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A Method to Calculate the Spherical Multipole Expansion of the
Electrostatic Charge Distribution on a Triangular Boundary Element

John Barrett® *, Joseph Formaggio!, and Thomas Corona?

Abstract—We describe a technique to analytically compute the multipole moments of a charge
distribution confined to a planar triangle, which may be useful in solving the Laplace equation using the
fast multipole boundary element method (FMBEM) and for charged particle tracking. This algorithm
proceeds by performing the necessary integration recursively within a specific coordinate system, and
then transforming the moments into the global coordinate system through the application of rotation
and translation operators. This method has been implemented and found use in conjunction with
a simple piecewise constant collocation scheme, but is generalizable to non-uniform charge densities.
When applied to low aspect ratio (< 100) triangles and expansions with degree up to 32, it is accurate
and efficient compared to simple two-dimensional Gauss-Legendre quadrature.

1. INTRODUCTION

The behavior of systems under electrostatic forces is governed by the electric field E, which can be
expressed as the gradient of a scalar potential ®:

E=-Vo. (1)
In the absence of free charges, the potential ® is determined by the Laplace equation,
V20 =0 (2)

for all points x in the simply connected domain €2 in R3. The Laplace equation admits a unique solution
for the field E when the conditions on the boundary of the domain, 02, are specified. The boundary
conditions may be completely specified by associating either a value for the potential ® (Dirichlet), or
the derivative of ® with respect to the surface normal a—i’ (Neumann), for every point on 0f2.

One technique for numerically solving the Laplace equation is the boundary element method (BEM).
Compared to other popular methods designed to accomplish the same goal, such as Finite Element and
Finite Difference Methods [1], the BEM method focuses on the boundaries of the system rather than its
domain, effectively reducing the dimensionality of the problem. BEM also facilitates the calculation of
fields in regions that extend out to infinity (rather than restricting computation to a finite region) [2].
When it is applicable, these two features often make the BEM faster and more versatile than competing
methods.

The basic underlying idea of the BEM involves reformulating the partial differential equation as a
Fredholm integral equation of the first or second kind, defined respectively as,

fx) = / K(x,y)®(y)dy 3)
o0
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and
B(x) = £(x) + A / K(x,y)®(y)dy, (4)
o0

where K (x,y) (known as the Fredholm kernel), and f(x) are known, square-integrable functions, A is
a constant, and ®(x) is the function for which a solution is sought. Discretizing the boundary of the
domain into N elements and imposing the boundary conditions on this integral equation through either
a collocation, Galerkin or Nystrom scheme results in the formation of dense matrices which naively
cost O(N?) to compute and store and O(N?) to solve [3]. This scaling makes solving large problems
(much more than ~ 10 elements) impractical unless some underlying aspect of the equations involved
can be exploited. For example, for the Laplace equation there exist iterative methods, such as Robin
Hood [4, 5], which takes advantage of non-local charge transfer allowed by the elliptic nature of the
equation to reduce the needed storage to O(N) and time of convergence to O(N%), with 1 < a < 2.
Robin Hood solves the linear system by selectively modifying the charge distribution on the boundary
element with the worst violation of the boundary conditions. After the modification, the residual is
updated and the next boundary element to be modified is located. As such, it is a matrix-free method,
but it requires a fast method to compute individual matrix elements, and unlike Krylov subspace
methods, does not benefit from preconditioning techniques.

Another matrix-free technique that has been used to accelerate the BEM solution to the Laplace
equation, that has also found wide applicability in three dimensional electrostatic, elastostatic, acoustic,
and other problems, is the fast multipole method (FMM) [3]. The FMM was originally developed by
V. Rohklin and L. Greengard for the two dimensional Laplace boundary value problem [6] and N-body
simulation [7]. Fast multipole methods are appropriate when the kernel of the equation is separable or
approximately separable so that, to within some acceptable error, it may be expressed as a series [§],

K(x,y) = Y e(x)&(y)- (5)
k=0

In the case of the Laplace equation, the kernel is often approximated by an expansion in spherical
coordinates, with the functions ¥ (x) and & (y) taking the form of the regular and irregular solid
harmonics [9, 10]. This expansion allows the far-field effects of a source to be represented in a compressed
form by a set of coefficients known as the multipole moments of the source. The series is truncated at
a maximum degree of p which is determined by the desired precision.

When applying BEM together with FMM (which we refer to as FMBEM) to solve the Laplace
equation over a complex geometry, it is necessary to determine the multipole moments of various subsets
of the surfaces involved. At the smallest spatial scale, this requires a means of computing the individual
multipole moments of each of the chosen basis functions (boundary elements). Geometrically, these basis
functions usually take the form of planar triangular and rectangular elements, with the charge density
on these elements either constant or interpolated between some set of sample points. Since rectangular
elements cannot necessarily discretize an arbitrary curved surface without gaps or overlapping elements
and can be decomposed into triangles, we consider it sufficient to compute the multipole expansion of
basis functions of the triangular type.

Once the solution of the Laplace equation is know for a specific geometry and boundary conditions,
a common task is to track charged particles throughout the resultant electrostatic field. Evaluating
the field directly from all boundary elements of the geometry is costly. However, this process can be
significantly accelerated by constructing a local or remote multipole expansion of the source field in
the region of interest. The expansions can be precomputed with a time and memory cost which scales
like O(Np?), but result in field evaluation which scales like O(p?), instead of O(NN), as per the direct
method. The usefulness of the multipole expansion in both FMBEM and charged particle tracking
motivates us to find a method by which to compute the multipole expansion of a triangular boundary
element accurately and efficiently.
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2. MATHEMATICAL PRELIMINARIES

For an arbitrary collection of charges bounded within a sphere of radius R about the point xg, there is
a remote expansion for the potential ®(x) given by [7,11]:

mym
Yy Ao, ©)

=0 m=—1

This approximation converges at all points x such that |x —xg| > R. The coefficients Q}* are known as
the multipole moments of the charge distribution. The spherical harmonics Y;(6, ¢) are given by:

