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Scattering of an Obliquely Incident Plane Electromagnetic Wave
by a Magnetized Plasma Column: Energy Flow Patterns

at Plasmon Resonances

Vasiliy A. Es’kin, Alexander V. Ivoninsky, and Alexander V. Kudrin*

Abstract—The scattering of an obliquely incident H-polarized plane electromagnetic wave by a
magnetized plasma column is studied. It is assumed that the column is located in free space and aligned
with an external static magnetic field. The emphasis is placed on the case where the angular frequency
of the incident wave coincides with one of the surface- or volume-plasmon resonance frequencies of
the column. The spatial structures of the field and energy flow patterns in the near zone of the
column are analyzed, and the location of the regions with a greatly enhanced magnitude of the time-
averaged Poynting vector is determined. It is shown that the sign reversal of the longitudinal energy-flow
component that is parallel to the column axis can occur when passing across the boundary between the
inner region of the column and the surrounding medium.

1. INTRODUCTION

The problem of scattering of plane electromagnetic waves by various cylindrical objects has been
studied for a long time (see, e.g., [1] and references therein). Of special interest is the case where the
scatterers possess gyrotropic properties. In the optical range, this interest is stimulated by promising
applications of systems with nanosized gyrotropic elements [2], photonic crystals on the basis of
gyrotropic scatterers [3], and nonreciprocal devices containing magnetooptic materials [4, 5]. In the
RF range, the corresponding analysis is needed for consideration of the excitation and propagation of
electromagnetic waves in the presence of artificial plasma density irregularities aligned with an external
static magnetic field [6], especially if the excitation source is located outside such a plasma structure,
rather than inside of it [7] or on its surface [8]. Since the understanding of the features of wave diffraction
by gyrotropic cylindrical structures often requires knowledge of the field distribution near scatterers, the
problem of finding the near-zone scattered fields turns out to be very topical. For many applications,
the structure of the energy flow pattern in proximity to a cylindrical gyrotropic scatterer can be of
primary importance. However, this problem was considered in some detail only in the special case of
normal incidence of an H wave on the gyrotropic cylinder [9]. It is the purpose of this work to extend
the analysis of [9] to the case of oblique incidence of a plane electromagnetic wave on the gyrotropic
cylindrical scatterer.

Since the full analysis of the above-formulated problem would take up much space, in this work
we restrict ourselves to consideration of the case where an H-polarized plane electromagnetic wave
is obliquely incident on a magnetized plasma column aligned with an external static magnetic field.
We focus our attention on the spatial structures of the electromagnetic field and the time-averaged
energy flow patterns during the resonance scattering when the frequency of the incident radiation
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coincides with one of the surface- or volume-plasmon resonance frequencies of the column, assuming
that its radius is much less than the wavelength in the outer isotropic medium. It is important that
the energy flow pattern in the case of oblique incidence is essentially three-dimensional, in contrast to
the two-dimensional pattern for normal incidence on the column [9]. Therefore, the behavior of the
three-dimensional spatial structure of the Poynting-vector field in the case of oblique incidence actually
requires special consideration.

Our work is organized as follows. In Section 2, we present the formulation of the problem and
basic equations. In Section 3, we examine the field structures and the Poynting-vector patterns at the
surface-plasmon resonance frequencies. Section 4 continues the analysis of Section 3 by considering
the scattering at the resonances of the volume type. Section 5 presents conclusions of the performed
analysis. Details of some mathematical derivations are contained in Appendix A.

2. FORMULATION OF THE PROBLEM AND BASIC EQUATIONS

Consider an infinitely long column of radius a that is located in free space and filled with a cold
collisionless magnetoplasma. It is assumed that an external static magnetic field B0 is parallel to
the column axis, which is aligned with the z axis of a cylindrical coordinate system (ρ, φ, z). A
monochromatic H-polarized plane electromagnetic wave with angular frequency ω is incident on the
column at an angle θ0 to the z axis. Without loss of generality, it can be assumed that in the incident
wave, in which the Hz component is nonzero, the electric field has the only nonzero Ex component,
as is shown in Fig. 1. Then the electric and magnetic fields in the incident wave can be written, with
exp(iωt) time dependence dropped, as

E(i) = E(i)
0 exp [−ik0(qy + pz)] , H(i) = H(i)

0 exp [−ik0(qy + pz)] . (1)
Hereafter, k0 is the wave number in free space; p = cos θ0 and q = sin θ0 are the normalized (to
k0) longitudinal and transverse components of the wave vector k in the incident wave, respectively;
superscript (i) denotes the incident wave. The magnetic field in this wave is related to the electric field
by the formula H(i)

0 = Z−1
0 (qy0 + pz0) × E(i)

0 , where E(i)
0 = −E0x0, Z0 is the impedance of free space,

and x0, y0, and z0 are the unit vectors of the Cartesian coordinate system. In what follows, all the field
quantities will be normalized to the electric-field amplitude E0.
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Figure 1. Geometry of the problem.

