective in that section was to evaluate the magnetic flux per unit length constants
Ac/B0 and Ab/B0. These magnetic flux constants entered the preceding vector potential formulation
to find the transfer impedance and self-impedance corrections. To find these using the present mixed
potential approach we can drive a planar periodic representation of the braid with a uniform field that
is tangential to the braid surface as illustrated in Figure 5(c). When driven from the exterior side of
the braid we evaluate −�Ac = Φ where the surface S in the evaluation of the flux Φ (89) corresponds
to that of the three drawings in Figure 7 and the contour surrounds S. In addition, when the planar
braid is driven by the field from the interior side, then using the same contour �(d0B0 +Ab) = Φ where
d0 is the normal distance from the center plane of the braid to the return leg of the contour (the edge
of the surface S).
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H0

(a) (b) (c)

a

a

Figure 7. (a) Magnetic flux contour following a single braid wire in the planar braid approximation.
(b) Cross section of flux contour following a single braid wire. (c) Magnetic flux contour in the coaxial
geometry.

3.3.2. Self Inductance Per Unit Length Mixed Potentials

We now show that we can evaluate the self impedance from the energy argument directly using the
mixed potentials on the surfaces of the wires. The inductance can be found from the stored magnetic
energy by means of

L1�I
2
1 =

∫
V
H1 ·B1dV =

∫
V
H1 ·

(∇×Af1 − μ0∇φm1

)
dV (90)

Using Gauss’s law ∇ ·B = 0 we can write
∇ · (Af2 ×H1 − φm2B1

)
= H1 ·

(∇×Af2 − μ0∇φm2

)−Af2 · J1 (91)

(in this case with the 2 replaced by 1) and outside the conductors we find

L1�I
2
1 =

∮
S

(
Af1 ×H1 − φm1B1

) · ndS = −
∮
S

Af1 · (n×H1) dS =
∮
S

Af1 ·K1dS (92)

where the second term in the integrand vanishes on the PEC surfaces.

3.3.3. Transfer Inductance Per Unit Length Mixed Potentials

Using the mixed potential representation we can write

LT =
1

�I1I2

∫
V
μ0H1 ·H2dV =

1
�I1I2

∫
V
H1 ·

(∇×Af2 − μ0∇φm2

)
dV (93)

Now using the identity (91) outside the perfect conductors gives

LT = − 1
I1I2

∮
S

Af2 · (n×H1) dS/� =
1
I1I2

∮
S

Af2 ·K1dS/� =
1

I1Ish

∮
S

Afsh ·K1dS/� (94)

where in the final equality we have taken I2 = −Ish, Af2 = −Afsh.
If we take the filament in such a place that the potential on the chassis is asymptotic to

Afsh ∼ Afshzez with Afshz asymptotically constant on the chassis, then with no net current on the
chassis in the 1 problem the surface integral will vanish and we find

LT =
1

I1Ish

(∫
Sc

+
∫

Sw

)
Afsh ·K1dS/� (95)

3.3.4. Braid Wire Current Distribution

In this case we can determine the braid wire current distribution by minimizing the preceding magnetic
energy

0 =
∂

∂Ij

(
L1I

2
)

= − 1
μ0

∂

∂Ij

∮
S

Af1 ·K1dS, j = 2, . . . , NsNw (96)

with the total braid wire current given by Eq. (74). This form is useful in this mixed potential approach
to avoid having to integrate the magnetic flux off the conductor surfaces.
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3.3.5. Magnetic Multipole Representation

With the preceding mixed potential representation we need the magnetic scalar potential representation
for a sequence of magnetic line charge multipoles as illustrated in Figure 6 similar to the electric problem
in addition to an electric current filament (and the field given by the magnetic vector potential). The
solution for a varying magnetic line charge qm(s′) is (44) with q(s′)/ε replaced by qm(s′)/μ0. If the
charge is discretized as pulses of strength qmn = p

(0)
m , length sn, along an axis s aligned with the nth

segment, we find (45) with qn/ε replaced by qmn/μ0. The magnetic multipole moments can be defined
in a similar way to the electric problem in Eq. (52) and lead to unknowns p(m)

me and p(m)
mo for each segment

n. Note that we expect qmn = p(0)
m

to vanish in the case of perfectly conducting braid wires, but we
retain it since it may be required in the finitely conducting case, where magnetic flux could enter from a
neighboring segment. There are 2M multipole coefficients for each of the N wire segments which must
be determined from matching around the wire segments.