Y0, ) = NP (cos 0)™, (7)

where the coordinates (7, 6, ¢) are measured with respect to the origin x¢, and the function P™ is
the associated Legendre polynomial of the first kind. Several normalization conventions exist for the
spherical harmonics. Throughout this paper we use the Schmidt semi-normalized convention where

N = /(L—|m])!/(l+ |m|)!. When the charge distribution o(x’) is confined to a surface ¥, the
moments are given by the following integral:

Qr = [ o6oT 0. o) az = [ oGoNE costye s ®)

% 2

The integral given in Equation (8) can be addressed in a straightforward manner through two
dimensional Gaussian quadrature [12]. It can also be reduced to a one dimensional Gaussian
quadrature if one first computes an auxiliary vector field and applies Stokes’ theorem, as described by
Mousa et al. [13]. However, for high-order expansions, accurate evaluation of the numerical integration
becomes progressively more expensive. It is therefore desirable to obtain an analytic expression of the
multipole moments.

3. COORDINATE SYSTEM FOR INTEGRATION

In order to compute the multipole expansion of a triangle 3 defined by points {Py,P1,P2} in the
global coordinate system S”, we first must select the appropriate local coordinate system to simplify
the integration. Without loss of generality, we choose a system so that the vertex Py lies at the origin,
and the &; direction is parallel to the vector Po — P;. The plane defined by the triangle is then
parameterized by the local coordinates (u,v). Formally, this local coordinate system S can be defined
with the following origin and basis vectors:

O =Py
& = Q—-Py
S: Q=Pol 9)
. Py—P
TP, - P
&y = &y X &

The point Q is the closest point to Py lying on the line joining P; and P,. The position of Q in the
(u,v)-plane is (h,0) and is given by Q = P; + ((Po — P1) - €1)é;. Figure 1 shows the arrangement of
the two coordinate systems.

4. EVALUATION BY RECURRENCE

For an arbitrary expansion origin and surface element, Equation (8) is very difficult to compute
analytically, even for a constant charge density. Additionally, the variety of schemes available for
function interpolation over triangular domains, such as the natural orthogonal polynomial basis put
forth in [14-17], or the more commonly used variations on Lagrange and Hermite interpolation [18-21],
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@ (b)

Figure 1. The boundary element ¥ (shaded region) in global and local coordinate systems. (a)
Triangle > with arbitrary orientation and position in global coordinate system S”. (b) Triangle ¥ in
local coordinate system S used for integration (w axis points out of the page).

Figure 2. Planar boundary elements with various orders of charge density interpolation. Height above
the element indicates the value of the local charge density. (a) Zero-th order, N = 0. (b) First order,
N = 1. (c) Second order, N = 2.

complicates any general approach. Therefore in order to proceed, we choose a simplifying restriction on
the general problem, and avoid these more advanced interpolation schemes in favor of a simpler but less
well-conditioned bivariate monomial basis. In this basis, the charge density on the triangle is expressed
in terms of local orthogonal coordinates (u, v) by

N N-—
o(u, z_:zosabu v (u,v) €X . (10)
- S(u,v) €8

where NV is the order of the interpolation, the variables (u, v) are as defined in Figure 1, and s, are
the interpolation coefficients. Figure 2 shows an example of the interpolated function for various N.
It is possible to perform a change of basis on the interpolating polynomials [22] to compute the s4 4
coefficients in terms of the coefficients of some other polynomial basis, however we will defer discussion
of this change of basis and its application to low-order Lagrange interpolation to Appendix B.

It is convenient to perform the integral in the spherical coordinate system associated with S, since
the (u,v)-plane is a surface of constant 6 where the differential surface element d¥ = rsin fdrd¢. Since
the local coordinates (u,v) are

[an)

u(r, ¢) =rcos ¢ (11)
v(r, @) = rsin ¢, (12)
the expression for the charge density becomes:
N N-a
ZZS‘”’ rcos d)(rsing)’ : (r,¢) € X ' (13)
a=0 b=0
0 c(ro) ¢

Fixing 6 = 7/2, inserting our expression for the charge density (13) into (8) and then exchanging the
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order of integration and summation we find:

N N-a

¢ [r(®) |
Q= Z Z Sa,lemle(O)/ /0 (cos ¢)%(sin ¢) e~ MeratoH L g, (14)

a=0 b=0

As can be seen in Figure 1 the upper limit on the r integration is given by r(¢) = h/ cos ¢. Performing
the integration over the r coordinate leaves us with:

N N-a a+b+142 bo (o b —ime
Y (e (sin ¢)Ve
Ql o (CL +b+1+ 2> l l (0) /1 (COS ¢)b+l+2 ¢ ( 5)
Kim .

The prefactors le;fl are easy to compute. To address integrals of the form Ilb . Wwe split our integrand
into imaginary and real components Ilbm = Aﬁ’ m iBme, where
A /‘i’2 (sin ¢)? cos(ma) do (16)
,m
) (cos ¢)bHi+2
?2 (sin ¢)® sin(m
B, - [ Gl nima),

(COS ¢)b+l+2

Before evaluating these integrals, we pause to introduce the Chebyshev polynomials [23,24]. The
Chebyshev polynomials of the first kind 7, (x) are defined recursively for n > 0 through:

Toyi1(x) = 22T, (x) — Ty (), (18)

with Tp(x) = 1 and Ti(x) = . Similarly, the Chebyshev polynomials of the second kind, U,(z), are
defined through:

®. (17)

1

Un+1(z) = 22Uy (z) — Up—1(2), (19)

with Up(xz) = 1 and Uy (z) = 2z. These polynomials are noteworthy for our purposes because of the two
following useful properties:

T, cos 9) = cos(no) (20)
Uy (cos ¢) = W (21)

We can exploit these in order to evaluate A;’ m and Blbm recursively. We first address A;’ m- Using (20),
we may rewrite (16) as

Albm _ /‘i’2 (sin ¢)°T;,, (cos ¢)

(cos ¢)b+1+2

dg. (22)