As is known [10], the cold collisionless magnetoplasma is described by the dielectric permittivity
tensor of the following form:

ε = ε0

(
ε −ig 0
ig ε 0
0 0 η

)
. (2)

Here, ε0 is the electric constant, and the tensor elements can be written as

ε = 1 − ω2
p

ω2 − ω2
H

, g =
ω2

pωH(
ω2 − ω2

H

)
ω

, η = 1 − ω2
p

ω2
, (3)
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where ωH and ωp are the gyrofrequency and the plasma frequency of electrons, respectively. Note that
in tensor elements (3), we have neglected the contribution of ions. This is possible under the condition
ω � ωLH [6], which is assumed throughout this work (here, ωLH is the lower hybrid resonance frequency).
It is worth mentioning that the element ε of tensor (2) is then written as ε = (ω2 − ω2

UH)/(ω2 − ω2
H)

and vanishes at ω = ωUH, where ωUH = (ω2
p + ω2

H)1/2 is the upper hybrid resonance frequency.
The problem of scattering of a plane electromagnetic wave by the column filled with a

magnetoplasma is reduced to finding solutions of the Maxwell equations in cylindrical coordinates
inside the plasma column (for ρ < a) and in free space (for ρ > a). The solutions should satisfy the
boundary conditions for the tangential field components at the column surface ρ = a. Note that in the
case of oblique incidence, the total field inside the plasma column and the scattered field in free space
are hybrid and comprise all six components, including those which are absent in the incident wave.

The electromagnetic field can be represented in terms of the azimuthal harmonics as

E =
∞∑

m=−∞
Em exp [−i(mφ + k0pz)] , H =

∞∑
m=−∞

Hm exp [−i(mφ + k0pz)] , (4)

where m is the azimuthal index (m = 0,±1,±2, . . .). In turn, the quantities Em and Hm can be
expressed via their longitudinal components Em,z and Hm,z, respectively, which depend only on ρ and
satisfy the following equations in the plasma medium [6, 11]:

L̂mEm,z − k2
0

η

ε

(
p2 − ε

)
Em,z = −ik2

0

g

ε
pZ0Hm,z, (5)

L̂mHm,z − k2
0

(
p2 +

g2

ε
− ε

)
Hm,z = ik2

0

g

ε
ηpZ−1

0 Em,z, (6)

where

L̂m =
d2

dρ2
+

1
ρ

d

dρ
− m2

ρ2
.

The transverse components Em,ρ, Em,φ, Hm,ρ, and Hm,φ of Em and Hm are expressed via the
longitudinal components Em,z and Hm,z as follows [6]:

Em,ρ = A

{
ipg

m

ρ
Em,z + ip

(
ε − p2

) dEm,z

dρ
+
(
ε − p2

) m

ρ
Z0Hm,z + gZ0

dHm,z

dρ

}
, (7)

Em,φ = A

{
p
(
ε − p2

) m

ρ
Em,z + pg

dEm,z

dρ
− ig

m

ρ
Z0Hm,z − i

(
ε − p2

)
Z0

dHm,z

dρ

}
, (8)

Hm,ρ = A

{[
g2 − ε

(
ε − p2

) ]m
ρ

Z−1
0 Em,z − p2gZ−1

0

dEm,z

dρ
+ ipg

m

ρ
Hm,z + ip

(
ε − p2

) dHm,z

dρ

}
, (9)

Hm,φ = A

{
ip2g

m

ρ
Z−1

0 Em,z − i
[
g2−ε

(
ε − p2

) ]
Z−1

0

dEm,z

dρ
+ p

(
ε − p2

) m

ρ
Hm,z+pg

dHm,z

dρ

}
, (10)

where A = k−1
0 [g2 − (p2 − ε)2]−1.

To obtain equations for the longitudinal field components and expressions for the corresponding
transverse components outside the column, one should put ε = 1, g = 0, and η = 1 in Equations (5)–
(10).

