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Hybridization of Generalized PO and MoM-GEC Method
for Electromagnetic Study of Complex Structures:

Application to Reflectarrays

Mohamed Hajji*, Mourad Aidi, Houssemeddine Krraoui, and Taoufik Aguili

Abstract—In this paper, we investigate the diffraction of complex structures applying a new
hybridization between generalized PO (Physical Optic) and MoM-GEC method. The proposed approach
is developed to speed up convergence, alleviate calculation and then provide a considerable gain in
requirements (processing time and memory storage) because it is based on a single test function instead
of numerous sinusoidal or polynomial ones. Based on this approach, each metallic pattern is modeled
by a current trial function that consists of two parts. The first part is called modal current, and it
is decomposed on Hankel functions for modeling metal edges. However, the second part concerns the
middle of metallic patterns, and it is modeled by PO method and called generalized PO current. Based
on this approach, we study the diffraction of 1D structures, then we generalize our approach to take
2D ones. For validation purpose, we investigate 1D and 2D reflectarrays to prove the new approach’s
benefits. The obtained results show good accuracy with the method of moments. Moreover, we prove
the considerable improvements in CPU time and memory storage achieved by the hybrid approach when
studying these structures.

1. INTRODUCTION

The need to enhance microwave and antenna performance is accompanied by a considerable progress
in metamaterials research since their discovery. Several structure designs have been proposed in
the literature to reach this aim, such as the High Impedance Surfaces (HIS), Reactive Impedance
Substrates (RIS), Split Ring Resonators (SRR), reflectarrays and several other structures with different
shapes [1–4]. These structures are generally formed by periodic dielectric and metallic patterns with very
small periods compared to the wavelength. The use of these particular structures is very interesting
since they can provide antenna’s miniaturization and high directivity, and optimize performances of
microwave circuits. However, they increase the complexity of antennas and microwave circuits because
of the important ratio between the smallest and largest dimensions in the same structure. In fact,
metamaterial’s dimensions are generally very small compared to the wavelength, but the complete
structure’s dimensions can exceed a few tens of wavelength. This leads to obtaining electric large
structures with fine details. The investigation of these complex structures poses a major problem due
to the limitation of full wave methods and asymptotic ones. Full wave analysis is often used to model
electrically small objects whose dimensions do not exceed a few tens of wavelength, whereas asymptotic
methods are used to investigate electrically large objects without fine details. Thus, it is necessary to use
multiscale methods [5–9] or the hybridization of numerical methods [10–12] as solutions to overcome
the problem of modeling complex structures that contain fine details in large domains. Indeed, the
hybridization of numerical methods is one of speediest, efficient and accurate solutions of electromagnetic
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modeling of complex structures, involving parts with regularly forms and electrical large dimensions,
and other smaller parts with complex shapes.

In [13], we have proposed a new hybrid approach joining the MoM method, PO method and a
modal approach. It consists in developing a new current test function that can approximate the current
distribution on a metallic pattern. Thus, the edges are modeled by infinite cylinders with fine radii
and approximated by Hankel functions [14–16]; however, the middle of the metal is governed by PO
method. Then, this test function is needed in MoM-GEC process as single to replace a lot of polynomials
or sinusoidal ones.

The method of moment combined to the Generalized Equivalent Circuit (MoM-GEC) consists
in converting an integral or differential equation into a linear system that will be solved using a
matrix representation. The unknown functional is expressed as known functions weighted by unknown
coefficients [17–21]. As long as the choice of test functions is consistent, the convergence and physical
solution can be rapidly reached. The formulation presented in [13] approximates that metallic patterns
are infinite in y direction, so it is applied to 1D structures with invariance in y direction. According
to this work, we study the diffraction of 1D periodic structures. Then, we generalize the considered
approach to be applied to 2D ones. Hence, we propose to take the current variation in y direction. This is
of great interest because it permits the study of bidimensional structures and provides the generalization
of our hybrid approach. In this context, for validation purpose, we can investigate the diffraction of 1D
and 2D reflectarrays used for antenna’s applications. Consequently, we show the advantageous of using
our new hybrid approach on different test examples, in terms of accuracy and requirement improvements
CPU time and memory storage. In fact, when the number of elements constituting the reflectarrays
increases, an enormous gain in CPU time and storage will be achieved.

