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Electromagnetic Scattering Analysis for Two-Dimensional Gaussian
Rough Surfaces with Texture Characteristics Using

Small-Slope Approximation Method

Rong-Qing Sun*, Jing Xie, and Yang-Wei Zhang

Abstract—This paper is aimed at analyzing the electromagnetic (EM) scattering from the two-
dimensional (2-D) Gaussian rough surfaces characterized by textures. Visual appearances of the
stripe texture can be generated through the angle rotating in Fourier transform when the ratio of
the correlation lengths in two directions is large enough. The scattering field is derived in Cartesian
coordinate system through the small-slope approximation (SSA) method with plane incident wave. The
normalized co-polarized radar cross section (NRCS) from 2-D Gaussian rough surface characterized by
textures is calculated. In particular, several numerical results show the influences of incident angle,
texture angle, correlation length, and root-mean-square height on the scattering from the textured
rough surface. Finally, the validity of the SSA method is verified by comparisons of theoretical value
and measured data.

1. INTRODUCTION

Research on the electromagnetic (EM) scattering from random rough surfaces is widely employed in
the fields of globe remote sensing, sea research, surface detection and radar imaging [1–3]. In actual
application, the data of EM scattering are mainly from practical measurement and theoretical deduction.
For practical measurement, it is necessary to put in a lot of manpower and material resources in an
aggressive environment. However, the theory model [4, 5], which is from theoretical deduction and makes
comparison with experimental data, has some advantages, such as simple realization method, weak
environment impact, which are extremely valuable in application. At present, there are two major kinds
of scattering theories of rough surfaces, i.e., numerical method and approximate method. Numerical
method has very high calculation precision but is more complicated and difficult to be realized. In
this case, it is of the necessity to appeal to the approximate method. In the analysis of approximate
theory, the classical methods include Kirchhoff approximation (KA), small perturbation method (SPM)
and two-scale method (TSM) which combines KA with SPM [6–9]. Concerning KA, tangential plane
approximation forms its basis, in which the curvature radii of rough surface are much larger than incident
wave length so that the hypothesis of EM wave incident on the infinite plane tangential to a point on
the rough surface is hold. In other words, the KA method is appropriate for large scale of rough surface
but out of place for low grazing incidence, whereas SPM is suitable for a slightly rough surface [10].
Due to the respective application ranges of both KA and SPM based on statistical models of rough
surfaces, there exists very great limitation. Further, TSM has extended the applied area of scattering of
rough surfaces, but its defect lies in that the concept of the cutoff wave number, whose determination
is lack of scientific basis, is introduced to distinguish between large-scale and small-scale rough surfaces
when being calculated. For this reason, it is necessary to find a theory that can accurately solve EM
scattering of rough surfaces without considering their structures. In this case, there appeared to be
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relevant numerical methods, including extended boundary condition method (EBCM), Monte Carlo
method (MCM), finite difference time domain method (FDTD) and approximate method SSA [11–14].
Among them, SSA is an effective calculation method and applied to any wavelengths and rough surfaces,
and it is a more precise approximate method in which the expressions of different orders deduced are
obtained by retaining the term number of the series expansions and can be degenerated into the results
of KA and SPM in certain condition.

In recent years, a series of research results have been obtained in the statistical models of EM
scattering from rough surfaces [15]. Johnson and Warnick [16], in detail, compared geometric optics
(GO) with physical optics (PO) in the area of EM scattering theory of the rough surface with
exponential correlation features and confirmed the effective conditions of PO through the comparison
of the calculation results with accurate solutions. Hu et al. [17] compared and discussed the effects of
RMS height and correlation length of rough surface on the effective conditions of several approximation
methods. Additionally, some scholars performed research on deterministic model of EM scattering from
random rough surface. Li and Xu [18] studied scattering and Doppler spectral analysis for 2-D linear
and nonlinear sea surfaces by the SSA method.