The field outside the column is a superposition of the scattered and incident-wave fields. The
azimuthal harmonics of the longitudinal components of the field in the incident plane wave are written
as

E(i)
m,z = 0, H(i)

m,z = Z−1
0 qJm(k0qρ), (11)

where Jm is a Bessel function of the first kind of order m.
The scattered field, denoted by the superscript (s), is also written in terms of cylindrical functions

and has the following longitudinal components:

E(s)
m,z = D(E)

m qH(2)
m (k0qρ), H(s)

m,z = Z−1
0 D(H)

m qH(2)
m (k0qρ), (12)
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where H
(2)
m is a Hankel function of the second kind of order m, and D

(E)
m and D

(H)
m are the scattering

coefficients corresponding to the azimuthal index m. It can easily be verified that the longitudinal
components (12) satisfy Equations (5) and (6) if ε = η = 1 and g = 0.

The components of the field inside the column, which are solutions of Equations (5) and (6), are
represented in the form

E(t)
m,z = − i

η

2∑
k=1

B(k)
m nkqkJm(k0qkρ), H(t)

m,z = Z−1
0

2∑
k=1

B(k)
m qkJm(k0qkρ). (13)

Here, superscript (t) denotes the field transmitting to the column, and B
(1)
m and B

(2)
m are the amplitude

coefficients corresponding to the azimuthal index m for the field inside the column,

nk = − ε

pg

(
p2 + q2

k +
g2

ε
− ε

)
, k = 1, 2, (14)

and the normalized (to k0) transverse wave numbers q1 and q2 in the magnetoplasma filling the column
are related to p by the formula

qk =
1√
2

{
ε − g2

ε
+ η −

(η

ε
+ 1
)

p2 −
(η

ε
− 1
)

(−1)k
[(

p2 − P 2
b

) (
p2 − P 2

c

)]1/2
}1/2

, (15)

where

Pb,c =
{

ε − (η + ε)
g2

(η − ε)2
+

2χb,c

(η − ε)2
[
εg2η

(
g2 − (η − ε)2

)]1/2
}1/2

(16)

with χb = −χc = −1.
The presence of two transverse wave numbers q1 and q2 in a magnetoplasma, which correspond

to the same longitudinal wave number p, is related to anisotropic properties of a magnetized plasma
medium, in which two normal waves, ordinary and extraordinary, are excited by an obliquely incident
plane electromagnetic wave. This circumstance represents an essential difference of the problem
discussed herein from that in [9], where an H-polarized plane wave incident normally on the gyrotropic
column was considered and only one (extraordinary) wave could be excited inside the column.

The coefficients B
(1,2)
m , D

(E)
m , and D

(H)
m are determined from the conditions of continuity of the

tangential field components at the surface of the column:

E
(t)
m,φ = E

(i)
m,φ + E

(s)
m,φ, E(t)

m,z = E(i)
m,z + E(s)

m,z,

H
(t)
m,φ = H

(i)
m,φ + H

(s)
m,φ, H(t)

m,z = H(i)
m,z + H(s)

m,z.
(17)

The procedure of satisfying conditions (17) yields an inhomogeneous system of four linear equations
for the above-mentioned coefficients. The expressions for the coefficients B

(1,2)
m , D

(E)
m , and D

(H)
m turn

out to be very cumbersome and are not written here for the sake of brevity. Some details of the
derivation of these coefficients are given in Appendix A. Their analysis shows that the absolute values
of the coefficients D

(E)
m and D

(H)
m become maximum at some resonant frequencies, at which enhanced

scattering occurs from the column. These frequencies correspond to plasmon resonances of the column.
Strictly speaking, the frequencies at which the absolute values of the scattering coefficients reach their
maxima are not exactly equal to each other, but the difference between the respective frequencies is less
than or about the resonance linewidth, which is very small. A similar situation occurs for the coefficients
B

(1,2)
m , whose absolute values become maximum at frequencies that are extremely close to the resonant

frequencies of the scattering coefficients. The above-described slight differences are explained by the
fact that the coefficients B

(1,2)
m , D

(E)
m , and D

(H)
m represent ratios with a common denominator, which is

given by the determinant of the system of equations for these coefficients, and different numerators (see
Appendix A). Since the corresponding numerators are slowly varying smooth functions of frequency
compared with the denominator, which sharply varies near each of its minima, the frequency positions
of these minima will be adopted as the frequencies of plasmon resonances throughout this work. We
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emphasize that in what follows, we will consider only the resonance scattering when the frequency ω
coincides with some of the plasmon resonance frequencies.

