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Modeling of Wave Propagation in General Dispersive Materials
with Efficient ADE-WLP-FDTD Method

Jun Quan1 and Wei-Jun Chen2, *

Abstract—Within the framework of the finite-difference time-domain (FDTD) and the weighted
Laguerre polynomials (WLPs), we derive an effective update equation of the electromagnetic in the
dispersive media by introducing the factorization-splitting (FS) schemes and auxiliary differential
equation (ADE). As two examples, we employ a 2-D parallel plate waveguide loaded with two dispersive
medium columns and a thin grapheme sheet to calculate the plane wave propagation by using the FS-
ADE-WLP-FDTD method. Compared with the ADE-FDTD and the ADE-WLP-FDTD methods, the
results from our proposed method show its accuracy and efficiency for dispersive media simulation.

1. INTRODUCTION

The finite-difference time-domain (FDTD) method has been widely used for electromagnetic modeling
due to its easy implementation [1]. However, because of Courant-Friedrich-Levy (CFL) stability
constraint, the conventional FDTD is not very suitable for electromagnetic problems which involve fine
grid division. To eliminate the limitation, some techniques, e.g., alternating-direction implicit (ADI) [2–
4] and locally one-dimensional (LOD) [5–7] methods, were proposed. Although these techniques can get
more accurate simulation results and higher computational efficiency than the conventional FDTD, a
large time step inevitably results in a large numerical dispersion error. Also, an unconditionally stable
FDTD method using Laguerre polynomials has been proposed [8]. This marching-on-in-order scheme
shows better efficiency than the conventional FDTD method when analyzing multi-scale structure.

Based on auxiliary differential equation (ADE), an unconditionally stable WLP-FDTD was
proposed to simulate electromagnetic wave propagation in general dispersive materials [9]. The method
introduces an ADE technique which establishes the relationship between the electric displacement vector
and electric field intensity with a differential equation rather than a convolution integral. However, it
leads to a huge sparse matrix equation, which is very challenging to solve. To solve the huge sparse
matrix equation, an efficient algorithm is regularly used to implement the WLP-FDTD method [10], in
which the huge sparse matrix equation is solved into a sub-steps procedure with a factorized-splitting
scheme.

In this paper, a hybrid algorithm, known as factorization-splitting ADE-WLP- FDTD, is presented
to improve its simulation performance. Based on the FS and ADE technique, our proposed algorithm
only solves two tri-diagonal matrices and computes one explicit equation in 2-D problem. In comparison
with the conventional implementation, less CPU runtime is spent. The accuracy and efficiency of the
proposed method is verified by simulating electromagnetic wave propagation in a variety of dispersive
media.
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2. MATHEMATICAL FORMULATION

With lossless and dispersive media, the Maxwell’s equations read

∂D(r, t)
∂t

= ∇× H(r, t) − J(r, t) (1)

∂H(r, t)
∂t

= − 1
μ0

∇× E(r, t) (2)

where μ0 is the magnetic permeability of free space. The electric displacement vector D is related to
the electric field intensity E through the relative dielectric constant εr of the local tissue by

D(ω) = ε0εr(ω)E(ω) (3)

where ε0 is the electric permittivity in free space. In the frequency domain, εr can be written as [9, 11]

εr(ω) = ε∞

(
1 +

Nd∑
n

an

bn + jωcn − dnω2

)
(4)

where ε∞ is the infinite dielectric constant, ω the angular frequency, and an, bn, cn and dn are known
constants determined by the properties of the electric fields E(ω). Substituting Eq. (4) into Eq. (3), we
get

D(ω) = ε0ε∞

[
E(ω) +

Nd∑
n

Sn(ω)

]
(5)

with
Sn(ω) =

an

bn + jωcn − dnω2
E(ω) (6)

In terms of the transition relationship jω → ∂/∂t, Eqs. (5) and (6) can be casted into

D(r, t) = ε0ε∞

(
E(r, t) +

Nd∑
n=1

Sn(r, t)

)
(7)

bnSn(r, t) + cn
∂Sn(r, t)