1
Expanding this using (18) gives
A - /@ (sin ¢)" T 1 (08 9) | b /@ (sin ¢)*Tn—2(cos ¢)

(COS ¢)b+l+1 (cos ¢)b+l+2

do, (23)

1 1

which yields the recursion relationship for the A;’ m
‘A?,m = 2A§)—1,m—1 - 'A?,m—2' (24)

Similarly for the Blbm, we have:
B?,m = 28?—1,771—1 - B?,m—?' (25)

Given these recursion relationships, we can reduce the integrals ‘A?,m and B?m of any degree 0 <1
and order 0 < m < [ into a series of terms, of which only the base cases must be evaluated explicitly.
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Figure 3. Graphical representation of recursion given in Equation (24) up to ! = 3. Circles denote terms
which must be computed as a base case, squares denote terms which may be computed by recurrence.
The arrows indicate dependence. Higher order terms extend downwards and to the right, as denoted
by the dotted lines and arrows.

Figure 3 shows a representation of the recursion relationship. The base cases that are not further
reducible through recurrence can all be expressed in terms of single integral form I}} where

11 = / ” ($ing)? (26)

p . (cos @)P

The base cases A?,o = I,g’HJrQ and A?,l = II?HH’ while Bﬁl = I’ and 820 = 0. The solutions to

bHl+2
integrals of the form I} are addressed in Appendix A.

It should be noted that during the process of computing the value of the moment ;" through
recursion, the real and imaginary parts of all moments with degree < [ and order < m will be computed.
These values can be stored so that there is no need to repeat the recursion for each individual moment
needed. This is useful when determining the multipole expansion of a boundary element since all
moments up to a certain maximal degree can be computed in one pass through the recurrence.

5. MULTTPOLE MOMENTS UNDER COORDINATE TRANSFORMATION

We can make use of the results of the preceding section to compute the multipole expansion coefficients
of the boundary element Y with respect to an arbitrary origin and set of coordinate axes. Typically, we
are most interested in being able to construct the multipole moments ¢;" of ¥ in the coordinate system
that has the canonical Cartesian coordinate axes, with an origin at an arbitrary point Sg. We refer to
this system as the global coordinate system, and denote it as S”:

O =39Sy

éy = (1,0,0)
éy =(0,1,0)
éy =(0,0,1)

S" (27)

Therefore, we must first construct the coordinate transformation A : S — S”, and then determine
how this coordinate transform operates on the coefficients Q" of the multipole expansion given in S.
The rigid motion A : S — S” can be specified by a rotation U : S — S’ followed by a translation
T:S" — 5”. We can describe the translation by the displacement A = Sy — Py, and the rotation U by
the Euler angles («, 3,7) following the Z — Y’ — Z" axis convention of [25,26]. The Euler angles allow
us to write the rotation U as the composition of three successive rotations U = Uyzn (y)Uy (8)Uz(c).
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Table 1. Euler angles in terms of the elements of the matrix U.

Angle U22 75 +1 U22 =1 U22 =-1
a atan2(;(r{251 , %25) 0 v
ﬂ aCOS(UQQ) atan2(U10, Uoo) atan2(U01, UH)
v atan2( ;glﬁ, ;goﬁ) 0 0

Explicitly, U is given by

cosy —siny 0] [cosf 0 —sinfF] [cosa —sina 0
U= |siny cosvy 0] [ 0 1 0 ] [sina cos o 0] (28)
0 0 1] [sing 0 cosf 0 0 1
and can be related to the basis vectors of the coordinate system .S by:
Uoo Uo1 U2 €o g
U=|Uwo Un Ui | =] & | . (29)
Uy Un Uz €2

It is well known that the Euler angles («, 3,7) do not uniquely describe an arbitrary rotation matrix
U, however, a unique description is not necessary for our purposes. A convenient set of choices is
given in Table 1. With the transformation A : S — S” specified by the Euler angles («, 3, v) and
the displacement A, we can determine the multipole moments of ¥ in S” through the application of
theorems (1) and (2).

Theorem (1), from Wigner [27], originates in quantum mechanics [28]. It appears when needing to
express the result of the action of the rotation operator D(a, 3,7) upon a particular eigenstate |I,m)
of total angular momentum /, which is associated with the spherical harmonic Y;™(6, ¢), in terms of
the eigenstates of the rotated frame |I’,m’). Note that since total angular momentum is conserved, this
rotation operator does not mix states with a distinct value of  (thus [ = I’). Specifically, Wigner’s
theorem tells us the matrix elements of the rotation operator D!(a, 3,7), which is a member of the
(20 + 1) x (21 + 1) matrix representation of SO(3)f. A more succinct version of this theorem is given
in [26], and is restated here in slightly a modified form.

Theorem 1 Assume there are two coordinate systems which share the same origin S : (O, éy, é1,é2)
and S": (O, éy, €}, ¢é,), that are related by the rotation U € SO(3) specified by the Euler angles {c, 3,7}
such that €, = Ué;, fori =0, 1, 2. Furthermore assume that there is a function F(6,¢) that can be
expanded in terms of the spherical harmonics Y™ (6, ¢) such that:

[e%) l
F(0,0)=>_ Y Qry(6,¢) (30)

=0 m=—I
then there exists a function f(6',¢") such that:

[e%e) l
18.¢") = FO(', 0,06, =>" > af" ¥ (6,9 (31)
=0 m'=—1
where the coefficients qlm/ are given by:
l
q" = > Dpyml B7)Q (32)

m=—1

and where Dm/’m(a,ﬂ,’y) are elements of what is know as the Wigner D-matriz.

