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Abstract—An equivalent-circuit model for a reconfigurable unit cell is proposed. This circuit model
facilitates fast prediction of scattering parameters and dispersion analyses of a reconfigurable periodic
structure. The cutoff frequencies obtained using equivalent-circuit models are in excellent agreement
with those from measurements and full-wave numerical simulations. The proposed circuit model is then
modified to include non-ideal, commercial RF FET switches. The effect of such a switch in each state,
On or Off, is modeled by a frequency-dependant impedance, derived from the scattering parameters of
the switch. The proposed technique can be used to analyze a reconfigurable periodic structure with any
type of switches. For the structure with 24 unit cells considered here, the equivalent circuit model is
about five orders of magnitude faster than full-wave simulations.

1. INTRODUCTION

Microwave periodic structures have gained increasing attention during last few decades due to their
interesting propagation characteristics [1, 2]. The upper and lower limits of the bandgap (or stopband)
of such a microwave structure depend on the lattice structure, periodicity (lattice constant) and the
geometrical configuration of the unit cell. In conventional microwave periodic structures all these are
fixed and consequently the bandgap is fixed as well. This prevents their direct use in certain advanced
applications, where tunability or reconfigurability is required. The use of active switches such as diodes,
Field Effect Transistors (FET) or microelectromechanical systems (MEMS) inside the unit cells provides
a way of controlling the lattice structure of a unit cell. This concept has been used to transform passive
periodic structures to active structures that can provide reconfigurability [3].

Although a reconfigurable periodic structure can be accurately characterized through
measurements, this approach can be expensive and time consuming as it requires prototype fabrications.
Therefore full-wave numerical simulations are commonly used for their design and analysis [4–6]. In
general, full-wave numerical simulations of passive periodic structures are relatively less demanding since
they usually require only one simulation run. In contrast, reconfigurable periodic structures require
many simulation runs, one for each configuration. This demands extensive computational resources and
time, especially when the unit cell itself is geometrically complex.

An equivalent-circuit model representation is an alternative to full-wave numerical techniques [7–
11]. However equivalent-circuit models in general are limited in their ability to represent the circuit
response in a wide frequency range. This is mainly due to effects of higher-order modes that are usually
not accounted for in circuit representations. Despite this limitation, equivalent-circuit models are very
efficient and fast to predict the behavior of periodic structures specially in the preliminary stages of the
design. Further they can be used as an efficient tool to study the sensitivity of the bandgap to various
parameters of the unit cell.
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In this paper we present an equivalent-circuit model for a unit cell in a reconfigurable periodic
structure. Then we apply the model to compute the dispersion diagrams and transmission parameters
of a reconfigurable microwave filter. The unit cell in this design has two main states. The complete
periodic structure may contain a few dozen of such unit cells. The periodicity in the structure can
be changed by varying the state of individual unit cells according to a periodic state pattern. Each
possible state of the unit cell is represented by a circuit model and this enables us to represent the
complete periodic structure by a network of circuit segments, each representing a unit cell. This circuit
topology allows us to predict efficiently the first passband and stopband of the periodic structure for
all possible (periodic and non-periodic) state patterns. Further, it provides an extremely efficient way
to compute dispersion characteristics of the periodic structure for all periodic state patterns. This
has proven extremely useful in analyzing dispersion behavior of certain periodic state patterns when
commercial eigen-mode solvers fail to converge to the required accuracy.

The equivalent-circuit model is then modified to accurately represent the non-ideal and dispersive
nature of a commercially-available FET switch package, using its frequency-dependent scattering
parameters. The proposed method is verified with full-wave numerical simulations and experiments.
It is extremely fast in predicting the scattering parameters and dispersion diagrams of reconfigurable
periodic structures with switches, compared to full-wave numerical simulations. To the best of our
knowledge, such a fast technique based on equivalent-circuit models has not been developed before to
analyze reconfigurable periodic structures with switches.