Otherwise, we choose to validate our approach on reflectarrays due to their interesting
advantageous. In fact, reflectarray antennas, as depicted in Figure 1, are mainly formed by printed
patches or microstrips over a grounded substrates. The use of this kind of antennas can avoid the
problem of their feed network especially at higher frequencies. This can be realized due to their
indirect feeding procedure with an external horn antenna. Moreover, reflectarray antennas have many
advantageous such as low profile, ease of fabrication, high scanning and tracking capability, and low
mechanical complexity. These interesting features permit us to extend the field of applications of
reflectarray antennas as in sensing, radar and satellite applications.

Figure 1. Example of a reflectarray.

The paper is organized as follows. In Section 2, we present the concept of Generalized Equivalent
Circuit (GEC) approach used in electromagnetism. Besides, we describe the MoM method combined
to the GEC approach. In Section 3, we propose the new hybrid approach and develop the proposed
trial function for both 1D and 2D cases. The following section illustrates several test problems of the
proposed Hybridization to investigate 1D and 2D reflectarrays. Finally, the improvements in CPU time
and memory resources provided by our new approach are demonstrated.

2. DESCRIPTION OF MOM-GEC METHOD

2.1. Principle of Generalized Equivalent Circuit Approach

Electromagnetic phenomenons are always described by Maxwell equations that define the physical laws
governing the variation of electric and magnetic fields as a function of time and space. That is why
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all numerical methods in electromagnetism are based on the resolution of these equations. In order
to reduce the resolution of Maxwell equations, the method of Equivalent Circuits was proposed by
Baudrand [18–20] to represent integral equations by Equivalent Circuits. This representation is used to
express unknown electromagnetic boundary conditions by only one electric circuit. This electric circuit
is considered as an electric form of the studied structure since it describes the discontinuity and its
environment. Consequently, the modeling with GEC needs the presence of excitation source, adjustable
sources and impedance or admittance operators for illustrating a physical problem.

2.1.1. Excitation Source

The wave exciting the discontinuity surface is represented by a localized or modal source. This source
can be a current or field source and is called real source because it can deliver energy. Figures 2(a)
and 2(b) depict the representation of real field and current sources [20].

(a) (b)

(c) (d)

Figure 2. (a) Field excitation source. (b) Current excitation source. (c) Field virtual source. (d)
Current virtual source.

2.1.2. Adjustable Sources

The discontinuity is represented by generalized trial functions for describing its electromagnetic state.
These trial functions are modeled by virtual sources which do not store energy. The representation by
virtual sources permits the expression of all passage relations imposed on electromagnetic field when
traversing a discontinuity. We can use the current test function to represent metallic patterns or field
test functions to represent dielectric ones. These two representations are shown in Figures 2(c) and 2(d).

The suitable choice of test functions is of great interest to obtain the convergence of the solution,
whereas their inadequate choice can complicate the problem or not solve it. Generally, a roughly high
number of sinusoidal and triangular test functions is used to get the solution. In this work, we propose
a new test function which is only used to replace a lot of sinusoidal or triangular test functions, in order
to attain the same results in less time. The proposed trial function is based on physically approximating
the current on metal domain in two parts. The first part consists in the current inside the metal. It is
governed by PO method. The second one consists in the current on the metal edges. It is modeled by
infinite cylinders that provide a diffracted field described by Hankel functions [14–16].

2.1.3. Impedance and Admittance Operators

The discontinuity vicinity is represented by an impedance operator Ẑ or an admittance operator Ŷ to
express the boundary conditions in the two parts of the surface of discontinuity. These operators are



38 Hajji et al.

Figure 3. Representation of a discontinuity and its environment by an impedance operator.

used to express the relation between the field and current in this surface by a simple equation. Figure 3
shows the representation of impedance operator.