To analyze the behavior of the energy flow, we should calculate the patterns of the time-averaged
Poynting vector which is given by the well-known relation S = (1/2)Re(E × H∗), where the asterisk
denotes complex conjugation. For convenience, the quantity S normalized to the magnitude of the
Poynting vector S(i) in the incident wave is used throughout this work. For better clarity, we will
present the three-dimensional patterns of the normalized Poynting-vector field lines along with the two-
dimensional plots showing the projections S⊥ and Sz of the Pointing vector onto the xy plane and the
z axis, respectively, as functions of the transverse coordinates x and y.

3. SCATTERING AT THE SURFACE PLASMON RESONANCES

As is known, the quasistatic surface plasmon resonances exist in the case of electrically small scatterers.
For a magnetized plasma column, this implies the fulfillment of the conditions k0a � 1 and k0|q1,2|a � 1.
The surface-plasmon resonances will further be denoted as SPm, and the respective resonant frequencies
as ωSP,m. Among all surface plasmon resonances, the resonances with the azimuthal indices m = ±1
are the most important in the case considered. It is evident that the corresponding resonant frequencies
depend on the incidence angle θ0. In the case a → 0, the resonant frequencies for normal incidence
(θ0 = π/2) are described by the expression [12–14]

ωSP,±1 =
[(

2ω2
p + ω2

H

)1/2 ± ωH

]
/2. (18)

In the absence of an external magnetic field, this formula gives the well-known result ωSP,±1 = ωp/
√

2
for the surface-plasmon resonance frequency of an isotropic cylinder, which is independent of the sign
of the azimuthal index.

For an arbitrary incidence angle θ0, the frequencies ωSP,±1 as functions of θ0 can be found only
numerically. Numerical calculations were performed for the dimensionless parameters ωpa/c = 0.188
and ωp/ωH = 8.02. On the one hand, the use of these values ensures the clarity of the forthcoming
figures. On the other hand, the chosen parameters can easily be realized if, e.g., the plasma column is
created by an RF discharge under laboratory conditions (see, e.g., [15–17]). Fig. 2 shows the resonant
frequencies ωSP,−1 and ωSP,1 as functions of the parameter p = cos θ0, as well as the corresponding
dependences of the absolute values of the scattering coefficients D

(E)
1 and D

(H)
1 at ω = ωSP,1. The

dependences of |D(E)
−1 | and |D(H)

−1 | on p for ω = ωSP,−1 almost coincide with the corresponding results in
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Figure 2. (a) Resonant frequencies ωSP,±1 and (b) the absolute values of the scattering coefficients D
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and D
(H)
1 at the frequency ω = ωSP,1 as functions of the longitudinal wave number p for ωpa/c = 0.188

and ωp/ωH = 8.02.
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Fig. 2(b) and, therefore, are not given here in the interests of brevity. Note that a variation in p from
zero to unity in Fig. 2 corresponds to variation in the incidence angle from θ0 = π/2 to θ0 = 0. It is
seen in Fig. 2(a) that the resonant frequencies ωSP,−1 and ωSP,1 depend on p only slightly, except for
the region p � 1. This fact allows one to use formula (18) as a good approximation for ωSP,±1 at almost
all incidence angles, excluding only the case of grazing incidence. Another interesting feature is that
the absolute values of the coefficients D

(E)
1 and D

(H)
1 vary from zero and unity, respectively, at p = 0,

when θ0 = π/2, to 0.5 at p = 1 when θ0 = 0. The same behavior is observed for the absolute values of
the corresponding scattering coefficients with the azimuthal index m = −1.

Now, as an example, we present the plots of the real and imaginary parts of the coefficients D
(E)
1

and D
(H)
1 as functions of ω and p. On the corresponding plots of Fig. 3, one can easily see the traces

showing the relation of the surface-plasmon resonance frequency ωSP,1 to the longitudinal wave number
p. It follows from Figs. 3(a) and 3(c) that at the resonant frequency, the real part of the coefficient D

(E)
1

passes through zero, whereas the imaginary part of this coefficient reaches its maximum in absolute
value, except for the case p = 0 where D

(E)
1 = 0. On the contrary, at the same resonant frequency,

the real part of the coefficient D
(H)
1 is maximum in absolute value, while the imaginary part of D

(H)
1

passes through zero, as is seen in Figs. 3(b) and 3(d). Thus, we can state that at the surface-plasmon
resonance frequency, the coefficient D