Texture characteristics can reflect image properties and visual rough degree of rough surface in the
remote sensing images [19, 20]. They are obtained by analyzing the stripe pattern distributed in the
regular or irregular ways. So the texture characteristics are the foundation to describe and recognize
images in both theory and application. The distinct texture characteristics are displayed in sandbank,
cordillera and sea wave. Currently, the research on texture properties is mainly from the literature of
radar image, but study of the EM scattering for textures is much less. Prakash et al. [21] only studied
the variation of the specular scattering as soil textures at X band. So there is the necessity that the
relation between EM scattering and Gaussian rough surface with texture properties is established.

The remainder of this paper is organized as follows. In Section 2, formulation for 2-D Gaussian
rough surface, whose texture angles are adjustable, is briefly presented through the angle rotation in
Fourier transform, and discrete analysis on the rough surface is performed. In Section 3, how the
EM scattering calculations are carried out by using the first-order SSA (SSA-I) and second-order SSA
(SSA-II) method is addressed. As the SSA method is an approximate theory based on the expansion of
the surface slope, the second-order SSA will give a more accurate prediction of the scattering problems,
especially for cross-polarization cases. In Section 4, the impacts of the scattering angles, incident angles,
texture angles, RMS heights and correlation length on the single and average bistatic NRCS and the
backscattering coefficient are discussed.

2. REALIZATION OF 2-D GAUSSIAN ROUGH SURFACES WITH TEXTURE

The linear filter method, which combines finite impulse response filtering (FIR) with fast fourier
transform (FFT), is adopted to simulate 2-D rough surfaces [22].

2.1. Geometric Modeling of 2-D Gaussian Rough Surfaces

For a rough surface of the size of Lx × Ly, the profile is formed by means of the periodic extension in
the directions of x and y, respectively. Let f(x, y) be the height at any location (x, y), then use 2-D
Fourier extension to act on it, i.e.,

f(x, y) =
1

LxLy

∞∑
m=−∞

∞∑
n=−∞

amn exp
(
i2πm
Lx

x+
i2πn
Ly

y

)
(1)

where amn is complex amplitude of texture wave and Gaussian random variable [23]. Let kmx = 2πm/Lx,
kny = 2πn/Ly. Due to Fourier sum of Gaussian variable, f(x, y) also obviously submits to Gaussian
distribution. To obtain surface correlation function, we construct the functions as follows:

〈f(x1, y1)f(x2, y2)〉 =
1

L2
xL

2
y

∞∑
m1=−∞

∞∑
n1=−∞

∞∑
m2=−∞

∞∑
n2=−∞

〈
am1n1a

∗
m2n2

〉

exp
[
i2π
Lx

(m1x1 −m2x2) +
i2π
Ly

(n1y1 − n2y2)
]

(2)
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To satisfy the requirement of Gaussian power spectrum,

〈f(x1, y1)f(x2, y2)〉 = σ2C(x1 − x2, y1 − y2)

=

∞∫
kx=−∞

∞∫
ky=−∞

dkxdky exp (ikx(x1 − x2) + iky(y1 − y2))WG(kx, ky) (3)

where σ is the RMS height, C(x1 − x2, y1 − y2) the correlation function which describes the coherence
between different points on the surface separated by the distance between the point (x1, y1) and (x2, y2),
and WG(kx, ky) the corresponding power spectral density function (PDF) of surface. Comparing Eq. (2)
with Eq. (3), we find that the quadruple summation series of Eq. (2) can be associated with Kronecker
delta function, then is simplified as double summation. Correspondingly, spatial wave numbers in
integral variables are discretized. The above processes can be expressed as follows [24, 25]:〈

am1n1a
∗
m2n2

〉
= δm1−m2,n1−n2Am1n1 (4)

dkx = Δkx =
2π
Lx
, dky = Δky =

2π
Ly

(5)

kx = mΔkx, ky = nΔky (6)

In this case,

1
L2

xL
2
y

∞∑
m=−∞

∞∑
n=−∞

Amn exp (ikx(x1 − x2) + iky(y1 − y2))

=
(2π)2

L2
xL

2
y

∞∑
m=−∞

∞∑
n=−∞

WG(kx, ky) exp (ikx(x1 − x2) + iky(y1 − y2))