2.2. MoM Method Combined to the Generalized Equivalent Circuit

The MoM, as all integral methods, permits one to write the boundary conditions in the form of integral
equations defined on the studied obstacle’s surface. In this way, it leads to reducing the physical problem
dimension when it is applied to model planar microwave structures, because it treats tridimensional
discontinuities in bidimensional resolution way. This consists of one of the features of integral methods
contrary to other numerical methods that need a tridimensional meshing which requires a huge resources.
The MoM method is combined to the GEC approach to simplify the modeling of several problems more
in electromagnetism.

The modeling of the structures shown in Figure 4, which correspond to different examples of
reflectarrays, is done by the GEC given by Figure 5 [13, 17, 18, 21].

Let’s surround the refrectarrays formed by N elements with an Electric Magnetic Electric
Magnetic (EMEM) waveguide (the horizontal plates of the waveguide correspond to electric boundary
conditions however the vertical ones are magnetic ones). We consider (fm)m∈(1,2,...,M) the modal basis
corresponding to the waveguide. E0 is the excitation modal source that corresponds to the propagative
fundamental mode of the waveguide (E0 = V0f0). The impedance operator Ẑ describes the environment
of the discontinuity. It is used for representing the boundary conditions on its either side and is defined

(a)

(b)

Figure 4. Example of reflectarray. (a) 1D case, (b) 2D case.
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Figure 5. GEC for modeling a reflectarray with N metallic elements.

in function of higher order modes. (Je)i
i∈(1,2,...,N) are the virtual sources defined on the metallic domains

of the discontinuity surface. Each test function (Je)i
i∈(1,2,...,N) corresponds to metallic elements in the

reflectarray. They are the problem’s unknowns expressed as series of known functions (gp)i
p∈(1,2,...,P )

weighted by unknown coefficients (xp)i
p∈(1,2,...,P ).

J i
e =

∑
p

xi
pg

i
p (1)

Then, the application of the generalized Ohm and Kirchhoff laws to the GEC shown in Figure 5 leads
to obtaining the equations system for i ∈ (1, 2, . . . , N):





J = −
N∑

i=1

J i
e

Ei
e = E0 − ẐJ = E0 + ẐJ1

e + ẐJ2
e + . . . + ẐJN

e

(2)

The current J is decomposed on the waveguide basis functions as:

J =
∑
m

Imfm (3)

Applying Galerkin’s method, we obtain the matrix representation as following [9, 17]



I

[0]
[0]
·
·
·

[0]




=




0 [−AT
1 ] [−AT

2 ] · [AT
p ] · [−AT

N ]
[A1] [B11] [B12] · · · [B1N ]
[A2] [B21] · · · · [B2N ]
· · · · · ·· ·

[Ai] · · [Bij ] · ·· ·
· · · · · ·· ·

[AN ] [BN1] · · · · [BNN ]







V0

[X1]
[X2]
·

[Xi]
·

[XN ]




(4)

where [Ai] is the excitation vector of the ith metallic pattern; [Ai] = 〈gi
p|f0〉, p ∈ (1 . . . P ) (with P is

the total used test functions).
However, [Bij ] corresponds to the impedance sub-matrix that represents the coupling between

the ith and the jth metallic elements, where (i ∈ (1 . . . N), j ∈ (1 . . . N)) and [Bij ] =∑
mn〈gi

p|fmn〉zmn〈fmn|gj
q〉. The MoM-GEC consists in describing each metallic element by P test

functions, where P is defined by the convergence.

[ Ai ] =




〈gi
1|f0〉

〈gi
2|f0〉
·
·
·

〈gi
P |f0〉




(5)



40 Hajji et al.

[ Bij ] =




∑
mn

〈gi
1|fmn〉zmn〈fmn|gj

1〉 · · · ·
∑
mn

〈gi
1|fmn〉zmn〈fmn|gj

P 〉
∑
mn

〈gi
2|fmn〉zmn〈fmn|gj

1〉 · · · ·
∑
mn

〈gi
2|fmn〉zmn〈fmn|gj

P 〉
· · · · ·· ·
· · · · ·· ·
· · · · ·· ·∑

mn

〈gi
P |fmn〉zmn〈fmn|gj

1〉 · · · ·
∑
mn

〈gi
P |fmn〉zmn〈fmn|gj

P 〉




(6)

When using P trial functions, each sub excitation vector [Ai]i∈(1...N) is of size (P , 1), and each sub
impedance matrix [Bij ](i,j)∈(1...N) is of size (P , P ). This leads to obtaining a total excitation vector [A]
of size (N × P, 1) and a matrix [B] with a size (N × P , N × P ).