∂t
+ dn

∂2Sn(r, t)
∂t2

= anE(r, t) (8)

Substituting Eq. (7) into Eq. (1) results in

∂E(r, t)
∂t

+
Nd∑
n=1

∂Sn(r, t)
∂t

=
1

ε0ε∞
∇× H(r, t) − 1

ε0ε∞
J(r, t) (9)

Using the weighted Laguerre basis functions ϕq(st), the field components can be expanded as [8]

{E,H,S(r, t)} =
∞∑

q=0

{Eq,Hq,Sq(r)}ϕq(st) (10)

where s, q are time-scale factor and the order of Laguerre functions, respectively. For an arbitrary field
component U(r, t), for example, E, H, S(r, t), etc., the first and second derivatives of U(r, t) obey the
following equations [8, 12], respectively,

∂U(r, t)
∂t

= s

∞∑
q=0

⎡
⎣0.5Uq(r) +

q−1∑
k=0,q>0

Uk(r)

⎤
⎦ϕq(st) (11)

∂2U(r, t)
∂t2

= s2
∞∑

q=0

⎡
⎣Uq(r)

4
+

q−1∑
k=0,q>0

(q − k)Uk(r)

⎤
⎦ϕq(st) (12)
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Inserting Eqs. (10)–(12) into Eqs. (2), (8) and (9), multiplying both sides by ϕp(st), and integrating
over st ∈ [0,∞), we have

Eq(r) +
Nd∑
n=1

Sq
n(r) =

2
sε0ε∞

∇× Hq(r) − 2
sε0ε∞

Jq(r) − 2
q−1∑

k=0,q>0

Ek(r) − 2
Nd∑
n=1

q−1∑
k=0,q>0

Sk
n(r) (13)

Sq
n(r) =

1
An

⎧⎨
⎩anEq(r) −

q−1∑
k=0,q>0

[
cns + dns2(q − k)

]
Sk

n(r)

⎫⎬
⎭ (14)

Hq(r) = − 2
sμ0

∇× Eq(r) − 2
q−1∑

k=0,q>0

Hk(r) (15)

where Jq(r) =
∫ Tf

0 J(r, t)ϕp(st)d(st), An = bn + 0.5scn + 0.25s2dn, and Tf is a finite time interval.
Substituting Eq. (14) into Eq. (13), we may then write, instead of Eq. (13),(

1 +
Nd∑
n=1

an

An

)
Eq(r) = −2

q−1∑
k=0,q>0

Ek(r) +
Nd∑
n=1

(
san

An
− 2

) q−1∑
k=0,q>0

Sk
n(r)

+
2

sε0ε∞
∇× Hq(r) − 2

sε0ε∞
Jq(r) +

s2d

An

Nd∑
n=1

q−1∑
k=0,q>0

(q − k)Sk
n(r) (16)

Hence, Eqs. (15) and (16) can be written as a matrix equation form [8]. After obtaining the auxiliary
differential variable S from Eq. (14), the electric fields are obtained by solving the matrix equation.

For the sake of simplicity, in the following sections we will employ a 2-D TEz case and single pole
dispersive media (Nd = 1) to describe the procedures for deriving the FS-ADE-WLP-FDTD algorithm,
then the z-component of Hq(r) in (15) reads

Hq
z (r) =

∑
α,β
α�=β

σbDαEq
β(r) + V q−1

H (r) (17)

where b = 2/(μ0s), V q−1
H (r) = −2

∑q−1
k=0,q>0 Hk

z (r). Dα = ∂/∂α (α, β = x, y), is the first-order partial
differential operator, and α = x, σ = −1, α = y, σ = 1. The α-components of Eq(r) and Sq

1(r) in Eqs.
(14) and (16) are given by

Eq
α(r) = AαDβHq

z (r) + Jq
Eα(r) + V q−1

Eα (r) + V q−1
Sα (r) (18)

Sq
1α(r) = 1/A1α

{
a1αEq

α(r) −
∑q−1

k=0,q>0

[
c1αs + d1αs2 (q − k)

]
Sk

1α(r)
}

(19)

where Aα, Jq
Eα, V q−1

Eα and V q−1
Sα are given by

Aα = A1α/[0.5ε0εα,∞s (a1α + A1α)] (20)
Jq

Eα = −A1αJq
α(r)/[0.5ε0εα,∞s (a1α + A1α)] (21)

with Jq
α describing the incident electric current excitation source along α axes.