T The special orthogonal group SO(3) is the group of all 3 x 3 orthogonal matrices under matrix multiplication. It is an irrreducible
representation of the rotation group, which is the set of all rotations about the origin in R3 under the operation of composition.
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The direct evaluation of the coefficients Dfn,7m(a, B,7) through the use of the expressions given by
Wigner [27, 28] is beyond the scope of this paper. Regardless, direct evaluation of (32) is known to be
inefficient, as well as numerically unstable for large values of [ and certain angles [29]. However, given
the wide applicability of spherical harmonics to quantum chemistry, fast multipole methods, and other
areas, there has recently been a large effort to develop efficient and stable methods to perform such
rotations in both real and complex spherical harmonic bases. The current state of the field of spherical
harmonic rotation is well summarized by [30], with the algorithm developed by Pinchon et al. [25] being
one of the fastest and most accurate. To avoid the need of complex matrix-vector multiplication, the
method proposed by Pinchon etal. [25] is executed in the basis of real spherical harmonics S;™ (0, ¢)
(with a different normalization convention). To apply a rotation to the set of multipole moments {Q]"},
with [ fixed and m ranging from —I to [, we first must calculate the corresponding real basis {R]"}
coefficients. Then, to prepare this set of moments {R;"} for the rotation operator we arrange them to
form the column vector Ry:

T
R, = |R', RS R7U LRI R (33)

The application of the Wigner D!-matrix to this column vector produces the corresponding vector of
rotated moments r;. For efficiency, the D'-matrix is itself decomposed into several matrices, each of
which may be applied to the vector R; in succession:

r; = D'(a, 3,7)Ry = [Xi() Ji X1 (8)J: X1 (7)] Ry (34)

In this notation, the X; matrices effect a rotation about the z-axis, while the J; matrices perform
an interchange of the y and 2z axes. The advantage to this method is that the X; matrices have a
simple sparse form whose action on the vector R; can be computed quickly, as they consist only of non-
zero diagonal and anti-diagonal terms. The interchange matrices J;, on the other hand, are completely
independent of the rotation angles and therefore only need to be computed once. While the computation
of J; is beyond the scope of this paper, there is an elegant recursive scheme to compute them up to
any degree [ given by Pinchon et al. [25]. After the rotated moments r; have been computed in the real
basis, we need only convert them back to the complex basis to obtain the set of moments {qlm/}.

After obtaining the multipole moments {qlml} in the coordinate system S’, we need to determine
how they are modified by a displacement of the expansion origin. This can be accomplished by the
application of theorem (2). This theorem, presented by Greengard and Rohklin [6, 7], is a principle part
of the fast multipole method. It is applied during the operation of gathering the multipole expansions
of smaller regions into larger collections, and describes how a multipole expansion about one origin can
be re-expressed as an expansion about a different origin. Graphically, this is represented in Figure 4.

Theorem 2 Consider a multipole expansion with coefficients {O]'} due to charges located within the
sphere D with radius a centered about the point Py. This expansion converges for points outside of
sphere D. Now consider the point Sog ¢ D such that A = Sy — Py = (p,a, 3). We may form a new
multipole expansion about the point Sg due to the charges within D which converges for points outside
of the sphere D' that has its center at So and radius a’ = p + a. The multipole moments of the new
expansion {Mf} are given by:

m=n Of::zﬂi'k‘_|m|_‘k_m‘A?A?:ernYn_m(aa 3)

J
MJk:ZZ Ak
J

n=0m=—n

where AT = (—1)"/+/(n — m)!(n + m)!.

(35)

Applying theorem (2), with the displacement A = Sy — P and the rotated moments {q}“l} inserted as
{O;} allows us to obtain the set of moments { M. Jk } which are equivalent to the final objective, namely,
the multipole moments {g;"} of the boundary element 3 in the global coordinate system S”. However,
the number of arithmetic operations required by the application of theorem (2) scales like (’)(p4). This
high cost can be mitigated by the use of the special case of theorem (2) along the z-axis. White et al. [31]
noted that it can be used to perform a multipole-to-multipole translation along any axis needed if a
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Figure 4. Multipole to multipole translation. The solid shaded area indicates the region where the
original multipole expansion {O]""} does not converge, the striped area indicates the region where the
new multipole expansion {M Jk} does not converge.

rotation is performed through the use of theorem (1) before and after the translation operation. The
first rotation applied aligns the z-axis with the vector So — Py, while the second rotation is the inverse.
The use of the rotation operator together with the axial translation has a cost which scales like O(p?),
which for high-degree expansions can provide useful acceleration when compared to the implementation
of theorem (2) alone.

Using theorem (2) to transform the multipole moments computed about the expansion center Py
(in the special coordinate system S), to an arbitrary expansion center Sy puts a constraint on the radius
of convergence. The radius of convergence can be no less than p + a, where p = |Py — S| and a is the
length of the longest side of the triangle 3 that terminates on Py.

6. NUMERICAL RESULTS

In order to gain some understanding of the accuracy and efficiency of the algorithm presented in this
work, some numerical tests were performed with regard to the problem of evaluating the electrostatic
potential of a uniformly charged triangle (zero-th order interpolant). All of the following tests were
performed in double precision.

Since the integrals required to compute the multipole expansion of boundary elements are typically
evaluated using numerical quadrature, a straightforward two dimensional Gauss-Legendre quadrature
method was used as a benchmark against which to compare the speed and accuracy of the analytic
algorithm. It should be noted that this numerical integration routine has not been optimized, nor is
it the most efficient possible, it is only intended to provide a point of reference to a typically used
means of computing the multipole coefficients. There are several techniques to accelerate the numerical
integration over our benchmark implementation, such as adaptive quadrature [32] or quadrature
rules specifically formulated for triangular domains such as those of Cowper [33]. Cowper’s rules
require roughly three times fewer function evaluations than the two-dimension Gauss-Legendre with
corresponding accuracy but are only provided for a few different orders. The computation of the
weights and abscissa for an arbitrary order quadrature rule on a triangular domain is more complicated
than the simple two-dimensional scheme, which are trivially generated from the one dimensional Gauss-
Legendre weights and abscissa. Though it is possible that these other methods may be competitive,
they were not implemented for this study, since is not the purpose of this paper to survey the broad
range of numerical integration methods available.