A and B are deduced from the matrix represented by Equation (4) as:

[ A ] =




[A1]
[A2]
·
·
·

[AN ]




(7)

[ B ] =




[B11] [B12] · · ·· [B1N ]
[B21] · · · ·· ·
· · [Bij ] · ·· ·
· · · · ·· ·

[BN1] · · · ·· [BNN ]


 (8)

The present problem is resolved by the following equations system:
{

I = −AT X

0 = AV0 + BX
(9)

We can consequently deduce the input impedance of the structure as:

Zin =
1

AT B−1A
(10)

It also permits the determination of weighting coefficients (xp), current distribution J and diffracted
field Ee in the discontinuity surface.

The originality of this work is to propose a new hybrid test function that can be used to replace
a lot of sinusoidal or polynomials ones. Hence, P will be equal to 1 (P = 1) instead of few tens. This
leads to the reducing the sizes of vectors [Ai] and sub-matrices [Bij ] to (1 ∗ 1). Consequently, the size
of the excitation vector [A] and impedance matrix [B] will be enormously decreased. In fact, we can
obtain a total excitation vector [A] of only a size (N , 1) instead of (N × P , 1) and a matrix [B] with
only a size (N , N) instead of (N × P , N × P ). This hybrid approach is of great interest because it
enormously reduces the sizes of manipulated matrices, then an important gain in storage and processing
time will be achieved.

3. DEVELOPMENT OF THE HYBRID TEST FUNCTION

3.1. Approximation of Current Test Function for Unidimensional Structures

Let’s consider N metallic elements infinite in y direction, in the cross section of a rectangular EMEM
waveguides. The structure presents an invariance in y direction. Hence, only TE modes are used to solve
this problem. The present problem is similar to a plane wave exciting infinite metallic element. The
current test function consists of two parts; the first for modeling metal middle and called Generalized
PO current and the second for modeling metal edges and called modal current.
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3.1.1. Generalized PO Current

Physical approaches are based on surface current created in the surface of an obstacle illuminated by an
electromagnetic wave. The PO method approximates the electric current density

−→
J PO on the surface

of an object induced by an incident magnetic field
−→
H in as [22, 23]:

−→
J PO = 2

−→
H in ∧ −→z (11)

where
−→
H in is the incident magnetic field on the waveguide and −→z the unit vector normal to the

discontinuity that coincides with the propagation direction of the waveguide.
−→
H in is deduced from

the following equation: −→
rot
−→
E = −jωµ0

−→
H in (12)

Thus,
−→
J PO =

2β

ωµ0

√
1
ab
−→y (13)

where β is the constant of propagation of the waveguide, µ0 the air permeability and ω the wave
pulsation.

3.1.2. Modal Current

To develop the modal current
−→
J M dependent on x variable, we study the diffraction of a plane wave

on fine cylinders with negligible radii modeling the edges. As shown in Figure 6, an incident field Ei,
polarized in y direction induces a current in the same direction. The modes excited by the cylinders are
decomposed on Hankel functions. Since the cylinder radii are neglected compared to the wavelength,
the diffraction phenomenon is governed only by Hankel function of the second kind of order zero [15–17].
Consequently: −→

A = A0H
2
0 (βρ)−→y (14)

As shown in Figure 6, R = |−→ρ − −→ρ′ | =
√

ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′), where −→ρ =
−−→
OP and

−→
ρ′ =

−−→
OM

relate the origin O respectively to the observation point P and the source point M .
For the first cylinder, we have −→ρ = −→x1,

−→
ρ′ =

−→
x′ and R = |−→ρ −−→ρ′ | =

√
x2

1 + x′2 − 2x1x′.

Figure 6. Modeling of current in metal edges by infinite cylinders with fine radii.
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The cylinder is assumed infinite, and the observation point P is assumed on the cylinder surface
while the source point M is assumed on its axis. Taking into consideration the boundary condition by
setting x′ = x1 + R0.