The electric current filament contribution is

Af =
μ0

4π

∫
I (s′)
|r − r′|es′ds

′

=
N∑

n=1

∞∑
j=−∞

∞∑
k=−∞

μ0In
4π

esn
ln

[
(s− sn/2 − jusn − kvsn) + |r − r+n − ju− kv|
(s+ sn/2 − jusn − kvsn) +

∣∣r − r−n − ju− kv
∣∣
]

(97)

The boundary condition to be enforced on the perfectly conducting braid wires is Eq. (68). We
sample this equation at 2M azimuthal points around each segment (we know that there is no net
magnetic flux emanating from a segment in the perfect electric conductor case and therefore we expect
the m = 0 coefficient to vanish) which generates N × (2M) equations for the N × (2M) unknowns
(2M multipole unknowns on each of the N segments) associated with the scalar potential φm. We
also impose no net magnetic flux between wires in a carrier strip over a braid period. Furthermore,
we want each carrier strip in the uniform coax to carrier net current I/Ns and for insulated wires the
wire currents remain the same over the course of a period. These final conditions generate a further N
conditions imposed on the coefficients In in the filament vector potential Af .

4. FINITE CONDUCTIVITY OF BRAID WIRES

We now consider modifications to the preceding magnetic problem when the braid wires have large but
finite conductivity. The previous approach used to formulate the capacitance and inductance matrices
can also be used in this case. Applying Faraday’s law ∂V/∂z = iωΦ to a section of line with the
magnetic fluxes connected to the electric currents gives

iω

(
Φ1

Φ2

)
= −

(
Z11 Z12

Z21 Z22

)(
I1
I2

)
=
(
V1 (z + �) − V1(z)
V2 (z + �) − V2(z)

)
(98)

In a reciprocal media the cross terms are equal Z12 = Z21. The complex power removed from a periodic
section is

1
2

[V1 (z + �) − V1(z)] I∗1 +
1
2

[V2 (z + �) − V2(z)] I∗2 = −P (99)

Faraday’s law ∇ × E = iωB with the constitutive relation B = μH (now μ can have a different
value inside the conductors) now apply. Inside the conductor we ignore the displacement current term in
Maxwell’s equation ∇×H = J = σE and outside we also ignore displacement currents ∇×H = 0 since
these were included in the electric problem. Then the time harmonic Poynting vector S = E × H∗/2
has divergence

∇ · S =
1
2
H∗ · ∇ ×E − 1

2
E · ∇ ×H∗ = iω

1
2
μH ·H∗ − 1

2
E · J∗ (100)

where we have ignored the external electric energy term in this series impedance treatment. Integration
over the transmission line volume and use of the divergence theorem then yields∮

S

S · ndS = iω

∫
V

1
2
μH ·H∗dV −

∫
Vw

1
2
σE ·E∗dV = iω

∫
Ve

1
2
μ0H ·H∗dV +

∮
Sw

S · ndS (101)
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where the unit normal points out of each region (including the braid wire region Vw in the final surface
integral) and in this section we define the volume as including the internal braid wire region Vw, with
V = Ve + Vw and Ve is the external region. Note that we have left out the center conductor and
chassis from the surface integrals since they are assumed to be perfect conductors with a vanishing
normal Poynting vector component. The second equality uses the Poynting vector surface integral on
the braid wires instead of replacing it with a volume integral inside the braid wires. This entire quantity
corresponds to the power leaving a region of the line which is minus the average stored magnetic energy
(times −iω) and minus the average losses associated with the braid conduction. Setting the complex
power supplied P equal to minus the Pointing vector integral (101) gives

P =
1
2
Z11I1I

∗
1 +

1
2
Z12I2I

∗
1 +

1
2
Z21I1I

∗
2 +

1
2
Z22I2I

∗
2 = −

∮
S

S · ndS (102)

Taking two sources we write the total fields as H = H1 +H2 and E = E1 + E2 to obtain

Z11 |I1|2 = −iω
∫

V
μH1 ·H∗

1dV +
∫

Vw

σE1 · E∗
1dV − iω

∫
Ve

μ0H1 ·H∗
1dV +

∫
Sw

(n× E1) ·H∗
1dS (103)

similarly for Z22, and

Z12I
∗
1I2 + Z21I1I

∗
2 = 2ZT �Re (I2I∗1 )=−iω

∫
V
μ (H1 ·H∗

2 +H2 ·H∗
1) dV +

∫
Vw

σ (E1 · E∗
2 + E2 ·E∗

1) dV

= −iω
∫

Ve

μ0 (H1 ·H∗
2 +H2 ·H∗

1) dV +
∫

Sw

[(n× E1) ·H∗
2 + (n× E2) ·H∗

1] dS (104)

where the unit normal n in the braid wire surface integrals, which are denoted as unclosed, is taken to
point inward and Z12 = Z21 for reciprocal media.