2. CONFIGURATION

The periodic structure modeled here is a microstrip line with additional metallic patches embedded
inside the substrate along the transmission line as shown in Fig. 1. The layer of rectangular printed
patches is located 13 mils (h2) beneath the microstrip as shown in Fig. 1(b). The ground plane is at the
bottom of the substrate. The substrate thickness between the patches and ground plane is 60 mils (h1).
In the current example the same dielectric material, Nelco N4000 13SI (εr = 3.4 and tan δ = 0.01), is
used as the substrate above and below the patches but it’s also possible to use two different dielectrics
for these two regions as discussed in previous works [12–15]. The complete structure contains 24 patches.
Each patch can be selectively grounded using two discrete FET switches placed at the bottom ground-
plane. The two vias at the ends of a patch goes through the substrate to the ground-plane level and
connects to the ground through the switches. In other words, a unit cell contains two switches residing
between the ground and vias as shown in Fig. 1(b). This pair of switches are operated together to
connect the patch to, or disconnect it from the ground. The “On” state of the switch grounds the patch
while the “Off” state lets the metal patch float. The “On” and “Off” switch states are represented by
State “1” and State “0” hereafter. Two standard SMA connectors are provided at the two ends of the
periodic structure.

The proposed architecture to reconfigure the state of each unit cell provides the flexibility to impose
different periodic and aperiodic loading patterns along the microstrip line by changing the effective
position of the ground below the microstrip. When this loading is imposed in a periodic manner
the circuit becomes an electromagnetic bandgap structure. Therefore the stopband can be altered by
changing the state pattern along the structure.

In this work the “On” and “Off” state of the switch is initially modeled assuming ideal conditions,
as a short circuit and a capacitive gap between the vias and ground, respectively. Then a more accurate
model, based on scattering parameters, is introduced for non-ideal commercial FET switches.

3. CIRCUIT MODEL

3.1. Circuit Model of the Unit Cell

The middle segment of the microstrip line in each unit cell is directly above the patch. This segment
is modeled as a lumped equivalent circuit to a microstrip line [16], with the patch acting as the ground
plane for the microstrip. As shown in Fig. 2 this segment is represented by inductance Lms and two
capacitances Cmspatch. The other two segments are modeled as microstrip lines with the conventional
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Figure 1. (a) A top view of both microstrip
and patch layers. These layers are not in the
same plane. The dots on the sides of the
microstrip denotes the repetition of patches along
the microstrip line. (b) Side view of a unit cell.
The parameter values are given in Table A1 in
Appendix A.
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Figure 2. Circuit representation of a reconfig-
urable unit cell with active switches.

bottom ground plane. The patch is represented by two lumped inductors Lpatch and a capacitance
Cpatchground to the ground. The vias are modeled as inductances Lvia between the patch and ground.
The values of all these lumped circuit elements can be calculated from unit cell dimensions using the
closed-form formulas given in Appendix A. The impedance zswitch between each via and the ground
represents the switch. It indeed has two values, depending on the state of the switch. In Section 6, we
outline how these values can be estimated for a commercial non-ideal FET switch from its s-parameters.
In Section 4 and 5, zswitch of a unit cell in state “1” is set to zero assuming ideal switch “On” condition.
In State “0”, vias are isolated from the ground by a gap; hence zswitch can be calculated from a very
low gap capacitance Cviaground or simply replaced by an open circuit, again assuming an ideal switch.

3.2. Circuit Model of the Complete Periodic Structure

The complete equivalent-circuit, for the periodic structure containing 24 unit cells, is obtained by
cascading unit cell circuit models. The unit cell states “1” and “0”, can be combined to create arbitrary
state patterns, some of these are periodic. For example “...1010...” periodic state pattern can be created
by cascading “1” and “0” unit cells alternatively. Each of these complete periodic state patterns is
based on a unique repetitive pattern. This unique repetitive pattern in its simplest non-repetitive form
is defined as a macro cell. For example “10” is the macro cell in the “...1010...” periodic state pattern.