Ei + Ed = 0 (15)

Thus, the constant A0 is expressed by:

A0 =
−

√
1
ab

jωH2
0 (βR0)

(16)

Then, the diffracted electric field is expressed as:



−→
E d

1 =
−

√
1
ab

H2
0 (βR0)

H2
0 (β(|x− x′|))−→y ; x′ = x1 + R0

−→
E d

2 =
−

√
1
ab

H2
0 (βR0)

H2
0 (β(|x− x′′|))−→y ; x′′ = x2 −R0

(17)

Consequently, the magnetic field can be deduced as:



−→
H d

1 =
β

µ0

−
√

1
ab

jωH2
0 (βR0)

H2
1 (β(|x− x′|))−→x ; x′ = x1 + R0

−→
H d

2 =
β

µ0

−
√

1
ab

jωH2
0 (βR0)

H2
1 (β(|x− x′′|))−→x ; x′′ = x2 −R0

(18)

The modal current is finally concluded by the following expression:
−→
J M = −

(
A0

β

µ0
H2

1 (β|x− x′|) + A0
β

µ0
H2

1 (β|x− x′′|)
)
−→y (19)

Finally, the current
−→
J dependent on x variable is composed of two parts

−→
J PO and

−→
J M (

−→
J =−→

J PO+
−→
J M ), and we will use a single test function dependent on x in MoM-GEC method. Consequently,

the test function
−→
J e which will be used in this study to describe the current variation in x direction is

expressed as:

−→
J e = −

(
A0

β

µ0
H2

1 (β|x− x′|) + A0
β

µ0
H2

1 (β|x− x′′|) +
2β

ωµ0

√
1
ab

)
−→y (20)

To avoid the singularity effect of the electric field given by the nature of Hankel functions, the
observation point is assumed very close to the edge (cylinder axis), but it remains spaced from it about
R0. Hence, this constitutes the key idea of using the cylinder radius much lower than λ modeling the
edges (R0 ¿ λ).

3.2. Generalization of the Test Function for Bidimensional Structures

Let’s consider a metallic patch not infinite in y direction. When it is illuminated by an electromagnetic
wave polarized in y direction, an induced current in y direction will be defined on its surface. Because
there is no invariance in x nor y direction, since the structure is finite in these directions, the induced
current varies as a function of x and y contrary to the case of infinite 1D metallic element when it varies
in x direction only.

So, we propose to take into consideration the variation in y direction. Hence, it is known that the
incident field in y direction

−→
E in

y creates a current density
−→
J y with maximum on its vertical edges and

minimum on its horizontal edges.
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In this way, we consider that the variation in x direction is carried by the same function as infinite
1D element (

−→
J =

−→
J PO +

−→
J M ). However, for the dependence in y direction, we propose a sinusoidal

variation expressed by sin( qπ(y−yi)
L ), where yi corresponds to the minimum horizontal edge’s position of

the ith patch and q ∈ (1 . . . P )). Consequently, the generalized hybrid test function for the 2D case is
given by the following expression:

−→
J e = −

(
A0

β

µ0
H2

1 (β|x− x′|) + A0
β

µ0
H2

1 (β|x− x′′|) +
2β

ωµ0

√
1
ab

)
· sin

(
qπ(y − yi)

L

)
−→y (21)

4. APPLICATION OF THE HYBRID APPROACH: STUDY OF REFLECTARRAYS

To validate our approach, we use it to compute the input impedance of reflectarray with N periodic
metallic elements. Firstly, we consider the unidimensional case, then we take the case of bidimensional
reflectarray formed by N periodic patches. A comparison with MoM-GEC when using sinusoidal test
functions is achieved. Moreover, boundary conditions are proved when computing the field and current
distributions at the discontinuity surfaces.

4.1. Study of 1D Reflectarrays

We start by studying the diffraction of 1D reflectarray. Thus, we use the hybrid test function to
represent the current on each metallic element. Also, we take several cases of the elements number (N)
and compute, in each case, the corresponding input impedance.