⇒ Amn = 〈amna
∗
mn〉 =

〈|amn|2
〉

= (2π)2LxLyWG(kx, ky) (7)

which gives the condition which module |amn| satisfies. However, for complex coefficient amn, next
step will discuss the satisfied relation between the real and imaginary parts of amn. To generate a
real sequence, the requirement for F (Kx,Ky) is that F (Kx,Ky) = F ∗(−Kx,−Ky) and F (Kx,−Ky) =
F ∗(−Kx,Ky). At the same time, amn is inverse Fourier transform of f(x, y). So it holds that

amn = a∗(−m)(−n) (8)

Further, due to the effect of Kronecker delta function in Eq. (4), let m2 = −m1 = m, n2 = −n1 =
−n, i.e., 〈

amna
∗
(−m)(−n)

〉
= 〈amnamn〉 = 0. (9)

which describes the relation complex coefficient amn as follows:〈
[Re(amn)]2

〉
=
〈
[Im(amn)]2

〉
〈[Re(amn)]Im(amn)]〉 = 0

(10)

Namely, Re(amn) and Im(amn) are independent Gaussian random variables, and their variances are
both a half of 〈|amn|2〉. Additionally, Eq. (8) is combined with the periodic characteristics of amn, and
we obtain the relation

a(−Nl
2 )(−Nl

2 ) = a∗Nl
2

Nl
2

= a∗(−Nl
2 )(−Nl

2 ) ⇒ a(Nl
2 )(Nl

2 ) ∈ R. (11)

At this point we obtain the real and imaginary parts of amn through the Gaussian distribution
function which forms complex coefficient G(m,n). Eventually, complex amplitude amn(t) satisfying the
above relations can be expressed by:

amn(kmx, kny) = G(m,n)2π
√
LxLyWG(kmx, kny) +G∗(−m,−n)2π

√
LxLyWG(kmx, kny) (12)

Through Eq. (1), the height value of f(x, y) of rough surface can be generated by the FFT method.
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This paper adopts Gaussian correlation function and Gaussian PDF to generate 2-D Gaussian
rough surfaces, i.e.,

C(τx, τy) = σ2 exp

(
−τ

2
x

l2x
− τ2

y

l2y

)
(13)

WG(kx, ky) =
lxlyσ

2

4π
exp

(
−k

2
xl

2
x

4
− k2

y l
2
y

4

)
(14)

where τx and τy describe the separation between any two points along the x and y directions. The
correlation length of the surface profiles is given by lx and ly. The surface is isotropic if lx = ly and
anisotropic if lx �= ly. The power spectral density function of the surface WG(kx, ky) is related to the
correlation function via a 2-D Fourier transform.

(a) (b)

(c)

Figure 1. The simulated 2-D Gaussian rough surfaces with texture characteristics: (a) lx = 10 m,
ly = 2m, σ = 0.6 m. (b) lx = 10 m, ly = 1 m, σ = 0.6 m. (c) lx = 5 m, ly = 1m, σ = 0.6 m. Texture
angle is 30◦.
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2.2. Realizations of 2-D Gaussian Rough Surfaces with Texture

As this paper is aimed at the statistically anisotropic rough surfaces, we empirically limited the ratio
of the lx/ly to be larger than 4, which guarantees that the surface can present a more anisotropic
characteristic. Texture angle φ is defined as the angle between x-axis positive direction and texture
direction. WG(k0x, k0y) can be obtained through angle rotation action of the rotation matrix on Eq.
(14), i.e., [

k0x

k0y

]
=
[

cosφ sinφ
− sinφ cosφ

]
·
[
kx

ky

]
(15)

Under this circumstance, the 2-D Gaussian rough surface by the FFT method also develops
corresponding angle rotation.

The size of the simulated rough surface is 40× 40 m, and there are 1024 sampling points in x and y
directions. The simulated results are shown in Figure 1. Among them, (a) shows the simulation result,
in which the RMS height σ is 0.6 m, correlation length lx 10 m, ly 2 m and texture angle φ 30◦. Based
on the above parameters, (b) changes ly into 1 m, and (c) changes lx into 5 m and ly into 1m. From
Figure 1, we clearly find that the textures from (b) become narrower than that from (c), and the height
variations from (c) become much more obvious than that from (b).