The benchmark numerical integration is performed by first converting the integral over the
triangular domain given by the points {Pg, P1, P2} to an integral over a rectangular domain through
the use of a slightly modified version of the transform described by Duffy [34]. We can then write the



132 Barrett, Formaggio, and Corona

surface integral given in Equation (8) as:

Ly Lo

://goﬁ(e( o(r))|r] 3r gr dvdu_//f u,v)dvdu, (36)
00
where r(u,v) = (Po + uiiy + v(1 — u/Li)fe) — x¢0. The point x¢ is the origin of the expansion,

L; = |P; — Py|, and i; = (P; — Py)/L; for i = 1,2. The two dimensional integral over the (u,v)-
plane is then performed using m-th order two dimensional Gauss-Legendre quadrature [23], given by:

o LlLQZzwzwj ( (2 + 1), 132 (xj+1)) (37)

=1 j=1

where w; and x; are respectively, the one-dimensional Gauss-Legendre weights and abscissa as described
by Golub and Welsch [35].

The first study consisted of 10* triangles generated by randomly selecting points on a sphere with
arbitrary radius Rsource- These triangles were restricted to have an aspect ratio of less than 100. We
define the aspect ratio of a triangle as the base divided by the height, with the base taken to be the
longest side. For each triangle the multipole expansion (for each degree up to p = 32) about the
origin xg (the center of the sphere) was calculated using the algorithm described in this work. For each
triangle 100 random points x were selected in the volume Ryouree < [X—Xo| < 103 X Rgource- The angular
coordinates of these points were uniformly distributed, while the radial coordinate followed a log uniform
distribution in order to provide enough statistics for points at small radius. At each test point the relative
error between the potential evaluated directly and the potential given by the multipole expansion was
computed and histogrammed. The relative error ®error = |(Prmultipole — Pdirect )/ Pdirect| 0N the potential
is plotted as a function relative distance from the expansion origin for various expansion degrees in
Figure 5. The relative error on a p = 32 degree expansion of the potential reaches approximately
machine precision at roughly twice Rgource- However, the constraint imposed by theorem (2) on the
radius of convergence in this particular test geometry limits the minimum radius of convergence to
approximately 2 X Rgource- Using a higher degree expansion than 32 does not result in a reduced radius
of convergence for this geometry.

As a general rule, ®q,0r is a decreasing function of distance until numerical roundoff starts to
dominate near the level of machine precision. However, this is only true so long as the method used

107g v M ey

102 g

103§

10 5‘

10 , Degree
=— 10® ep=0
8

& 107 mp=1
w| €108 4p=2
g5
£|® 100 _ vp=4

o| 1010 v vp=8

1011 +p=16

1012 *p=32
1013
10714
1015
1016 ! Lol ! ! | ! L
1 10 102 10°

[x - XOVR source

Figure 5. Comparison of the accuracy of the multipole expansion against the direct method of
evaluating the potential with various degrees of the expansion. Coefficients of the multipole expansion
are calculated using the analytic method described in this paper. Relative error is shown as a function
of the ratio |x — x|/ Rsource, Where |x — xg| is the distance of the evaluation point from the expansion
origin, and Rgource i the radius of the smallest sphere enclosing the charge distribution.
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to compute the multipole moments of the expansion respects the oscillatory behavior of the spherical
harmonics. For low degree expansions, numerical quadrature rules with a small number of function
evaluations can compute the multipole moments exactly to within machine precision. However, as
the degree of the expansion is increased the higher order spherical harmonics oscillate more rapidly
and progressively more expensive quadrature rules are needed to evaluate the coeflicients to equivalent
accuracy. To explore this effect we repeated the previous study using our algorithm and the benchmark
numerical quadrature method with various orders m = {2, 3, 4, 6, 8, 10} and defined a quantity
Rconvergence (the radius of convergence) as the minimum distance |x — xg| for which we have ®¢pror(%)
less then some threshold teror. Then for each method and expansion degree up to p = 32 we computed
the radius of convergence at four thresholds teqor = {1075,1078,107 107}, Figure 6 shows the
behavior of Reonvergence/Rsource as a function of expansion degree. For example, from Figure 6 one can
see that up to an expansion degree of p = 8, the 4 x 4 Gauss-Legendre quadrature rule is sufficient to
compute the multipole coefficients to the same accuracy as our algorithm. However continuing to use
the 4 x 4 Gauss-Legendre quadrature rule while increasing the degree of the expansion up to p = 32 does
not result in a more accurate evaluation of the potential. To obtain the full benefit of a high degree
expansion one must correspondingly increase the number of function evaluations used by numerical
integration.
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Figure 6. Relative radius of convergence as a function of the degree of the multipole expansion for
various thresholds on the relative error and different methods of calculating the multipole moments.
For quadrature rules which compute the multipole moments with insufficient accuracy the radius of
convergence fails to decrease after reaching a certain degree. Note that up to p = 32 the 10 x 10 Gauss-
Legendre quadrature rule computes the multipole moments to equivalent accuracy as algorithm (1).
(a) Threshold of 1075, (b) Threshold of 10~8. (c) Threshold of 10~!'. (d) Threshold of 1074
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Wallclock time vs. degree
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Figure 7. Wallclock time required to evaluate all of the multipole coefficients of a single triangle for the
method detailed in algorithm (1) and various m xm point Gauss-Legendre quadrature. In order to make
a direct comparison between the several methods it is necessary to fix an upper limit tq;or on the allowed
relative error of the potential computed from the multipole coefficients of the triangle. The spherical
volume of space where the relative error is everywhere less than te..o; has a radius defined as the radius
of convergence Rconvergence- If the radius of convergence associated with any m x m quadrature rule is
< 1.2 X Reonvergence Of the analytic method then we say it has roughly equivalent accuracy and draw
a line through the corresponding point on the timing graph. The line style denotes the value of terror
used when defining the radius of convergence. If its radius of convergence is larger, then that particular
quadrature rule has failed to meet the same accuracy as the analytic method and no line is drawn. For
example, for teror = 10714 the 4 x 4 quadrature rule and the analytic method are both satisfactory up
to p = 7, however, above p = 17 the 4 x 4 rule does not compute the multipole coefficients as accurately
as the analytic method even if the required threshold tepor is set as low as 1075,