Figure 7 plots the convergence as a function of the number of used modes of the waveguide for all
cases of N . It is noted that the convergence is obtained for about 150 modes for all cases of elements
number.

Then, we show the relative error ξ between the input impedance obtained by our hybrid
approach and each obtained by MoM method for different considered cases of N (where ξ = 100 ×
|‖ZHybrid‖−‖ZMoM‖|

‖ZMoM‖ ).
Figure 8 draws the proposed relative error (ξ) against the number of used elements (N). It is

obvious that the error is smaller than 0.5% for all cases. This proves the accuracy of the new method.
Another study concerning the domain of validity of the hybrid approach as a function of the fine
cylinders radius R0 is considered for all cases of the number of used elements (N). Indeed, the relative
error’s (ξ) variation as a function of R0/λ for different cases of N is shown in Figure 9. For all these
cases, the domain [0.08 ∗ 10−3λ − 0.2 ∗ 10−3λ] corresponds to errors smaller than 1%. Hence, in this
domain our proposed hybrid approach is suitable to be applied to study 1D arrays, especially when
R0 = 0.25 ∗ 10−3λ.
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Then, the presented approach is validated over a frequency range when R0 = 0.25 ∗ 10−3λ. A
comparison of the obtained input impedance in the frequency range [1–5 GHz] with MoM method when
using sinusoidal test functions is depicted in Figure 10 for two cases of the number of used elements
(N = 1 and N = 8). For the two cases, a good agreement between the two methods at all frequencies
is demonstrated.

Besides, we represent the field and current distributions for two cases of number of used elements
N (N = 1 and N = 8) in Figures 11 and 12. Then, a comparison with MoM-GEC when using sinusoidal
test functions is achieved. We note a good agreement between obtained results by the two approaches
verifying the boundary conditions.

4.2. Study of 2D Reflectarrays

We have generalized the hybrid current test function to be applied to bidimensional structures. In this
section, we apply this approach to an example of N reflectarray patches. The patches are in the cross
section of an Electric Magnetic Electric Magnetic (EMEM) waveguide.

We investigate the 2D reflectarrays using our hybrid approach and proceed as in 1D case. We start
by searching the validity of the hybrid approach as a function of R0/λ for different numbers of used
patches. Figure 13 shows the variation of the relative error between the proposed method and MoM-GEC
when varying the number of patches. We note that when the number of used patches increases, the error
increases slightly, but it remains smaller than 1% for all cases over the range [0.6 ∗ 10−3λ− 1.5 ∗ 10−3λ].
Consequently, the new hybrid approach is valid to be applied in order to take 2D patch arrays, due to
its accuracy especially when R0 = 1.1∗10−3λ. This is of great interest because it provides an enormous
improvements of processing time and memory resources.
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Figure 11. Current and field distributions in the discontinuity surface for one element (N = 1).
The waveguide length is A = 60 mm and the element width is w = 1 mm at an operating frequency
F = 1 GHz.
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Figure 12. Current and field distributions in the discontinuity surface for eight elements (N = 8).
The waveguide length is A = 60 mm, the element width is w = 1 mm and the distance between metallic
elements is d = 5 mm at an operating frequency F = 1 GHz.
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Figure 13. Validity of the Hybrid approach in
the 2D case for different number of patches at a
frequency F = 1GHz.
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Figure 14. Input impedance obtained by the
Hybrid approach at the frequency range [1–
3.2GHz] and compared to MoM method.
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(a) (b)

Figure 15. Current distribution on the patch surface at 1 GHz obtained by Hybrid approach and
compared to MoM method.

(a) (b)

Figure 16. Field distribution on the patch surface at 1GHz obtained by Hybrid approach and compared
to MoM method.

Moreover, similar to 1D case, we validate the hybrid approach over a frequency range. The example
treated here is one used patch. So, as shown in Figure 14, this method presents an accuracy over the
frequency range [1–3.2GHz] with an important gain in computational time.

We also verify the boundary conditions for one used patch. Figure 15 shows the current distribution,
and Figure 16 shows the field distribution, given by the hybrid approach and compared to MoM method.
Consequently, the hybrid approach can be applied to investigate both unidimensional and bidimensional
complex structures. It combines the accuracy in results and rapid convergence to alleviate calculation.