3. SCATTERING THEORY FROM ROUGH SURFACE BY SSA

In SSA, the geometrical configuration adopted to resolve the wave-scattering problem from the 2-D
randomly rough surface is illustrated in Figure 2, where we consider a rough interface z = h(⇀

r ), with
⇀
r = (x, y), between two homogenous half-spaces with permittivity ε1 (upper half-space, z > 0) and ε2
(lower half-space, z < 0) [26, 27]. The time dependence is assumed to be exp(−iωt). θi and θs are,
respectively, incident and scattering elevation angles, and φi and φs are the incident and scattering
azimuth angles, respectively. The incident wave vector can be expressed as

⇀

Ki =
⇀

k0 − q0ẑ, where
⇀

k0

and −q0 are horizontal and vertical projections of the incident wave vector, respectively. The scattered
wave vector is

⇀

Ks =
⇀

k + qẑ, where
⇀

k and q are appropriate components of the scattered wave vector,
respectively. q0 and q can be expressed as q0 =

√
ω2/c2 − k2

0 , q =
√
ω2/c2 − k2, Im q0, q ≥ 0 [28].

The unit vector in the direction of incidence is:

K̂i = sin θi cosφix̂+ sin θi sinφiŷ − cos θiẑ (16)

Figure 2. Geometry configuration for the wave scattering from 2-D surface.
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and the incident wave vector
⇀

Ki = KiK̂i = (
⇀

k0,−q0). The incident field can be expressed as:

ψinc(
⇀

R) = exp
(
−i⇀

Ki ·
⇀

R
)

= exp
[
i(

⇀

k0 · ⇀
r − iq0z)

]
= exp [−iKi(z cos θi − x sin θi cosφi − y sin θi sinφi)] (17)

where
⇀

R = (⇀
r , q0) = (x, y, z) and ψinc is electric field E or magnetic field H depending on the

polarization.
The unit vector in the direction of scattering is:

K̂s = sin θs cosφsx̂+ sin θs sinφsŷ + cos θsẑ (18)

and the scattered wave vector is
⇀

Ks = KsK̂s = (
⇀

k, q). The scattered field can be expressed as:

ψsc(x, y, z) =
∫

exp
(
i
⇀

k · ⇀
r + iqz

)
S
(

⇀

k,
⇀

k0

)
d

⇀

k (19)

Considering the case of far-field approximation, the scattering amplitude matrix corresponding to
the SSA method can be modified as

S
(

⇀

k,
⇀

k0

)
=

2(qq0)1/2

√
Pinc (q + q0)

∫
d

⇀
r

(2π)2
exp

[
−i
(

⇀

k − ⇀

k0

)
· ⇀
r + i(q + q0)h(

⇀
r )
]

×
(
B
(

⇀

k,
⇀

k0

)
− i

4

∫
M
(

⇀

k,
⇀

k0,
⇀

ξ
)
ĥ
(

⇀

ξ
)

exp
(
i
⇀

ξ · ⇀
r
)
d

⇀

ξ

)
(20)

where B(
⇀

k,
⇀

k0) is responsible for the first order contribution, and the following integration for the
second-order contribution. Moreover, Pinc is the incident wave power received by the rough surface and
can be expressed as:

Pinc =
∫∫

|ψinc(x, y, 0)|2 dxdy (21)

and

M
(

⇀

k,
⇀

k0,
⇀

ξ
)

= B2

(
⇀

k,
⇀

k0,
⇀

k − ⇀

ξ
)

+B2

(
⇀

k,
⇀

k0,
⇀

k0 +
⇀

ξ
)

+ 2(q + q0)B
(

⇀

k,
⇀

k0

)
(22)

ĥ
(

⇀

ξ
)