To demonstrate the efficiency of this algorithm (at least in regard to the naive two dimensional
numerical integration using Gauss-Legendre quadrature), a comparison was made between the time
needed to compute all of the multipole expansion coefficients of a single triangle (up to a certain degree)
using the analytic algorithm and the time needed when using numerical integration. This test was
carried out on a computer with an Intel i7 processor running at 1.9 GHz, results are shown in Figure 7.
Individually the scaling of all methods is O(p?) since this is approximately the number of moments to
be computed. However, beyond a certain maximal degree, a fixed order numerical quadrature rule will
no longer compute the multipole moments to a given threshold ¢eor, and a higher order rule will be
needed to retain accuracy making the scaling of numerical integration effectively greater than O(p?).
This difference in scaling can be seen Figure 7 by noting how the position of the end of the solid line
(cut off for teppor = 10_14) has a larger slope than the analytic method. For all but the lowest degree
p < 4 expansions, the performance of the algorithm presented in this work is approximately an order
of magnitude faster than the lowest accuracy Gauss-Legendre quadrature rule considered, while for the
highest degree tested (p = 32) it is nearly two orders of magnitude faster than the quadrature rule
which obtains equivalent accuracy.

Finally, to demonstrate the usage of this method in solving the Laplace equation with FMBEM,
we solved a simple unit cube capacitor with Dirichlet boundary conditions with several choices for the
number of boundary elements and the expansion order p. The results are shown in Figure 8. To solve
the linear system the Krylov method GMRES [36] was used, with the iterative solver being terminated
when the relative Ly norm of the residual was less than 10~®. The error on the unit cube capacitance
was taken to be the relative difference between the calculated value and the value given by Read [37],
which is 0.6606785 + 6 x 10~7 (in units of 4me).

Unfortunately, the analytic method of computing the multipole moments is not applicable in all
cases. The first restriction is that the aspect ratio of the triangle must not be too large (exceeding 100).
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l Error on unit cube capacitance vs. problem size ‘
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Figure 8. Accuracy of unit cube capacitance computed by FMBEM for various discretization scales
and expansion degree. Algorithm (1) was used to compute the multipole moments of the boundary
elements used by the FMBEM. Note that for a large number of boundary elements and high expansion
degree, the error on the FMBEM calculated capacitance approaches the error on value given by the
reference [37].

Algorithm 1 Computing the multipole moments of a triangular boundary element.

Input: Triangle ¥ : {Py, P1, P2} and associated charge density interpolation coefficients {sqp}.
1: Compute height h and coordinate system S for triangle ¥ according to Equation (9).
2: for [ =0 to p do
3: for m =0to ! do

4: for all s,,#0 do

5: Compute the prefactor /Cﬁ’nbl according to Equation (15).

6: Recursively compute the integral Ilbm according to Equations (24) and (25).
7: end for

8: Compute the multipole moment Q)" =3 > ICZ;ZI{’M and Q; ™" = Q.

9: end for “r

10: end for
11: Compute the Euler angles («, 3,7) of the rotation U : S — S according to Table 1.

12:  Apply the rotation U on the set of moments; {Q]"} — {qlm/} using theorem (1).

13: Apply the translation A : S’ — S” on the moments; {g/"' } — {q/"} using theorem (2).
Output: The multipole moments {g;"} of the triangle 3 in coordinate system S”.

Since for a needle-like triangle the values of ¢1 or ¢ can be very close to m/2 which causes the base case
integrals (26) to diverge. This can however be easily avoided if the BEM mesh has been constructed with
sufficient quality. The second issue is that the use of theorem (2) prevents convergence of the multipole
expansion within the sphere of radius p + a centered on Sy. This is typically unimportant, since in
most cases where the multipole expansion is useful, the distance between the triangle and the expansion
center p is usually much larger than the length of the triangle’s longest side a. However this restriction
can be noticeable when the expansion origin and region of interest are very close to, or on, the triangle.
For example if Sg is one of the vertices opposite Py then then minimum radius of convergence would be
~ 2a, whereas for a numerical method which requires no translation it would only be a. Additionally,
some numerical instability is expected to be encountered in the recursion relations (24) and (25) for
high degree expansions where the individual terms become much larger than their difference. However,
this does not appear to manifest itself until beyond p = 32.
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7. CONCLUSION

We have presented a novel technique to evaluate the multipole expansion coefficients of a triangle. This
method evaluates the necessary integrals through recursion within the context of a coordinate system
with special orientation and placement. The results of the integration can then be generalized to the case
of an arbitrary system through the well known transformation properties of the spherical harmonics
under rotation and translation. A summary of the full method by which to compute the multipole
moments of a triangle is detailed in algorithm (1).

Furthermore we have demonstrated that the application of this method to the multipole expansion
of triangles with uniformly constant charge density compares favorably in terms of accuracy and speed to
a simple numerical integration technique. This method can also be extended to the case of non-uniform
charge density, provided the interpolant can be represented as a sum over the bivariate monomials.
We expect this method may find use in solving the three dimensional Laplace equation with the fast
multipole boundary element method (FMBEM). In addition, this technique has also been used for the
accurate calculation of electric fields needed for large scale charged particle optics simulations. We
speculate that other boundary integral equation (BIE) problems, such as the Helmholtz equation in the
low frequency limit k& — 0, might benefit from this approach if the integrand in the multipole coefficient
integrals can be expanded in terms of the solid harmonics, and may warrant a future study.

ACKNOWLEDGMENT

The authors would like to thank Dr. Ferenc Gliick for valuable comments regarding the preparation of
this paper. This work was performed, in part, under DOE Contract DE-FG02-06ER-41420.