4.0.6. Vector Potential Representation

If the external magnetic field is represented by the vector potential we can use the identity

∇ · (A2 ×H∗
1) = H∗

1 · (∇×A2) −A2 · (∇×H∗
1) = H∗

1 · (∇×A2) −A2 · J∗
1 (105)

(in this case with 2 replaced by 1) to find for the external part of the self impedance

Zext
11 = Zext

1 � = −iω 1
|I1|2

∫
Ve

(∇×A1) ·H∗
1dV = iω

1
|I1|2

∮
Se

A1 · (n×H∗
1) dS (106)

where the surface integral is on the surface of the wire braid of the shield as well as on the center
conductor and chassis (the outer chassis return for the self impedance will vanish because it is open
circuited). Combining this with the internal term gives (the unit vector n points into the braid wires
in the second term and out of Se in the first term)

Z11 = Z1� = −iω 1
|I1|2

∮
Se

(n×A1) ·H∗
1dS +

1
|I1|2

∫
Sw

(n× E1) ·H∗
1dS (107)

Now if we construct the vector potential such that on the braid wire surfaces

iω (n×A) = n× E (108)

then the surface integral terms on Sw cancel out. Thus we are left with (the unit vector n points into
the center conductor)

Z11 = Z1� = −iω 1
|I1|2

∫
Sc

(n×A1) ·H∗
1dS (109)

Also using (105) external to the conductors we can write∫
Ve

μ0H2 ·H∗
1dV =

∫
Ve

(∇×A2) ·H∗
1dV =

∮
Se

(n×A2) ·H∗
1dS (110)
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Then using this result (and with the indices interchanged) we find

Z12I2I
∗
1 + Z21I1I

∗
2 = −iω

∮
Se

[(n×A1) ·H∗
2 + (n×A2) ·H∗

1] dS

+
∫

Sw

[(n× E1) ·H∗
2 + (n× E2) ·H∗

1] dS (111)

where the unit vector n points into the braid wires in the final integral. Again if on the braid wire
surface Sw we have the relations from Eq. (108) then the braid wire surface integrals cancel and we find
(where n points into the conductors)

Z12I2I
∗
1 + Z21I1I

∗
2 = 2ZT �Re (I2I∗1 ) = −iω

(∫
Sc

+
∫

Schassis

)
[(n×A1) ·H∗

2 + (n×A2) ·H∗
1] dS (112)

4.0.7. Mixed Potential Representation

Alternatively, if we have the external mixed potential representation in Eq. (88) we can write

Z11I1I
∗
1 = Z1� |I1|2 = −iω

∫
Ve

(∇×Af1 − μ0∇φm1

) ·H∗
1dV +

∫
Sw

(n× E1) ·H∗
1dS

Using

∇ · (Af2 ×H∗
1 − φm2B

∗
1

)
= H∗

1 ·
(∇×Af2 − μ0∇φm2

)−Af2 · J∗
1 = H∗

1 · B2 −Af2 · J∗
1 (113)

(in this case with 2 replaced by 1) outside the conductors we find

Z1� |I1|2 = −iω
∮
Se

[(
n×Af1

) ·H∗
1 − φm1n ·B∗

1

]
dS +

∫
Sw

(n× E1) ·H∗
1dS (114)

These results require integration on the conductor surfaces but not out in the free space volume which
is an advantage since we must solve the problem on these surfaces.