4. TRANSMISSION ANALYSIS

The derived lumped element values listed in Table A2 in Appendix A were used in AWR circuit simulator
to calculate the transmission of the complete periodic structure for various state patterns. The results
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for the “..11..” state pattern are compared with measurements and full-wave numerical results (obtained
from CST MWS) in Fig. 3. The experimental passive periodic structure represents ideal switches as
close as possible, with a solder dot closing the gap between the via and ground to represent the State
“1”. The gap was left open to represent State “0” in some experiments.

The circuit model calculated the scattering parameters very well up to the end of the first stopband.
Our circuit model approximations are valid as long as the guided wavelength λg is much larger than the
lumped elements. Within the first passband all the lumped element dimensions are at least one tenth of
λg or less. However around 6 GHz that is the onset of the second passband the largest circuit element
length is greater than 0.2λg. This leads to inaccuracies in predicting the behavior in second passband. In
addition, the circuit representation for the fundamental mode is different from the circuit representations
of higher-order modes. This leads to deviations between the insertion loss values obtained from the
circuit model and measurements after the upper limit of the stopband.

The equivalent-circuit model was further verified through a parametric study. Fig. 4 shows a
comparison between CST full-wave numerical results and circuit model results for different substrate
and superstrate permittivity values. The calculated −10 dB stopband values from equivalent circuit
model are within 5% of the corresponding full-wave numerical simulation values.

The same technique was used to derive transmission parameters of few other important state
patterns such as “..10..” and “..00..”. The lower (fL) and higher (fH) limits of the stopband obtained
from measurements, full-wave numerical simulations and circuit simulations are compared in Table 1 for
these state patterns. The full-wave numerical simulations were carried out using a distributed computing
setup consisting of two computers, each with a core i5 2.89 GHz processor and 4 GB RAM. The total

Figure 3. Comparison of the measured and simulated |s21| for the “..11..” state pattern. Circuit
simulation time: 0.65 seconds, CST simulation time with −50 dB steady state level accuracy: 13 hours
55 minutes 49 seconds.
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Figure 4. Comparison of lower and higher stopband limits with the change in (a) substrate
permittivity, (b) superstrate permittivity for the “..11..” state pattern obtained through full-wave
numerical simulations and the equivalent-circuit model.
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Table 1. Comparison of the results from measurements, full-wave numerical analysis and circuit models
for three state patterns.

..11.. ..10.. ..00..
Full
wave

Circuit
model

Measure
-ments

Full
wave

Circuit
model

Measure
-ments

Full
wave

Circuit
model

Measure
-ments

fL GHz 3.63 3.66 3.56 3.75 3.7 3.53
No

bandgap
No

bandgap
No

bandgap

fH GHz 6.43 6.33 6.24 5.30 5.25 5.19
No

bandgap
No

bandgap
No

bandgap
Simulation

time
13 h

55 m49 s
0.65 s N/A

22 h
11 m52 s

0.65 s N/A
3 h

22 m38 s
0.65 s N/A

simulation time for the “...11...” periodic pattern was 13 hours 55 minutes 49 seconds for a −50 dB
level accuracy in CST transient solver as opposed to 0.65 seconds for the circuit simulator on a single
computer with a core 2 duo 3GHz processor and 4GB RAM. It is clear that the circuit simulation is
extremely efficient in computing the scattering parameters of a reconfigurable periodic structure.

5. DISPERSION ANALYSIS

Dispersion analysis reveals the relationship between the propagation constant k and frequency f of an
infinite periodic structure. They are still useful in practical applications because a finite periodic
structure with sufficiently large number of unit cells can be approximated by an infinite periodic
structure. Usually full-wave eigen-mode solvers are employed for dispersion analysis. However popular
commercial eigen-mode solvers can be extremely time consuming and therefore inefficient when one
needs to analyze dispersion of a complex reconfigurable structure for several configurations. As an
alternative, the equivalent-circuit models, derived in Section 3 are used here for efficient dispersion
analysis of infinite reconfigurable structures.