V q−1
Eα (r) = −2A1α/(a1α + A1α)

q−1∑
k=0,q>0

Ek
α(r) (22)

V q−1
Sα (r) = (c1αs − 2A1α)/(a1α + A1α)

q−1∑
k=0,q>0

Sk
1α(r) + d1αs2

/
(a1α + A1α)

q−1∑
k=0,q>0

(q − k)Sk
1α(r) (23)

Similar to the derivational procedure in [10], Eqs. (17)–(19) can be written as a matrix form

Wq
E = DHWq

H + Jq
E + Vq−1

E + Vq−1
S (24)

Wq
H = DEW q

E + Vq−1
H (25)
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where Wq
E = [Eq

x Eq
y ]T , Wq

H = [Hq
z ], Jq

E = [Jq
Ex Jq

Ey]
T , DH = [AxDy − AyDx]T , DE = [bDy − bDx],

Vq−1
E =

[
V q−1

Ex V q−1
Ey

]T
, Vq−1

S =
[
V q−1

Sx V q−1
Sy

]T
. Combining Eqs. (24) and (25) leads to[

Wq
E

Wq
H

]
=

[
0 DH

DE 0

] [
Wq

E
Wq

H

]
+

[
Jq

E
0

]
+

[
Vq−1

E

Vq−1
H

]
+

[
Vq−1

S
0

]
(26)

Let Wq
EH =

[
Wq

E Wq
H

]T , Jq
EH =

[
Jq

E 0
]
, Vq−1

EH =
[
Vq−1

E Vq−1
H

]
and Vq−1

SH =
[
Vq−1

S 0
]T

, then Eq.
(26) becomes

(I − A− B)Wq
EH = Vq−1

EH + Vq−1
SH + Jq

EH (27)

with

A =
[

0 DHa

DEa 0

]
=

[ 0 0 0
0 0 −AyDx

0 −bDx 0

]

B =
[

0 DHb

DEb 0

]
=

[ 0 0 AxDy

0 0 0
bDy 0 0

]

Adding a perturbation term AB(Wq
EH − Vq−1

EH ) to Eq. (27), we can obtain the factorized form

(I − A) (I − B)Wq
EH = ABVq−1

EH + Vq−1
EH + Vq−1

SH + Jq
EH (28)

Equation (28) can be computed into two sub-steps as following,

(I − A)W∗q
EH = (I + B)Vq−1

EH + Vq−1
SH + Jq

EH (29)

(I − B)Wq
EH = W∗q

EH − BVq−1
EH (30)

where W∗q
EH =

[
W∗q

E W∗q
H

]T =
[
E∗q

x E∗q
y H∗q

z

]T . Using Eqs. (29) and (30) to solve Eq. (28) with
some manipulations, we get

(I − DHaDEa)W
∗q
E = (DHa + DHb)V

q−1
H + (I + DHaDEb)V

q−1
E + Vq−1

S + Jq
E (31)

(I − DHbDEb)W
q
E = (I + DHbDEa)W

∗q
E (32)

Wq
H = DEbW

q
E + DEaW

∗q
E + Vq−1

H (33)

Expanding Eqs. (31)–(33) leads to

E∗q
x = AxDyV

q−1
H + V q−1

Ex + V q−1
Sx + Jq

Ex (34)
Eq

y = E∗q
y (35)

(I − bAyD2x) E∗q
y = −AyDxV q−1

H + V q−1
Ey − bAyDxDyV

q−1
Ex + V q−1

Sy + Jq
Ey (36)

(I − bAxD2y) Eq
x = E∗q

x − bAxDyDxE∗q
y (37)

Hq
z = bDyE

q
x − bDxE∗q

y + V q−1
H (38)

where D2α (α = x, y) is the second-order partial differential operator. Substituting Eqs. (34) and (35)
into Eqs. (36)–(38), we have