(E)
1 is purely imaginary, whereas the coefficient D

(H)
1 is purely

real. The above features are evidently indicative of a π/2 phase shift between D
(E)
1 and D

(H)
1 . The zero

value of the coefficient D
(E)
1 for normal incidence, in which case D

(H)
1 = ReD(H)

1 = −1 at ω = ωSP,1,
means that the scattered field outside the cylinder and the total field in the inner region ρ < a have the
same polarization as the incident H wave. In the case of oblique incidence, both these fields become
hybrid, i.e., have all six components. Indeed, as is evident from Equations (5)–(10), the total field inside
the plasma column is always hybrid if p �= 0. Hence, the scattered field must also be hybrid, which
stipulates the nonzero value of D

(E)
1 as well as the other related features observed in the behavior of

p
p

Re D 1
(E)

Im D 1
(E) Im D 1

(H)

Re D 1
(H)

(a) (b)

ω/ωH ω/ωH

(c) (d)

Figure 3. (a), (b) Real and (c), (d) imaginary parts of the scattering coefficients D
(E)
1 and D

(H)
1 as

functions of the longitudinal wave number and frequency. The same parameters ωpa/c and ωp/ωH as
in Fig. 2.
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Figure 4. Snapshots of the normalized components (a) Ez and (b) Z0Hz of the scattered field and the
normalized component Z0Hz of the total field (c) far from and (d) close to the plasma column at the
resonant frequency ω = ωSP,1 for the incidence angle θ0 = π/4. Other parameters are the same as in
Fig. 2.

the scattering coefficients as functions of p.
The spatial structures of the scattered and total fields, which are normalized to the amplitude

of the electric field in the incident wave, are illustrated by Fig. 4 plotted for the resonant frequency
ω = ωSP,1 and the incidence angle θ0 = π/4. In this case, ωSP,1/ωH = 6.08 and p = 0.707, provided that
the values of other parameters are the same as in Fig. 2. The figure shows the plots of the components
Ez and Hz, the latter being multiplied by the free-space impedance Z0 for convenience of graphical
representation. The snapshots of these components in the scattered field are depicted in Figs. 4(a)
and 4(b), respectively. The behavior of the total field is shown by the snapshots of its longitudinal
magnetic component Hz in the far zone of the plasma column and in its vicinity in Figs. 4(c) and 4(d),
respectively. To avoid misunderstanding, we note that the field inside the plasma column is shown only
in Fig. 4(d), in which the column boundary is marked by a thin circular white line. In other three
panels of Fig. 4, the inner region of the column is shown white colored. It should be emphasized that
the Ez component, which is absent in the incident field and appears in the scattered field, identically
coincides with the longitudinal electric component in the total field and has a helical structure typical
of scattering from gyrotropic objects, as is seen in Fig. 4(a). A similar structure is observed for the
scattered magnetic field in Fig. 4(b). At the same time, the Hz component of the total field outside the
column, which is determined by the superposition of the incident- and scattered-field contributions, has
an essentially different structure. It is worth mentioning that at the frequency ω = ωSP,−1 of the other
dipolar surface-plasmon resonance, the helical structures of the corresponding field snapshots has the
opposite untwisting direction and the values of the field components somewhat differ from those for the
frequency ω = ωSP,1, because all the field components are frequency dependent.

We now proceed to analysis of the energy flow patterns in the case of resonance scattering. Fig. 5
shows the magnitude (in color scale) and the spatial structure of field lines of the time-averaged Poynting
vector S for the total field in the case where ω = ωSP,1, θ0 = π/4, and the other parameters are the
same as in Fig. 2. The behavior of the transverse (with respect to the column axis) component S⊥ of
the vector S is illustrated by Fig. 5(a), in which the lines with arrows indicate the field lines and local
directions of S⊥. This plot can be divided into three regions the boundaries of which are represented by
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Figure 5. (a) Field lines and the magnitude of the transverse component S⊥ of the normalized Poynting
vector, (b) the pattern of its longitudinal component Sz, and (c) the stereometric view of the Poynting-
vector lines at the resonant frequency ω = ωSP,1 for the incidence angle θ0 = π/4. Other parameters
are the same as in Fig. 2.