APPENDIX A. INTEGRALS

The solutions to integrals of the form

79— /¢2 Md¢ (A1)

p . (cos )P

where p and ¢ are positive integers, can be found in any standard table of integrals [38, 39], however,
for the sake of completeness we include the solutions and reduction formula here. When p # ¢, this
integral can be simplified by the reduction relation:
¢2
q—1 -2
+ (—> I (A2)

jo_ _ —(sin ¢)a~1
Poo(g—p)cos)p=t|,  \g—p

until the base cases Ig and II} are reached. The base I;, may be solved by simple u-substitution, which
yields,

6o Sy -
I;:/ﬂd¢:_ / du _ u
(cos )P w  p—1

é1 cos ¢1

cos ¢p2

(A3)

cos ¢1

The base case of the type IS with p > 1 can be addressed with integration by parts, which yields the
reduction relation,

o2
: p—l ¢2 _ 2
70 _ pgg — Smolsec o)’ P=2Y 0 A4
P= feecoras = UEE 1 (E) 0 (A1)
1
1
with the non-trivial base case:
?2 P b
I = /secgf)dqb =Intan | = + — . (A5)
2 4/,

é1
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If p=¢q > 1, we simply have an integral of a power of tangent, which in turn can be reduced with

P2 -
P = / (tan ¢)Pd = (tang)"7! o (A6)

-2
P ) p—1 P
until reaching the non-trivial base case,
Il = —In|cos ¢|[5] - (AT)

Although most of these integrals do not have a simple closed form, the implementation of the base cases
and reduction formula in computer code is a fairly simple task.

APPENDIX B. CHANGE OF INTERPOLATING BASIS

Since the evaluation of the multipole moment integral proceeds by assuming that the interpolant on
the boundary element can be expressed in the basis of the bivariate monomials, in order to make these
results relevant to the various interpolation methods often used (see for example, [18-21]) we need to be
able to change the basis of the interpolant. Explicitly, we would like to express the interpolant as a sum
over the bivariate monomials. To do this, we must determine the coefficients of the bivariate monomials
in terms of the original interpolation parameters. To motivate this section, we will consider the example
task of changing from the bivariate Lagrange to bivariate monomial basis. The objective we seek is to
replace the tedious symbolic manipulation often encountered when performing a polynomial change of
basis with a well defined numerical procedure. We expect that the results may apply to a wider class
of interpolants other than Lagrange, though this extension is beyond the scope of this paper. To start,
we will first introduce some basic definitions along the level of [40] or [41].
Let Rlu,v] be the polynomial ring over the real numbers in the variables v and v. Then for all
F(u,v) € Rlu,v], we may write F'(u,v) as the series,
ny mg
Flu,0) =S5 fapu®s? (B1)
a=0 b=0
where the coefficients f,, € R, and ny, m; € Ng. The sum and product operations on this ring are
defined in the usual sense as follows; for F'(u,v), G(u,v) € R[u,v], the sum is given by:
Np  Mp
F(u,v) + G(u,v) = H(u,v) = Y Y hepuv’ € Rlu,v] (B2)
a=0 b=0
where hop = fop + gap, and n, = max(ng,ng) with my, defined similarly. The product is given by:

nE Mg
F(u,v) - G(u,v) = K(u,v) = Z Z kapuv® € Rlu,v] (B3)
a=0 b=0
where ,
ka,b = Z Z fi,j *Ja—ib—j (B4)

i=0 j=0
and ny = ny + np, with my, similarly.
For a given polynomial F'(u,v), the greatest integer a + b for which the coefficient f,; is nonzero
is called the maximal combined order of F'(u,v). We will denote the set of all bivariate polynomials
F(u,v) € Rlu,v] whose maximal combined order is N as Py. In general we may write any polynomial

SAV) (u,v) € Py as follows
N—a

N
SN (4, v) = Z Sqpu 0P, (B5)
a=0 b=
Consider for example the first order bivariate polynomial,

s(l)(u, v) = S0,0 + So,1U + S10v- (B6)
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This function can be also represented as the matrix vector product:

5<U(u,v)::(1,u)[3°ﬂ sgl} (i) . (B7)

51,0

R(1)
The ability to write the above example in this manner motivates us to find a map between Py and the
set of (N + 1) x (N + 1) upper left triangular matrices, Ty. In general, we expect that the bivariate
polynomial S(V) (u,v) € Py, may be written in terms of a matrix vector product involving an upper
left triangular matrix RW) e T whose entries correspond to the coefficients s, as follows:

50,0 So,1 50,2 . S0,N]
$1,0 S1,1 cee S1,(N-1) 0 1
) v
sV (u,v) = (1,u,... ,uN) $20 .- S2,(N-2) 0 : - (B8)
: 0 0 oV
[snvo O 0 0 |
R(N)

Clearly, the set Ty forms a group under matrix addition, and this corresponds to the fact that
Py is also closed under addition. Unfortunately, Py is not closed under the operation of polynomial
multiplication (-), because repeated multiplication can produce a polynomial of arbitrarily large order.
In order to construct a proper ring from the set Py we must restore the property of closure by replacing
the traditional product operator (), with a new operator (®) which we will define as multiplication
combined with the truncation of terms with combined order larger than N. Formally, for any two
polynomials F'(u,v), G(u,v) € Py, this operator is given by:
N N-—a
F(u,v) ®© G(u,v) = H(u,v) = Z hapus’ € Py (B9)
a=0 b=

where,

a b
ha,b = Z Z fi,j *Ga—ib—j- (BlO)

i=0 j=0

We note that the (®) product defined in Equation (B9) only differs from the definition of normal
polynomial multiplication in Equation (B3) by the limits on the summation. This definition leads us
to the following lemma.

Lemma 1 The set Py together with the binary operations + and ® forms a ring.

In light of lemma (1) we would also like to find a binary operator on two matrices A, B € Ty which
mirrors the action of multiplication on the set Py of bivariate polynomials. It is clear from inspection
of Equations (B3) and (B4) that multiplication (-) over the polynomials in R[u,v] corresponds with the
two dimensional convolution (k) of the two matrices formed from the monomial coefficients. However,
the set Tl is also not closed under the convolution operator (x). To restore this closure we will instead
consider a different operator ®, specified in definition (1).