For the transfer impedance we begin with

Z12I2I
∗
1 + Z21I1I

∗
2 = −iω

∫
Ve

(H∗
1 · B2 +H∗

2 ·B1) dV +
∫

Sw

[(n× E1) ·H∗
2 + (n×E2) ·H∗

1] dS (115)

Using Eq. (113) outside the conductors gives

Z12I2I
∗
1 + Z21I1I

∗
2 = 2ZT �Re (I2I∗1 ) =

∫
Sw

[(n× E1) ·H∗
2 + (n× E2) ·H∗

1] dS

−iω
∮
Se

n · [(Af1 ×H∗
2 +Af2 ×H∗

1

)− (B∗
2φm1 + φm2B

∗
1)
]
dS (116)

4.0.8. Perturbation Approximation with Vector Potential

We now want to approximate the integrals in the expressions for the impedance when the impedance
length scale Zs/(ωμ0) is small compared to the global transverse geometry of the cable. The surface
impedance of the wires Zs is Zs = (1 − i)/(σδ) when the skin depth δ =

√
2/(ωμσ) is small compared

to the wire radius a. However, for large skin depths we take the surface impedance to be approximately
Zs ≈ 1/(σΔ) where the effective thickness of the braid is taken approximately as Δ = O(2a). When the
impedance length scale is small the global current distribution is not significantly perturbed from the
perfectly conducting case (in the circular cylindrical geometry it remains uniform even when this length
scale become large). In this limit we can thus make use of the current distribution from the perfectly
conducting solid shield cable of the same global geometry to determine the impedance per unit length
of the braid using the approximate planar form of the vector potential near the braid.
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We again take the external volume in the self impedance to be written as Ve = V0 +ΔV and in the
region V0 we approximate the field as H0

Z11 ≈ −iω 1
|I0|2

∫
V0

μ0H0 ·H∗
0dV − iω

1
|I1|2

∫
ΔV

μ0H1 ·H∗
1dV +

1
|I1|2

∫
Sw

(n× E1) ·H∗
1dS (117)

Using Eq. (105) (with 2 replaced by 1) we can rewrite the second volume integral as

−iω 1
|I1|2

∫
ΔV

B1 ·H∗
1dV = −iω 1

|I1|2
(∫

S0

+
∫

Sw

)
(n×A1) ·H∗

1dS (118)

Assuming that the vector potential is set up to satisfy Eq. (108), we see that the Sw integrals cancel
out and using the same identity in Eq. (105) (with 1 replaced by 0) on the first term yields

Z11 ≈ −iω 1
|I0|2

(∫
Sc

+
∫

S0

)
(n×A0) ·H∗

0dS − iω
1

|I1|2
∫

S0

(n×A1) ·H∗
1dS (119)

The first term represents the perfectly conducting inductance contribution of the auxiliary problem
L0�. The second term represents the contribution from the braid wire geometry (versus the continuous
shield) as well as the finite conductivity of the braid wires. We approximate the final term by taking
the field as the field in the auxiliary problem H∗

1 → H∗
0 with I∗1 → I∗0

Z11 = Z1� ≈ −iωL0�+ iω
1

I1I∗0

∫
S0

A1 · (n×H∗
0) dS (120)

where we note that the unit normal points inward since it came from the ΔV integration. The entire
contribution of the loss is contained in how the constant offset in the vector potential is changed to a
complex value relative to the perfect electric conductor case. Now using the asymptotic form of the
potential referenced to the mean braid radius in Eq. (78) we find

Z1 = Z0 + ΔZ ≈ −iωL0 − iωμ0
1

|I0|2
∫

S0

(d0 +Ab/B0)H0 ·H∗
0dS/� (121)

This is the same result as found previously except that the offset constant Ab/B0 will now be complex
to account for diffusion into the braid wires.

For the transfer impedance we take the external volume to be split into two parts Ve = V0 + ΔV ,
but in this case ΔV is contained between the two surfaces (and the braid wire surfaces) making up
ΔS = S01 + S02 + Sw (plus the periodic surfaces separated by a periodic length �), where S01 is near
the braid on the center conductor side and S02 is near the braid on the chassis side. Then we can write

Z12I2I
∗
1 + Z21I1I

∗
2 = −iω

(∫
V0

+
∫

ΔV

)
(B1 ·H∗

2 +B2 ·H∗
1) dV

+
∫

Sw

[(n×E1) ·H∗
2 + (n× E2) ·H∗

1] dS (122)

We next drop the cross field interactions outside of the region about the braid ΔV ignoring the V0

integration. Using Eq. (105) (as well as this identity with the 2 and 1 interchanged) we can then write

Z12I2I
∗
1 + Z21I1I

∗
2 ≈ −iω

∮
ΔS

[(n×A1) ·H∗
2 + (n×A2) ·H∗

1] dS

+
∫

Sw

[(n× E1) ·H∗
2 + (n× E2) ·H∗

1] dS (123)