5. GAIN IN MEMORY STORAGE AND CPU TIME ACHIEVED BY THE HYBRID
APPROACH

The purpose of the hybrid approach proposed in this paper is an important reduction of number of
test functions used to attain the convergence. This provides an enormous reduction of the sizes of
manipulated matrices. In fact, when computing the input impedance we obtain a reduction in the size
of manipulated matrices more than 30 in 1D case and more than 20 in 2D case.
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Consequently, this approach permits a considerable gain in memory resources and computational
time. To prove these advantages, we evaluate the storage and CPU time provided by the new hybrid
approach and compare the obtained results with those of MoM-GEC when using sinusoidal test functions
for both of 1D and 2D cases.

5.1. Memory Storage

When using P test functions in each metallic domain (N 1D elements or 2D patches), the MoM method
requirements are as:

Storage ∝ (N × P )2 (22)
According to this formula, in the 1D case, when using sinusoidal test functions, we need more than 30
test functions to attain convergence. So, the storage is about 900 ∗N2. On the other hand, when using
our hybrid approach, there is a single test function (P = 1), so the storage becomes as following:

Storage ∝ (N)2 (23)
Consequently, compared to MoM with sinusoidal test functions, a reduction by more than 900 in storage
is achieved.

Similarly, in the 2D case, we use P × P test functions in each patch for MoM with sinusoidal trial
functions; however, we use only P test functions in each patch for the hybrid approach. Hence, the
storage is ∝ (N × (P 2))2 for the first method and ∝ (N × (P ))2 for the hybrid approach. In this way,
a gain about P 2 in storage is guaranteed. In major 2D examples, we need about P = 20 test functions
to reach convergence. So, the gain in storage compared to MoM (sinusoidal trial functions) achieved in
the 2D case is about 400.

Figure 17 plots the storage presented by the two methods as a function of metallic elements. An
important gain in storage is noted especially when the number of metallic elements increases. This
includes the advantage of using this method to treat finite and infinite reflectarrays.
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Figure 17. Memory storage required by the Hybrid method compared to each required by MoM-GEC
with sinusoidal trial functions against the number of used metallic elements (N).

5.2. CPU Time

To demonstrate the advantageous guaranteed by the new hybrid approach for the two cases 1D and
2D, we plot the CPU time as a function of number of used 1D elements and patches. Figure 18(a)
illustrates the 1D case by computing the time needed to calculate the input impedance as a function
of 1D elements number. However, Figure 18(b) draws the CPU time used for computing the field and
current for the same case.

In the same way, Figure 19 shows the CPU time against the number of patches (2D structure) for
the two methods. For both of the cases 1D and 2D, we note the important reduction of time when using
the hybrid approach. Moreover, as long as the number of metallic elements increases, a good reduction
in CPU time is achieved. Consequently, during this study, we note that the proposed hybrid approach
presents a good accuracy for the considered 1D and 2D cases with a considerable improvements in
memory resources and CPU time. This allows the presented method to be expected to investigate the
diffraction of many complex structures such as reflectarrays.
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Figure 18. CPU time needed for computing (a) the input impedance and (b) the field and current
distributions in the 1D case as a function of number of metallic elements (N).
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Figure 19. CPU time needed for computing the input impedance in the 2D case as a function of
number of patches (N).

6. CONCLUSION

The work presented in this paper concerns a new hybridization between MoM-GEC, modal method
and generalized PO. This approach is generalized to take unidimensional and bidimensional complex
discontinuities. For validation purpose, we show its accuracy when applied to 1D metallic elements
and 2D patches reflectarrays. The major feature of this method is the enormous reduction of sizes of
manipulated matrices needed to attain the convergence. This well alleviates the calculation and achieves
an enormous gain in CPU time and memory storage especially when the number of metallic patterns
in the structure increases.

We have developed the proposed hybridization and shown its accuracy for both 1D and 2D cases of
structures. Moreover, we have demonstrated the considerable improvement of the needed requirements
when studying these structures.
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