(I − bAyD2x) Eq
y = −AyDxV q−1

H + V q−1
Ey − bAyDxDyV

q−1
Ex + V q−1

Sy + Jq
Ey (39)

(I − bAxD2y)Eq
x = AxDyV

q−1
H + V q−1

Ex + V q−1
Sx + Jq

Ex − bAxDyDxEq
y (40)

Hq
z = bDyE

q
x − bDxEq

y + V q−1
H (41)

Equations (39)–(41) are the update equations for efficient 2-D ADE-WLP-FDTD method. According
to the central-difference scheme introduced by Yee, we discretize space Equations (39)–(41) and obtain
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the following form:[
1 +

bAy |i,j
Δx̄ |i,j

(
1

Δx |i,j +
1

Δx |i−1,j

)]
Eq

y |i,j − bAy |i+1,j

Δx |i,j Δx̄ |i,j Eq
y |i+1,j − bAy |i−1,j

Δx |i−1,j Δx̄ |i,j Eq
y |i−1,j

=
Ay |i,j
Δx̄ |i,j

(
V q−1

H |i,j − V q−1
H |i−1,j

)
+ Jq

Ey |i,j + V q−1
Ey |i,j + V q−1

Sy |i,j

− Ay |i,j b

Δy |i,j Δx̄ |i,j
(
V q−1

Ex |i,j+1 − V q−1
Ex |i,j − V q−1

Ex |i−1,j+1 + V q−1
Ex |i−1,j

)
(42)[

1 +
bAx |i,j
Δȳ |i,j

(
1

Δy |i,j−1
+

1
Δy |i,j

)]
Eq

x |i,j − bAx |i,j+1

Δy |i,j Δȳ |i,j Eq
x |i,j+1 − bAx |i,j−1

Δy |i,j−1 Δȳ |i,j Eq
x |i,j−1

= −Ax |i,j
Δȳ |i,j

(
V k

H |i,j − V k
H |i,j−1

)
+ V q−1

Ex |i,j + Jq
Ex |i,j + V k

Sx |i,j

− Ax |i,j b

Δx |i,j Δȳ |i,j
(
Eq

y |i+1,j − Eq
y |i,j − Eq

y |i,+1j−1 + Eq
y |i,j−1

)
(43)

Hq
z |i,j =

b

Δy |i,j (Eq
x |i,j+1 − Eq

x |i,j ) − b

Δx |i,j
(
Eq

y |i+1,j − Eq
y |i,j

)− 2
q−1∑

k=0,q>0

Hk
z |i,j (44)

Comparing Eqs. (39) and (40) with [10], one can find that some parameters determined by dispersive
media, Aα, α = x, y for example, are included.

3. NUMERICAL RESULTS

In order to validate the effectiveness of the FS-ADE-WLP-FDTD method, as the first example, we
employ the wave transmission in a 2-D parallel plate waveguide with two dispersive medium columns,
as depicted in Fig. 1. The staircase approximation is introduced to model dispersive medium columns.
To improve the simulation precision, a fine grid division with cell size of 0.3mm × 0.3 mm is applied to
the staircase region. The graded mesh is applied to rest computational regions, and the maximal cell is
10mm× 10mm [9]. For simplicity, Mur’s 1st-order absorbing boundary conditions are used to truncate
the computational area [8].

The first dispersive medium column is Debye model, in which the relative complex permittivity is
given by

εr(ω) = ε∞ +
εs − ε∞
1 + jωτ

(45)

where εs = 4.301, ε∞ = 4.096 and τ = 2.294 × 10−9. The second dispersive medium column is Lorentz
model, in which the relative complex permittivity is given by

εr(ω) = ε∞ + (εs − ε∞)
G1ω

2
1

ω2
1 + 2jδ1ω − ω2

(46)
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Figure 1. 2-D parallel plate waveguide with two dispersive media columns.
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where εs = 3, ε∞ = 1.5, ω1 = 2 × 109 rad/s, G1 = 0.4 and δ1 = 0.1ω1. A sinusoidally modulated
Gaussian pulse is used as a x-incident electric current profile

Jx(t) = exp

[
−

(
t − Tc

Td

)2
]

sin 2πfc(t − Tc) (47)

where Td = 1/(2fc), Tc = 3Td and fc = 1GHz. And we choose the time duration Tf = 11.71 ns, time
scaling factor s = 1.1902 × 1010 and order-marching step number NL = 142.