red lines I and II. In the first region enclosed by the boundary I, the lines of S⊥ circulate around point 1
near the axis of the column. In the second region between the boundaries I and II, the adjacent lines of
S⊥ in the vicinity of point 2 at the column surface have opposite directions. Note that the lines I and II
have common point 3 on the surface of the column. It should be mentioned that the radial component
Sρ of the Poynting vector at the column surface is zero at points 2 and 3. In the third region in Fig. 5(a),
which is located outside the boundary II, the lines of S⊥ circulate around the column in the direction
opposite to that in the first region. Fig. 5(b) shows the longitudinal component Sz of the time-averaged
normalized Poynting vector. It is seen in the figure that the Sz component inside the column is negative.
Such behavior of Sz (i.e., Sz < 0) is also observed in some regions outside the column in close proximity
to its surface. In other regions outside the column, Sz > 0. The above-described features of the energy
flow pattern are attributed to the discontinuous behavior of the tangential component of the Poynting
vector at the column surface, although the radial component Sρ of this vector remains continuous for
ρ = a. As a result, the Poynting-vector lines undergo refraction at the column surface similarly to that
observed at the boundary of an isotropic cylinder [18, 19].

To clarify the three-dimensional behavior of the Poynting-vector field, Fig. 5(c) shows the
stereometric view of the energy flow lines corresponding to the three regions mentioned above. All
the lines presented in the figure originate in the plane z = 0. The green line in Fig. 5(c) corresponds
to the first region in Fig. 5(a). It is evident that the respective energy flow is oriented predominantly
along the negative direction of the z axis, which is also seen in Fig. 5(b). The blue line, for which Sz

is mostly negative, and the red line, for which Sz is mostly positive, refer to the second and the third
regions in Fig. 5(a), respectively. It is worth noting that in the case p = 0 where Sz = 0 and S = S⊥,
the Poynting-vector pattern inside the column and in its vicinity coincides qualitatively with the plot
in Fig. 5(a).

It should be mentioned that despite the symmetry of the incident plane wave with respect to the
yz plane, the patterns in Fig. 5 do not demonstrate such symmetry. This is explained by the gyrotropic
(nonreciprocal) properties of the medium filling the scattering column. If we plot the Poynting-vector
field lines for the surface-plasmon resonance frequency ω = ωSP,−1, the resulting patterns will be almost
symmetric to those shown in Fig. 5 with respect to the yz plane. Some asymmetry that can be observed
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in such a case is explained by a change in the resonant frequency.
An important implication of the numerical results is that the magnitude of the Poynting vector near

the boundary of a magnetized plasma column at the surface-plasmon resonance frequency significantly
exceeds that in the incident wave, as well as in the case of resonance scattering from an isotropic
plasma column. The region with enhanced energy-flow density has a well-pronounced crescent shape
in Fig. 5(a). Interestingly, such a shape remains intact when passing from oblique to normal incidence,
provided that the condition ω = ωSP,±1 is ensured for each incidence direction.

4. SCATTERING AT THE VOLUME PLASMON RESONANCES

We now consider scattering at plasmon resonances of the volume type. Their existence is related to the
fact that in a homogeneous cold collisionless magnetoplasma, one of the transverse wave numbers q1 and
q2 for a fixed p tends to infinity at a certain frequency if the latter lies in one of the so-called resonant
frequency ranges [6]. If tensor elements (3) are used, there exist two resonant frequency ranges, namely,
ω < min{ωH , ωp} and max{ωH , ωp} < ω < ωUH. We will focus on the latter frequency interval, which
is usually called the upper hybrid range. In this range, the cylindrically shaped magnetoplasma for any
azimuthal index m has an infinite number of resonances of the volume type even if the scatterer radius
is much less than the wavelength in the outer isotropic medium. These resonances and their resonant
frequencies will be denoted as UHm,n and ωUH,m,n, respectively, where the index n (n = 1, 2, . . .) labels
the resonances in order of increasing resonant frequency for a fixed azimuthal index m. Note that the
index n determines the number of field oscillations over the radial coordinate inside the plasma column.
It turns out that the frequencies of such resonances lie slightly below the upper hybrid frequency ωUH

and are located more and more densely when approaching ωUH. This is well seen in Fig. 6 which shows
the plots of the real and imaginary parts of the coefficients D

(E)
m and D

(H)
m as functions of ω and p near

the upper hybrid frequency ωUH for m = 0 and the previously chosen values of the parameters ωpa/c
and ωp/ωH . As in Fig. 3, the traces in Fig. 6 represent the relation of the volume-plasmon resonance
frequencies ωUH,0,n to the longitudinal wave number p. It is evident that despite some quantitative

p
p

Re D 0
(E)

Im D 0
(E) Im D 0

(H)