=
∫
h(⇀
r ) exp

(
−i⇀ξ · ⇀

r
)
d

⇀
r (23)

where S =
[
S11 S12

S21 S22

]
, B =

[
B11 B12

B21 B22

]
, M =

[
M11 M12

M21 M22

]
, B2 =

[
B

(2)
11 B

(2)
12

B
(2)
21 B

(2)
22

]
which

describe mutual transformations of the EM waves of different polarizations. They are discussed in detail
in [29]. Moreover, subscripts “1” and “2” denote vertical and horizontal polarizations, respectively. The
left-hand number represents the polarization mode of the receiving antenna, and the right-hand number
represents that of the transmitting antenna. Superscript “2” denotes second-order Bragg’ s kernel. For
convenience, this paper only discusses co-polarizations HH and V V .

It can be confirmed that, in a general case, M(
⇀

k,
⇀

k0; 0) = 0. In view of this, the term related to the
function M in Eq. (20) is proportional to the slopes of roughness rather than to the heights. This term
provides a correction to SSA-I. In this paper, this term is realized through inverse Fourier transform to
reduce the computational time.

Let us set

b11

(
⇀

k,
⇀

k0; ε1, ε2
)

= (ε2 − ε1)
(
ε1q

(2)
k + ε2q

(1)
k

)−1 (
ε1q

(2)
0 + ε2q

(1)
0

)−1
(24)

b22

(
⇀

k,
⇀

k0; ε1, ε2
)

= (ε2 − ε1)
(
q
(2)
k + q

(1)
k

)−1 (
q
(2)
0 + q

(1)
0

)−1
(25)
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where

q
(1)
k =

√
ε1
ω2

c2
− k2, q

(2)
k =

√
ε2
ω2

c2
− k2

q
(1)
0 =

√
ε1
ω2

c2
− k2

0, q
(2)
0 =

√
ε2
ω2

c2
− k2

0

(26)

Then

B11

(
⇀

k,
⇀

k0

)
= b11

(
⇀

k,
⇀

k0; ε1, ε2
)(

ε1q
(2)
k q

(2)
0

⇀

k · ⇀

k0

kk0
− ε2kk0

)
(27)

B22

(
⇀

k,
⇀

k0

)
= −b22

(
⇀

k,
⇀

k0; ε1, ε2
) ω2

c2

⇀

k · ⇀

k0

kk0
(28)

B
(2)
11

(
⇀

k,
⇀
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⇀

ξ ; ε1, ε2
)

= b11

(
⇀

k,
⇀

k0; ε1, ε2
)[

− 2
ε2 − ε1

ε1q
(2)
ξ + ε2q

(1)
ξ

×
(
ε1q

(2)
k q

(2)
0

⇀

k · ⇀

ξ

k

⇀

ξ · ⇀

k0

k0
+ ε2kk0ξ

2

)

+2ε1ε2
q
(1)
ξ + q

(2)
ξ

ε1q
(2)
ξ + ε2q

(1)
ξ

×
(
k0q

(2)
k

⇀

k · ⇀

ξ

k
+ kq

(2)
0

⇀

ξ · ⇀
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k0

)

−ε1
(
K2

s q
(2)
k +K2

s q
(2)
0 + 2q(2)k q

(2)
0

(
q
(1)
ξ − q

(2)
ξ

)) ⇀

k · ⇀

k0

kk0

]
(29)

B
(2)
22

(
⇀

k,
⇀

k0;
⇀

ξ ; ε1, ε2
)

= b22

(
⇀

k,
⇀

k0; ε1, ε2
) ω2

c2

[
− 2

ε2 − ε1

ε1q
(2)
ξ + ε2q

(1)
ξ

×
(⇀

k · ⇀

ξ

k

⇀

ξ · ⇀

k0

k0
− ξ2

⇀

k · ⇀

k0

kk0

)

+
(
q
(2)
k + q

(2)
0 + 2

(
q
(1)
ξ − q

(2)
ξ

)) ⇀

k · ⇀

k0

kk0

]
(30)

Here, we choose medium 1 as air and medium 2 as general dielectric rough surface which means
that the complex relative permittivity of the air is ε1 = (1, 0), and that of medium 2 is calculated by
using Debye formulas [30].