5.1. ABCD Matrix of a Unit Cell

The propagation constant γ of an infinite periodic structure can be derived from the ABCD transmission
matrix of a unit cell [17] as

γ =
1
d

cosh−1

(
A + D

2

)
(1)

The term d denotes the length of the unit cell and A and D are the diagonal elements of ABCD
transmission matrix of the unit cell. The propagation constant contains both the attenuation constant
(α) and the phase constant (β), which are useful to describe the dispersion behavior of the periodic
structure. The unit cell considered in this research can be viewed as a cascade of three segments namely
a microstrip line, a lumped-element segment and a microstrip line, as shown in Figs. 2 and 5. Therefore
the complete unit cell matrix, ABCDuc, can be calculated as the product of ABCD matrices of the
individual segments:

ABCDuc = ABCDms × ABCDcct × ABCDms (2)

The ABCD matrix of the microstrip segments are given by

ABCDms =
[

cos βlms jZ0 sin βlms

jY0 sin βlms cos βlms

]
(3)

In order to obtain ABCDcct, the network of lumped elements in Fig. 2 is transformed to the T-
network topology shown in Fig. 5. This leads to closed-form expressions for the T-network impedance
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Figure 5. The ABCD matrix of a unit cell is calculated by multiplying ABCD matrices of three parts.

parameters, Z1, Z2(= Z1) and Z3 shown in Fig. 5. Then, the ABCD matrix of the lumped elements is
given by

ABCDcct =

⎡
⎢⎣

1 +
Z1

Z3
Z1 + Z2 +

Z1Z2

Z3

1
Z3

1 +
Z2

Z3

⎤
⎥⎦ (4)

The α and β for the “..11..” periodic state pattern obtained using the equivalent-circuit model by
combining Eqs. (1) to (4) are plotted in Fig. 6. It can be observed that the attenuation constant α
remains zero in the passbands since transmission matrix of the circuit does not account for any conductor
losses. The lower limit fL and higher limit fH of the stopband for the “...11...” state pattern, obtained
this way from the equivalent-circuit model, are 3.84 GHz and 6.4 GHz, respectively. They agree very
well with the results from the CST eigen-mode solver, which are 3.85 GHz and 6.2 GHz, respectively. As
shown in Fig. 6, the CST eigen-mode solver results are in close agreement with the circuit model results
up to the start of the second passband. The deviation above the higher cut off is due to inaccurate
circuit representation of the first higher-order mode. In the stopband (3.92 GHz–6.4 GHz) attenuation
constant is very large due to the electromagnetic bandgap.

Although the dispersion analyses assume infinite periodic structures, the lower and upper limits
of the stopband obtained from dispersion diagram for “..11..” state pattern agree closely with the
corresponding fL and fH frequencies, 3.56 GHz and 6.24 GHz, for the finite twenty-four unit cell
structure obtained in Section 4 from measurements (see Table 1).

The CST eigen-mode solutions took in total 8 hours 42 minutes and 52 seconds to compute the
wavenumbers for “...11...“ state pattern in a distributed computing setup that used 8 computers each
with one Intel core i5 2.89 GHz processor and 4 GB of RAM. Alternatively the circuit model method
took only 1.183 seconds in a computer with Pentium core 2 Duo 3GHz processor and 4 GB of RAM.

5.2. ABCD Matrix of a Macro Cell

Since a macro cell is composed of two or more unit cells, the complete transmission matrix of the macro
cell is given by the product of transmission matrices of individual unit cells:

ABCDmc =
p∏

k=1

ABCDucn (5)

where p is the number of unit cells in the macro cell and n ∈ {0, 1} the state of the kth unit cell. The
dispersion diagram for the “...10...” state pattern obtained using the equivalent-circuit model is shown
in Fig. 6. The CST eigen-mode solver failed to converge to the required accuracy for some phase points
for this “10” macro cell. With the circuit model, it was possible to calculate the dispersion diagram for
“..10..” periodic state pattern in 1.183 seconds in a computer with Pentium core 2 Duo 3 GHz processor
and 4 GB of RAM. The lower and higher limits of the stopband in “..10..” pattern, obtained from this
dispersion analysis, are 3.7 GHz and 5.3 GHz, respectively. They agree closely with the stopband limits
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obtained with non-ideal models for RF switches.

obtained in Section 4 for the finite structure from measurements, that are 3.53 GHz and 5.19 GHz (see
Table 1).