Now assuming we have set up the potentials to satisfy Eq. (108) (for both the 1 and 2 fields) we see
that the Sw surfaces cancel and we end up with (in the preceding equation n points out of the volume
ΔV surrounding the braid wires)

Z12I2I
∗
1 + Z21I1I

∗
2 ≈ iω

∫
S02

A1 · (n×H∗
2) dS + iω

∫
S01

A2 · (n×H∗
1) dS (124)
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Recalling the asymptotic form of the potential on S01 in Eq. (86) (in which n points consistently on S01

with the preceding equation) and the reciprocal form outside the braid (here n points consistently on
S02 with the preceding equation and Ac/B0 is the same constant as in Eq. (86) due to reciprocity, and
B0 is the driving field from the center conductor interior)

A1z ∼ (Ac/B0) ez · [n×B0 (xm, ym)] (125)

and approximating the fields by those of a solid shield H∗
2 ≈ H∗

sh0, Bsh ≈ Bsh0, H
∗
1 ≈ H∗

0, letting
I1 = I0, I2 = −Ish, and I∗2 = −I∗sh, gives

Z12IshI
∗
0 + Z21I0I

∗
sh = 2ZT �Re (IshI∗0 )

≈ −iω
∫

S02

(Ac/B0) [ez · (n×B0)] [ez · (n×H∗
sh0)] dS

−iω
∫

S01

(Ac/B0) [ez · (n×Bsh0)] [ez · (n×H∗
0)] dS (126)

Bringing the two surfaces together near the mean braid location (which we will still denote as S0),
taking Z12 = Z21 = ZT �, and since the H0 and Hsh0 fields are those existing with a solid perfectly
conducting shield (the first on the interior and the second on the exterior) they have the same phases
as I0 and Ish, which can be taken as real

ZT ≈ −iωμ0 (Ac/B0)
1

I0Ish

∫
S0

H0 ·Hsh0dS/� (127)

This expression is the same as found previously for the transfer inductance except that the constant
Ac/B0 is now modified to a complex value accounting for the diffusion into the wires of the braid.

4.0.9. Examples of Impedance Parameters with Finitely Conducting Braid

In the case of lossy braid wires we expect the arguments for the perfectly conducting case to be modified
in the sense that the planar braid constants Ab/B0 and Ac/B0 will become complex. Hence in the
uniform coaxial case with auxiliary inductance per unit length L0(b0) = μ0 ln(b0/a)/(2π)

ZT ∼ −iωμ0 (Ac/B0)
∫

S0

1
I0Ish

Hsh0 ·H0dS/� = −iωμ0

(
Ac/B0

2πb

)
(128)

Z1 ∼ −iωL0 (b0) − iωμ0 (d0 +Ab/B0)
∫

S0

1
I2
0

H0 ·H0dS/� ∼ −iωL0 (b) − iωμ0

(
Ab/B0

2πb

)
(129)

With an eccentric coax interior but the same cylindrical exterior the transfer impedance result is
unchanged from Eq. (128), but with mean radius inductance per unit length L0(b) = μ0Arccosh[(a2 +
b2 − d2)/(2ab)]/(2π)

Z1 ∼ −iωL0 (b) − iωμ0

(
Ab/B0

2πb

)(
y′1/y

′
c

)
(130)

If an outer ground plane is also added to the eccentric coax the transfer impedance becomes

ZT = −iωμ0

(
Ac/B0

2πb

)
y′c − he

y′1 − h
(131)

If we rotate the azimuth of the eccentric coax with respect to the ground plane by π/2 then

ZT = −iωμ0

(
Ac/B0

2πb

)
y′1y′c + hhe

y′21 + h2
e

(132)
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4.1. General Internal Field Representation

The internal field must also be represented in the finitely conducting case. The most convenient
characterization may be to use Hertz potentials or the axial components of the two vector potentials
within the braid wires. In this section z is a local coordinate along the axis of a braid wire segment. We
assume that conduction currents dominate over displacement currents within the wires. The magnetic
potential is taken as Π = ψez which is connected to the magnetic vector potential by A = μσΠ. The
electric potential is taken as Πe = ψeez which is connected to the electric vector potential by Ae = μσΠe.
The fields are given by

H =
1
μσ

(∇∇ · Ae + γ2Ae

)
+

1
μ
∇×A = ∇∇ · Πe + γ2Πe + σ∇× Π (133)

E =
1
μσ

(∇∇ · A+ γ2A
)

+
iω

σ
∇×Ae = ∇∇ · Π + γ2Π + iωμ∇× Πe (134)

where the scalar axial components satisfy the Helmholtz equation (∇2+γ2)(ψ,ψe) = 0 with propagation
constant γ2 = iωμσ.