Figure 2 shows the calculated results given by the FS-ADE-WLP-FDTD, ADE-WLP-FDTD and
ADE-FDTD. From their profiles, one can find that the FS-ADE-WLP-FDTD is accurate.

Table 1 shows the required computational resource and computing time for the numerical
simulations. Compared with the ADE-WLP-FDTD and the ADE-FDTD, the FS-ADE-WLP-FDTD
shows much improvement in computation efficiency. All calculations have been performed on an AMD
Phenom II × 6 2.80 GHz machine with 8GB RAM.

In the second example, the transmission coefficient of wave propagation in graphene sheets is
calculated, as shown in Fig. 3. Here, we also choose x-polarization as the electric current excitation,
and Tc = 3Td, fc = 5000 GHz, the time duration Tf = 1.5×10−12 s, time scaling factor s = 3.7699×1014

and order-marching step number N = 150. Due to the structure with a thin layer in the computational
domain, a fine grid division with the cell size of 1 nm × 1500 nm is applied to the graphene layer. The
graded mesh is applied to the rest computational regions, and the maximal cell is 1500 nm × 1500 nm.
In this example, the dispersive model of grapheme can be written as

εr(ω) =
(

1 +
σ0/ε0

jω − τω2

)
(48)

with

σ0 =
e2τkBT

π�2Δ

(
μc

kBT
+ 2 ln

(
e
− µc

kBT + 1
))
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Figure 2. Transient electric fields of the x component (a) at P1 and (b) P2.

Table 1. Comparison of the computational efforts for the 2-D waveguide.

Method Δt (ps) Meshing size
Marching-
on steps

Memory (MB) CPU time(s)

ADE-FDTD 0.5 320 × 120 23420 5.2 710
ADE-WLP-FDTD 30 320 × 120 142 103 242

FS-ADE-WLP-FDTD 30 320 × 120 142 97 60
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Figure 3. Diagram of computational domain for
WLP-FDTD analysis of graphene sheet.
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Figure 4. Transmission coefficient calcu-
lated with the FS-ADE-WLP-FDTD, ADE-
FDTDADE-WLP-FDTD and the theoretical so-
lution.

where Δ, e, � = h/2π, kB, T , τ and μc are the thickness of graphene sheets, electron charge,
reduced Plank’s constant, Boltzmann constant, temperature, scattering time and chemical potential,
respectively [13]. Fig. 4 plots the numerical results of FS-ADE-WLP-FDTD, ADE-WLP-FDTD, ADE-
FDTD and theory by setting Δ = 10 nm, μc = 0.5 eV, T = 300 K and τ = 0.5 × 10−12 s. Compared
with the theoretical solution, the accuracy of the FS-ADE-WLP-FDTD method is verified.

Table 2 shows the comparison of the computing times among the three numerical methods.
In Table 2, the FS-ADE-WLP-FDTD method also shows much more improvement in computation
efficiency than the ADE-WLP-FDTD and ADE-FDTD methods.

Table 2. Comparison of the computational efforts for the graphene sheet.

Method Δt (fs) Meshing size
Marching-
on steps

Memory
(MB)

CPU time(s)

ADE-FDTD 1.67 × 10−3 462 × 40 9 × 105 29 1722
ADE-WLP-FDTD 2.5 462 × 40 150 52 52

FS-ADE-WLP-FDTD 2.5 462 × 40 150 50 10

4. CONCLUSION

An ADE-WLP-FDTD method based on factorization splitting technique for general dispersive media is
presented in this paper. Compared with the ADE-FDTD and ADE-WLP-FDTD, the FS-ADE-WLP-
FDTD method can reduce the calculation burden. Two examples verify the accuracy and efficiency of
the FS-ADE-WLP-FDTD method.
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