6. PERIODIC STRUCTURES WITH NON-IDEAL RF SWITCHES

In this section we consider actual RF switches such as packaged GaAs pHEMT switches. Their effective
impedance between two RF ports (zswitch in Fig. 2) is frequency dependent. This is now represented
by Z(f)switch. Obviously this impedance also changes significantly when the switch state is changed
between “On” and “Off”.

In the current study, MACOM MASW-007921 Single Pole Double Throw (SPDT) switch is
considered as the RF switch. Its two-port impedance matrix was computed for each state, from the
manufacturer-provided scattering parameters of the switch, using the standard transformations given
in [18]. Then its lumped equivalent switch impedance Z(f)switch was determined for each state of the
switch from the two-port impedance matrices by.

Z(f)switch = Z(f)11 − Z(f)12 − Z(f)21 + Z(f)22 (6)

6.1. Transmission Analysis

The transmission through the 24 unit cell periodic structure for “...11...” state pattern, obtained
with these frequency-dependent impedance models for the RF switches, is plotted in Fig. 7. These
equivalent-circuit model results agree very well with the results from the full-wave CST MWS transient
solver and experiments in the first passband as shown in the same figure. The cut-off frequencies, fL

and fH (defined at −20 dB level) from equivalent-circuit model are 2.63 GHz and 4.72 GHz and the
corresponding values from measurements are 2.55 GHz and 4.67 GHz, respectively. Similarly for state
pattern “..10..”, equivalent circuit predicts 2.72 GHz (fL) and 5.95 GHz (fH) while corresponding values
from measurements are 2.54 GHz and 6.23 GHz. With the introduction of FET switches in the patch
to ground paths, the bandgap shifts down in frequency, as noted in [19]. The increase in transmission
losses is due to the losses introduced by the switches.

The full-wave simulation results shown in Fig. 7 also utilized the manufacturer-provided scattering
parameters for the RF switches. These full-wave simulation were done in a distributed setup using 12
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computers each with one core i5 2.89 GHz processor and 4 GB RAM. The total simulation time was 5
days 7 hours 56 minutes and 56 seconds. In contrast, the circuit simulator took only 0.02 seconds in
a Pentium core 2 Duo 3 GHz processor with 4 GB of RAM. Yet the agreement between two results is
reasonable at lower frequencies where the equivalent-circuit model is valid. As in the passive case, the
equivalent-circuit model over estimate the attenuation in the bandgap and become inaccurate in the
second passband.

6.2. Dispersion Analysis

The Z(f)switch derived from Eq. (6) is used to calculate the dispersion curve for the periodic structure
with MACOM MASW-007921 RF switches. The attenuation constant derived for “..11..” state pattern
shows sudden changes at 2.5 GHz and 4.9 GHz. These frequencies closely agree with the stopband limits
determined from measured transmission at −20 dB level, which are 2.55 GHz and 4.67 GHz respectively.
Similarly attenuation constant change rapidly at, 2.5 GHz and 6.3 GHz for “..10..” state pattern. The
corresponding −20 dB measured stopband limits are 2.54 GHz and 6.23 GHz. Therefore dispersion
analysis of an equivalent-circuit model can be used to predict the position of the stopband efficiently
with a reasonable accuracy when the non-ideal nature of the RF switch is accounted.