The solutions of the Helmholtz equation can be used to find the fields in the nth cylindrical
waveguide segment for a given cylindrical mode m as

(ψ,ψe) = eiαz+imϕJm (ζρ) ≈ eiαz+imϕJm (γρ) (135)
where ζ2 = γ2 − α2 and in the final expressions we have approximated the solution for the axial
propagation constant α small compared to the internal propagation constant γ or α 
 γ. This
approximation assumes that the axial variation of the current density in the wire is slow compared
to the skin depth. We will simplify the analysis at present by assuming this is valid, but it could
conceivably be violated near the wire crossover point in the braid. Because the braid wires carry a
net current in the same z direction (or esn

directions), this common mode current density should not
concentrate near the region of crossover near-contact as oppositely directed currents would tend to
do, and hence we might expect this approach to be approximately valid. The potential component ψ
represents the axial component of the current density, whereas the potential component ψe represents
the transverse components of the current. The potentials are then given by(

ψ
ψe

)
≈ Jm (γρ)

[(
F e

nm(z)
Go

nm(z)

)
cos (mϕ) +

(
F o

nm(z)
Ge

nm(z)

)
sin (mϕ)

]
(136)

and the magnetic field is
Hz(ρ) ≈ γ2Jm(γρ) [Ge

nm(z) sin(mϕ) +Go
nm(z) cos(mϕ)] (137)

Hϕ(ρ) ≈ −σγJ ′
m(γρ) [F e

nm(z) cos(mϕ) + F o
nm(z) sin(mϕ)]

+
m

ρ
Jm(γρ)

[
Ge′

nm(z) cos(mϕ) −Go′
nm(z) sin(mϕ)

]
(138)

Bρ (ρ) = μHρ(ρ) ≈ −μσm
ρ
Jm(γρ) [F e

nm(z) sin(mϕ) − F o
nm(z) cos(mϕ)]

+μγJ ′
m(γρ)

[
Ge′

nm(z) sin(mϕ) +Go′
nm(z) cos(mϕ)

]
(139)

The radial electric field is
Eρ(ρ) ≈ iωμ

m

ρ
Jm(γρ) [Ge

nm(z) cos(mϕ) −Go
nm(z) sin(mϕ)]

+γJ ′
m(γρ)

[
F e′

nm(z) cos(mϕ) + F o′
nm(z) sin(mϕ)

]
(140)

For m = 0 the total current on a wire segment from 2πaHϕ(ρ = a) is
In ≈ −σγ2πaJ ′

0(γa)F
e
n0 = σγ2πaJ1(γa)F e

n0 (141)
Because we will take this to not vary on a segment we must have F e

n0 be a constant in z. In fact we
will take the wires to be insulated from one another and this will be a constant along each wire.

Because of the high level of wire conductivity we need to set the normal component of the current
at the surface equal to zero Jρ(ρ = a) = σEρ(a) ≈ 0 and thus

iωμmJm(γa)
( −Ge

nm(z)
Go

nm(z)

)
= γaJ ′

m(γa)
(
F e′

nm(z)
F o′

nm(z)

)
(142)
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4.2. Matching of External Potentials with Internal Hertz Potentials

As discussed in the perfectly conducting case, it may be more straightforward externally to the braid
wires to use the field representation involving a filament vector potential from each wire carrying the
net current plus a scalar magnetic potential (88) to match the boundary conditions.

Using the preceding Jρ(ρ = a) = 0 expressions (142) (to insert these into Eqs. (138) and (139)
another derivative in z can be taken) we can write the magnetic field continuity conditions at ρ = a as

Hz(a) ≈ γa

iωμm
γ2J ′

m(γa)
[−F e′

nm(z) sin(mϕ) + F o′
nm(z) cos(mϕ)

]
=
[
−∂φm

∂z
+

1
μ0

(∇×Af

) · ez
]

m

(143)

Hϕ(a) ≈ −σγJ ′
m(γa)

(
1 +

1
γ2

∂2

∂z2

)
[F e

nm(z) cos(mϕ) + F o
nm(z) sin(mϕ)]