Re D 0
(H)

(a) (b)

ω/ωH ω/ωH

(c) (d)

Figure 6. (a), (b) Real and (c), (d) imaginary parts of the scattering coefficients D
(E)
0 and D

(H)
0

as functions of the longitudinal wave number and frequency near the upper hybrid frequency ωUH for
ωpa/c = 0.188 and ωp/ωH = 8.02.
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differences, the behavior of the scattering coefficients near the volume-plasmon resonant frequencies is
qualitatively similar to that for the surface plasmon resonances. Note that the linewidths of the UH0,n

resonances are so small that the corresponding traces for n = 2, . . . , 6 on the presented plots are seen
as thin lines, which are shown blue colored in Fig. 6.

Since the field at the UHm,n resonances is predominantly concentrated inside the plasma column,
allowance for even a minor ohmic loss in the plasma immediately leads to a sharp decrease in the
peak values of the scattering coefficients and, moreover, overlapping of the resonances that are closely
located in the vicinity of the upper hybrid frequency ωUH. Therefore, only the UHm,1 resonances, which
are more distant from other resonances with the frequencies concentrated near ωUH, apparently have
practical value. In this respect, the UH0,1 resonance, which has the widest linewidth and the most
distant frequency from ωUH, seems fairly promising.

The snapshots of the field at this resonance are presented for the incidence angle θ0 = π/4 in
Fig. 7. In this case, ωUH,0,1/ωH = 8.0818. It should be noted that at this resonance, the longitudinal
magnetic-field component of the scattered field outside the column reaches its maximum absolute value
at time instants at which the same component of the field inside the column is minimum in magnitude.
In view of this, the Hz component of the total field inside the column in Fig. 7(d) corresponds to the
time instant that differs by a quarter of the field period from the time instant chosen for plotting the
other three panels of this figure, with the white-colored inner region of the column.

A typical feature of the UHm,n resonances is the volume structure of the field inside the scatterer,
which is well seen in Fig. 7(d). Moreover, this field is much greater than the scattered and incident-wave
fields. Weak asymmetry in the pattern of Fig. 7(a) is explained by the contribution of the nonresonant
azimuthal field harmonics, which are present in the total field along with the m = 0 resonant harmonic.

The structure of the energy flow at the resonant frequency ω = ωUH,0,1 is shown in Figs. 8 and 9 for
θ0 = π/4 and the same parameters ωpa/c and ωp/ωH as in the preceding figures. Since the Poynting-
vector magnitude inside the column is much greater than that in the surrounding medium, we cannot use
the same scale for representing the Poynting-vector behavior in the inner and outer regions. Therefore,

 

y/
a

(a) (b)

(c) (d)

y/
a

x/a x/a

Figure 7. Snapshots of the normalized components (a) Ez and (b) Z0Hz of the scattered field and
the normalized component Z0Hz of the total field (c) far from and (d) inside the plasma column at the
resonant frequency ω = ωUH,0,1 for the incidence angle θ0 = π/4. The last panel corresponds to the
time instant differing by a quarter of the field period from the time instant chosen for plotting the other
panels. The parameters ωpa/c and ωp/ωH are the same as in Fig. 6.
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Figure 8. (a) Field lines and the magnitude of the transverse component S⊥ of the Poynting vector,
(b) the pattern of its longitudinal component Sz, and (c) the stereometric view of the Poynting-vector
lines outside the plasma column at the resonant frequency ω = ωUH,0,1 for the incidence angle θ0 = π/4.
Other parameters are the same as in Fig. 6.

Figure 9. The same as in Fig. 8, but for the inner region of the plasma column and in its close vicinity.

Figs. 8(a) and 8(b) show the patterns of the transverse and longitudinal components of the Poynting
vector only in the outer region. The behavior of these components inside the column is shown on another
scale in Figs. 9(a) and 9(b).

It is seen that outside the column, the Poynting vector has the positive longitudinal component
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Sz, which is illustrated by, e.g., the green and blue lines in Fig. 8(c). Inside the column, Sz < 0 almost
everywhere, except for the near-axis region in which Sz > 0, as is shown by the blue and red lines
in Fig. 9(c), respectively. Since |Sz| � |S⊥| in the region ρ � a, the pitch of a helix showing the
Poynting-vector field line inside the column turns out to be very small in Fig. 9(c). In the case p = 0,
the Poynting-vector pattern inside the column remains almost the same as in Fig. 9(a), i.e., energy will
circulate along the closed trajectories around the center point. Finally, we note that asymmetry of the
Poynting-vector patterns with respect to the yz plane in Figs. 8 and 9 is explained by the same reason
as for Fig. 5, namely, the gyrotropic properties of the magnetoplasma in the column.