In terms of rough surface scattering amplitudes calculated by the SSA-II method, the NRCS can
be obtained by

σ0
pq = 4πqq0ΔSpq

(
⇀

k,
⇀

k0

)(
ΔSpq

(
⇀

k,
⇀

k0

))∗
(31)

where
ΔSpq

(
⇀

k,
⇀

k0

)
= Spq

(
⇀

k,
⇀

k0

)
−
〈
Spq

(
⇀

k,
⇀

k0

)〉
(32)

Expression (31) represents the scattered field corresponding to single rough surface, and subscript
pq denotes polarization state. Due to the random characteristics of the rough surface, the final bistatic
NRCS and backscattering coefficient are calculated as an average, i.e.,

σ0
pq =

〈
σ0

pq

〉
(33)

4. NUMERICAL RESULTS AND ANALYSIS

In the following, the radar frequency is 1.3 GHz. The size of the rough surface is Lx = Ly = 40 m,
sampled with 1024 points in each direction, i.e., the sample interval is λ/6. The relative permittivity of
rough surface is ε2 = 4.1−0.98i. The statistical parameters of the simulated rough surface are chosen as
lx = 10 m, ly = 1 m, σ = 0.5 m. Each average NRCS is obtained over 50 realizations of rough surfaces.
For simplicity, the following scattering results, both backscattering and bistatic scattering, in this paper
are all implemented in the incident plane, i.e., φi = 0◦, φs = 0◦ for backscattering scattering, while
φi = 0◦, φs = 180◦ for bistatic scattering.
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4.1. Comparison of NRCS between SSA-I and SSA-II

The single bistatic and backscattering NRCS versus angles from the rough surface for the texture angle of
0◦ is shown in Figure 3. Among them, (a) and (b) represent the bistatic scattering for the incident angle
of 45◦. (c) and (d) represent that for the incident angle of 0◦. (e) and (f) represent the backscattering
coefficient versus incident angles.

From Figure 3(a)–Figure 3(d), it is seen that for bistatic case, the NRCS from the SSA-II method
is slightly larger than the SSA-I method for scattering angles departing from specular directions. For
incident angle θi = 45◦, the distinction mainly appears at negative scattering angles, whereas for θi = 0◦,
difference exists for both backward and forward directions. However, near the specular direction, such
differences for both methods are very minor.

From Figure 3(e) and Figure 3(f), it is seen that for the backscattering case, in the quasi-specular
region, the backscattering coefficients for both methods are almost the same, but as the incident angle
increases, the coefficient for the SSA-II method is larger than that for the SSA-I method.

It is worthy to point out that the SSA-II method spends more computational time than the SSA-I
method, but calculation accuracy of the SSA-II method is obviously higher than that of the SSA-I
method. So this paper adopts the SSA-II method to study the scattering characteristics of the rough
surface with different textures.
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Figure 3. Co-polarization scattering from a single rough surface: (a)–(d) show the variation of bistatic
coefficients with scattering angles. (e) and (f) give the dependence of backscattering coefficients on
incident angles. And black lines represent SSA-I and green lines represent SSA-II.

4.2. Comparison of Average NRCS for Rough Surface with Different Textures by SSA-II

The average bistatic and backscattering NRCS versus angles from the rough surface with different
texture angles in SSA-II is shown in Figure 4. Among them, (a) and (b) represent the bistatic NRCS
for the incident angle of 45◦, and (c) and (d) represent the backscattering coefficients.

From Figure 4(a) and Figure 4(b), it is seen that for bistatic case, as the texture angles increases
from 0◦ to 90◦, the NRCS from the large texture angle is significantly larger than that from the small
one for scattering angles departing from specular directions. However, near the specular direction, such
differences for different texture angles are very minor. In addition, it is worthy to point out that for
the texture angle of 90◦, the NRCS near the backward region significantly increases, especially in V V
polarization. This is because the incident plane is perpendicular to the texture direction, and more
scattering facets contribute to the backward region.