7. CONCLUSION

The use of popular full-wave software packages for the transmission and dispersion analyses of
reconfigurable periodic structures can lead to large computing times (in the order of days) even in
distributed computing environments. The proposed equivalent-circuit approach is an extremely efficient
and reasonably accurate way to calculate the transmission parameters of a reconfigurable periodic
structure for all possible periodic and aperiodic switching patterns. It is also robust and extremely
efficient for dispersion analysis of such structures. With the proposed equivalent-circuit models, both
types of analysis take only a fraction of a second in an ordinary PC. The lumped-circuit element
values in the proposed models can be calculated from the physical geometry parameters of the unit cell
using simple closed-form expressions. The refined equivalent-circuit model accounts for the non-ideal,
dispersive behavior of commercially-available switches.

The proposed equivalent-circuit model is verified through measurements and full-wave simulations
on a periodic structure with 24 unit cells. It accurately predicts the edges of the stopband for a
range of dielectric constants. The results obtained with the current equivalent circuit model is more
accurate in the first passband in which the fundamental microstrip mode dominates. It becomes less
accurate when higher-order modes appear because some element values in the current model has been
derived by assuming fundamental TEM mode. Nevertheless, fast simulation time makes this equivalent
circuit model extremely useful in initial design stages. Although the focus of this paper is on periodic
reconfigurable structures, the proposed approach is equally applicable for non-periodic reconfigurable
structures composed of similar, modified-microstrip segments.

APPENDIX A. CALCULATION OF CIRCUIT ELEMENTS

The lumped element values, Lms and Cmspatch, can be calculated from [16]:

Lms(nH) = 2 × 10−4wpatch

[
ln

(
wpatch

wms + tms

)
+ 1.193 +

wms + tms

3wpatch

]
Kg (A1)

Cmspatch(pF) = 16.67 × 10−4wpatch

√
ε′re/Z0 + Cf (A2)

where wpatch, wms, tms, ε′re, Z0 and Kg are the width of the patch, width of the microstrip line, thickness
of the microstrip line, effective dielectric constant, characteristic impedance of the microstrip line and
a term accounted for the presence of a ground plane [16], respectively. The dimensions in Eqs. (A1)
and (A2) are in micrometers. The effective dielectric constant ε′re is modified to account the effect
of additional dielectric prepeg layer, which is required for the fabrication. The fringe capacitance Cf

between the microstrip and patch is calculated using the formulas in [20].
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Table A1. parameter values.

Parameter Value
wms 50 mils
tms 0.5 mils
h1 60 mils
h2 13 mils
rvia 8.84 mils

wpatch 80 mils
lpatch 225 mils
tpatch 0.5 mils

wground 250 mils
luc 120 mils
ε′re 3.67
εr 3.4

Table A2. Lumped element circuit values.

Lumped element Derived value
Lms 0.2837 nH

Cmspatch 0.3093 pF
Cpatchground 0.3362 pF

Lvia 0.609 nH
Lpatch 2.628 nH

Cf 0.068 pF
Cpg

f 0.081 nH
Cviaground 0.001 pF

The inductance of a via and the patch is approximated from the closed form formulas in [21]:

Lvia(nH) = 2 × 105

⎡
⎣h1 ln

⎛
⎝h1 +

√
r2
via + h2

1

rvia

⎞
⎠

⎤
⎦ + 2 × 105

[
h1

4
+ rvia −

√
r2
via + h2

1

]
(A3)

Lpatch(nH) = 2 × 102lpatch

[
ln

2lpatch

χ
− 1 +

χ

lpatch

]
(A4)

where
χ = 0.2235(tpatch + wpatch) (A5)

The capacitance between the patch and ground is calculated by,

Cpatchground(F ) =
ε0εrlpatchwpatch

h1
+ Cpg

f (A6)

The terms lpatch, h1, rvia, ε0, εr and tpatch denote half the length of the patch, thickness of the
substrate from ground to patch, radius of the via, permittivity of air, substrate dielectric constant and
thickness of the patch. The fringe capacitance Cpg

f [20] between the patch and ground is accounted for
in Cpatchground.

The derived lumped elements values are listed in Table A2 and the corresponding parameter values
are given in Table A1.
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