5. CONCLUSION

We have analyzed the total field and the energy flow behavior in the case of resonance scattering of
an obliquely incident H-polarized plane electromagnetic wave by a magnetized plasma column whose
radius is much smaller than the wavelength in the surrounding isotropic medium. It is shown that at the
surface plasmon resonance, the Poynting-vector magnitude near the boundary of a gyrotropic cylinder is
much greater than that for an incident wave. Moreover, it has been established that a significant increase
in the field and the Poynting-vector magnitude inside a magnetized plasma column at the frequencies of
volume resonances can take place compared with the case of surface plasmon resonances. In addition,
the sign reversal of the longitudinal energy-flow component is found to occur when passing across the
boundary between the inner region of such a column and the surrounding medium. The results obtained
open up a variety of possibilities for controlling the energy flow by tuning the parameters of the plasma
column. The easiest way for doing this is apparently by varying an external magnetic field, although
variation in other parameters can also be used.

Despite the fact that we performed our numerical calculations for the column filled with a
magnetoplasma, the general features of wave scattering, which have been revealed during this analysis,
will be observed for scattering from arbitrary gyrotropic cylindrical objects whose dielectric permittivity
can be described by the tensor of general form (2). Even if the expressions for the tensor elements differ
from those used in this work, the scattering properties of cylindrical gyrotropic structures will evidently
demonstrate qualitatively similar behavior, regardless of the physical nature of particular media filling
such scatterers.
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APPENDIX A. COEFFICIENTS FOR THE FIELDS SCATTERED FROM AND
TRANSMITTED TO THE MAGNETIZED PLASMA CYLINDER

We present here the salient steps of the derivation of the coefficients B
(1,2)
m , D

(E)
m , and D

(H)
m . The

boundary conditions (17) can thus be represented in matrix form:

Sm · Cm = Wm. (A1)

The elements of the matrix Sm and of the vectors Cm and Wm are written as follows:

Sm,11 =
n1

η
Q1Jm(Q1), Sm,12 =

n2

η
Q2Jm(Q2), Sm,13 = −iQH(2)

m (Q), Sm,14 = 0,

Sm,21 = Q1Jm(Q1), Sm,22 = Q2Jm(Q2), Sm,23 = 0, Sm,24 = −QH(2)
m (Q),

Sm,31 = J (1)
m , Sm,32 = J (2)

m , Sm,33 = i
mp

Q
H(2)

m (Q), Sm,34 = −Hm,

Sm,41 = n1J̃
(1)
m , Sm,42 = n2J̃

(2)
m , Sm,43 = −iHm, Sm,44 =

mp

Q
H(2)

m (Q),
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Cm,1 = B(1)
m , Cm,2 = B(2)

m , Cm,3 = D(E)
m , Cm,4 = D(H)

m ,

Wm,1 = 0, Wm,2 = QJm(Q), Wm,3 = Jm, Wm,4 = −mp

Q
Jm(Q). (A2)

Here,

Jm = Jm+1(Q) − m

Q
Jm(Q), Hm = H

(2)
m+1(Q) − m

Q
H(2)

m (Q), Q = k0aq,

J (k)
m = Jm+1(Qk) +

mαk

Qk
Jm(Qk), J̃ (k)

m = Jm+1(Qk) − mβk

Qk
Jm(Qk), Qk = k0aqk,

αk =
(
p2 + q2

k − ε
)
g−1 − 1, βk = pn−1

k + 1, k = 1, 2, (A3)

and the other notations are defined in Equations (14)–(16).
We denote the determinant of the matrix Sm by Δm. Let Δ(l)

m be the determinant of a matrix S
(l)
m

(l = 1, . . . , 4) that is obtained by the replacement of the lth column of the matrix Sm by the elements
of the vector Wm, i.e., S

(l)
m,ij = Sm,ij for j �= l and S

(l)
m,il = Wm,i, where i, j = 1, . . . , 4. Then the

coefficients B
(1,2)
m , D

(E)
m , and D

(H)
m are calculated in a standard manner as

B(1)
m = Δ(1)

m /Δm, B(2)
m = Δ(2)

m /Δm, D(E)
m = Δ(3)

m /Δm, D(H)
m = Δ(4)

m /Δm. (A4)
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