From Figure 4(c) and Figure 4(d), it is seen that, for the backscattering case, in the quasi-specular
region, the backscattering coefficients for different texture angles are almost the same, but as the incident
angle increases, the coefficient for the large texture angle is larger than that for the small one.
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Figure 4. Average co-polarization scattering with different texture angles, i.e., φ = 0◦, 45◦, 90◦: (a)
and (b) show the variation of bistatic coefficients with scattering angles. (c) and (d) give the dependence
of backscattering coefficients on incident angles.

4.3. Effects of Statistical Parameters on Average Backscattering Coefficients

In the following, we merely choose the incident angle of 30◦. According to different correlation lengths
and RMS heights, the calculations are divided into four groups which are shown in Table 1.

Table 1. Statistical parameters of different textures.

Case
Correlation length

in x direction
Correlation length

in y direction RMS height

1 10 m 2m 1 m
2 10 m 1m 1 m
3 5m 1m 1 m
4 10 m 1m 0.5 m
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Figure 5. Average backscattering coefficients versus texture angles. (a) denotes HH polarization, and
(b) denotes V V polarization.
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The calculated results are shown in Figure 5. It is seen that for the texture angle of 90◦, the
backscattering coefficients in any case are basically maximum and begin to reduce gradually for the
texture angles departing from 90◦.

Comparing case 2 with case 4, we find that the backscattering coefficients from case 2 are
significantly greater than that from case 4 except specular part. This is mainly because the RMS height
of case 2 is two times greater than that of case 4. Namely, the texture surface corresponding to case 2
is much rougher than that of case 4. Moreover, comparing case 1 with case 3, under the condition that
the ratio of correlation length lx to ly is 5 to 1 for both cases, the backscattering coefficients from case
3 is far larger than that from case 1 except specular part, which fully illustrates that small correlation
length has a significant impact on the backscattering.

It is worthy to point out that because the SSA-II method is related to the slope of surface height, the
backscattering coefficients are not strictly symmetric about the texture angle of 90◦, which is different
from the results of the SSA-I method.

4.4. Comparisons of Experimental Data with Results Calculated by SSA-II

The average backscattering coefficients calculated by the SSA-II method are compared with the
experimental data from asphalt surface in the literature [31], (Ulaby et al., 1986, Chapter 21,
Figure 21.8). Among them, the size of the exponent spectrum rough surface is Lx = Ly = 15λinc,
where λinc is the EM wavelength. The statistical parameters are lx = ly = 3.574 mm, σ = 1.404 mm.
The calculated sample number is 100. The calculated results are shown in Figure 6. For Figure 6(a),
the incident frequency is f = 8.6 GHz, and the relative permittivity of medium 2 is ε2r = (5, 0), while
for Figure 6(b), f = 17 GHz and ε2r = (9, 0).
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Figure 6. Comparison of results by the SSA-II method and measured data of an asphalt surface at (a)
8.6 GHz and (b) 17 GHz, respectively.

From Figure 6, it is seen that the results calculated by the SSA-II method are in good agreement
with the experimental data at whether high frequencies or low frequencies. Moreover, it is pointed out
that the theoretical values are slightly larger than the measured data. This difference may be caused by
the discrepancy of the actual road surface and generated surface, which is revealed by the increasing gap
with increasing incident frequency. However, within the range of allowable error, the SSA-II method is
very effective in the EM calculation of rough surfaces.
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5. CONCLUSION

In this paper, the SSA-II method is applied to calculate the scattering from 2-D randomly Gaussian
rough dielectric surfaces for different texture models. A comparative study has been done on the distinct
properties of both NRCS due to texture effects among waves. From the numerical results of bistatic and
backscattering NRCS, it is seen that the differences between the SSA-I and SSA-II methods are revealed,
and the effects of statistical parameters and texture angle on the scattering are further analyzed. In
summary, the analysis presented in this paper helps to establish better understanding of the scattering
features of the 2-D texture rough surface. Meanwhile, this paper provides important reference value for
the texture information of 2-D rough surface. It is worthy to point out that the numerical scattering
results of texture rough surfaces remain to be further verified through measurement data.
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