=
[
−1
ρ

∂φm

∂ϕ
+

1
μ0

(∇×Af

) · eϕ
]

m

(144)

Bρ(a) ≈ −μσm
a
Jm(γa)

[
1 +

{
γaJ ′

m(γa)
mJm(γa)

}2 1
γ2

∂2

∂z2

]
[F e

nm(z) sin(mϕ) − F o
nm(z) cos(mϕ)]

=
[
−μ0

∂φm

∂ρ
+
(∇×Af

) · eρ
]

m

(145)

where the subscript m on the brackets means that only the sin(mϕ) and cos(mϕ) variations of the
quantity is retained and the left hand sides represent Eqs. (137), (138), and (139) evaluated at ρ = a.
Ordinarily we would expect that [Bρ]0 = 0 due to the absence of magnetic charge, however this net flux
can arise as a result of net flux entering or leaving neighboring segments. The continuity of Hz leads to( −F e′

nm(z)
F o′

nm(z)

)
=

m/a

σγJ ′
m (γa)

1
2π

∫ 2π

0

[
−∂φm

∂z
+

1
μ0

(∇×Af

) · ez
](

2 sin (mϕ)
εm cos (mϕ)

)
dϕ (146)

and the expressions resulting from continuity of Hϕ lead to(
1 +

1
γ2

∂2

∂z2

)(
F e

nm
F o

nm

)
= − 1

σγJ ′
m(γa)

1
2π

∫ 2π

0

[
−1
a

∂φm

∂ϕ
+

1
μ0

(∇×Af

) · eϕ
](

εm cos(mϕ)
2 sin(mϕ)

)
dϕ

(147)
Using these the preceding Bρ continuity condition can be grouped as

− 1
2π

∫ 2π

0

[
−1
a

∂φm

∂ϕ
+

1
μ0

(∇×Af

) · eϕ
](

2 sin (mϕ)
εm cos (mϕ)

)
dϕ

+
m

γa

{(
γaJ ′

m (γa)
mJm (γa)

)2

− 1

}
1
γ

∂

∂z

1
2π

∫ 2π

0

[
−∂φm

∂z
+

1
μ0

(∇×Af

) · ez
](

εm cos (mϕ)
−2 sin (mϕ)

)
dϕ

=
γJ ′

m (γa)
μ
(

m
a

)
Jm (γa)

1
2π

∫ 2π

0

[
−μ0

∂φm

∂ρ
+
(∇×Af

) · eρ
](

εm cos (mϕ)
−2 sin (mϕ)

)
dϕ (148)

These final expressions (148) provide the connection between the tangential derivatives of the
external potential and the radial derivative of the external potential. Note the terms in braces in (148)
vanish in the limit γa → 0; alternatively the limit γa → ∞ produces [Bn]m → 0. The unknowns are
the multipole pulse amplitudes p(m)

me and p(m)
mo in the representation for φmn for each segment n.

4.2.1. Symmetric Mode Currents

As in the vector potential treatment above we do not expect the net wire currents In to be determined
from the preceding matching, but instead from the total injected current of the braid and a condition
of no net voltage difference between wires over a braid period. In this finitely conducting case where
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we have an accurate treatment of the internal electric field inside the wires, we can thus apply the
continuity voltage condition inside the wires∫

Cpj

Ej · d� =
∫

Cp1

E1 · d�, j = 2, . . . , NwNs (149)

where the contour Cpj extends over an axial period inside of the jth wire.

5. CONCLUSIONS

This paper discusses the first principles formulation of the electromagnetic cable braid penetration and
propagation problem. Basic energy and power formulas are used to define the immittances in integral
form and are applied to nonuniform geometries such as an exterior ground plane and an interior eccentric
coax.

The detailed solution of the boundary value problems involved in the wire braid shield are set up
using a basis of line multipoles along the braid wires. This approach leads to an efficient formulation
of the periodic cell of the braid. In the electric problem images are used to treat adjacent dielectric
boundaries. In the magnetic field problem we use Hertz potentials inside the wires and a combination of
a magnetic scalar potential and filament vector potential (to carry the net wire current) outside of the
wires. In this way the porpoising and hole penetration characteristics of the braid penetration arise in
a self consistent way. We further simplify the braid geometry by mapping it to a planar surface so that
the penetration, as well as the self immittance characteristics are reduced to certain intrinsic constants
linked to the basic geometry of the braid wires.
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