Definition 1 Let the two matrices A and B be elements of Ty, then the action of the binary operator
® on A and B produces another matriz C € Ty, whose elements are given by:

a b
A iBaip;i a+b<N
Cup = { 2 2 AioPociry < (B11)
0 a+b>N

Choosing the ® operator to be defined as the product operation over Ty produces the following
lemma.
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Lemma 2 The set T together with the binary operations of matriz addition + and the operator ®
forms a ring.

To make use of the two rings (Py, +,®) and (T, +, ®) in the problem of determining the monomial
coefficients of an interpolant, we now need a bijective map between the two which preserves the structure
of the operations on each ring. Specifically, we need an isomorphism, A : (Py,+,®) — Tn(Pn,+, ®).
Equation (B8) has already demonstrated the nature of A= : (T, +,®) — (Py,+,®) as a matrix
vector product, and leads us to definitions (2) and (3), and theorem (3).

Definition 2 Since we may write all F(u,v) € Py according to Equation (B5), we define the map
A Py — Tn as A(F(u,v)) = R, where the entries of the matrix R € T are given in terms of the
monomial coefficients of F(u,v) by R;j = fij and are zero when N < i+ j.

Definition 3 For all R € Ty, we define the map A~' : Ty — Py as follows,

A7Y(R) = F(u,v) (B12)
where the bivariate polynomial F(u,v) € Py is given by the following matriz vector product,
F(u,v) =uTRv (B13)

and where the column vectors u and v of length N + 1, have their i-th entry given (as powers of the
variables u and v) by u' and V' respectively.

Theorem 3 The inverse of the map A : Py — T, is given by A~ : Ty — Py, moreover the map A
is a isomorphism from the ring (Py,+,®) to the ring (Tn,+,®).

Now that we are in a position to make use of the isomorphism A, we will also make some assumptions
on the class interpolants upon which we wish to make the change of basis. The first assumption is that
interpolant Il (u,v) of maximal combined order N may be written in terms of a finite set of basis
polynomials ® C Py as,

My (u,0) = Y Uspy (u,0) (B14)

;N) (u,v) € ®xn and the U; are know as the interpolation coefficients. The second assumption

is that any higher order basis function of the interpolant can be expressed as linear combination of
products of the first order basis functions. We will term such a class of interpolants as simple according
to definition (4).

where p

Definition 4 Assume that a given class of two dimensional interpolating polynomials has the set of
first order basis functions given by

e = {pi”.pt",....p0} C Pr. (B15)

Now consider all multi-sets C; of size 1 < k < N, formed by making all possible combinations (with
repetition allowed) from elements of ®1. The number of multi-sets C; is given by:

M_é<ml‘:k) (B16)

If the class of interpolants is such that any N-th order basis polynomial pg-N)

M-1
pE»N) =Y v [[ = (B17)
=0

zeC;

can be written as,

where 7; ; € R and C; is the i-th multi-set of size k < N, and which for all x € C;, we have x € @1, then
we will call such a class simple. We will call the set of coefficients ; j together with the corresponding
set of multi-sets C;, the rule of this simple class.
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With this definition in mind, we can now approach the problem of converting from a bivariate
Lagrange basis to a bivariate monomial basis. Specifically, we wish to find the bivariate monomial
coefficients of the polynomial N-th order Lagrange interpolant IIx (u,v). Computationally, this amounts
to finding the entries of the matrix A(Tly(u,v)) = RYY) given the set of interpolation coefficients {U;}.

We will follow the notation of [18,19], who define the first order Lagrange interpolant for a triangle
composed of vertices Pj = (uj,v;) as:

2
I (u,0) = Y Up{ (u,0) (B18)
=0
where,
(1) 1
pj (u,0) = o (T + M — Egav) (B19)
and

Thl = UKV, — Uy (B20)
ot = Uk — W (B21)
Mkl = Vg — Ul (B22)

while (4, k, [) is any cyclic permutation of (0, 1, 2). The area of the triangle is denoted by A. Within

the context of the coordinate system S, we have Py = (0,0), and u; = ug = h, so we may directly write
(1)

down the basis functions p;’ as:
(1) _1
Py (u,0) = 7 [(v1 = v2) (u — )] (B23)
1
pgl)(u, v) = oA [vou — hv] (B24)
p(l)(u v) = 1 [—viu + hv] (B25)
2 24
which have the corresponding coefficient matrices of:
M _ 1 [h(va—v1) (vi—w2)
Ry’ = 24 | 0 0 (B26)
m_ 110 v
Ry’ = 24 |~h 0} (B27)
m_ 1[0 —u
R, =34 |h 0] (B28)

To obtain the bivariate monomial coefficients 7, of the polynomial II; (z,y) it is then only a simple
matter of summing each matrix weighted with the appropriate Lagrange interpolation coefficient.

2
Tas= | > U;RY (B29)
J=0 a,b

In order to extend this to IN-th order interpolation we could again compute the coefficients g
explicitly through direct inspection of the N-th order basis polynomials. However, for higher orders
this quickly becomes tedious even with the use of a computer algebra system. Alternatively we can
make use of the isomorphism A between the rings (Py,+,®) and (Tn,+,®). We note that since the
bivariate Lagrange basis is a simple class of interpolating polynomials, we can express any N-th order
basis functions according to Equation (B17) as:

(N+1)(N+2)/2-1
(N)

Iy (u,v) = Z Ujp; " (u,v). (B30)
=0
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Furthermore, under the isomorphism A the rule of the N-th order Lagrange basis can be re-expressed
in the space of Ty by:

M-1

N

BV =S 5 T @A) (B31)
=0 zeC;

where we use [[ ® to denote a repeated product of the ® operator over the matrices given by A(x). This

)

allows us to compute coefficient matrices R;N directly from from the first order coefficient matrices

R;l) solely through matrix summation and the use of the ® operator. Then, to compute the bivariate

monomial coefficients 7, ; we only need to perform the sum:
(N+1)(N+2)/2—1
Tap = 3 RV . (B32)
J=0 ab
As an example, consider the second order Lagrange interpolant, given by,

Ma(u) = 3" U ) (B33)

with the rule of the second order basis functions (]iegined by:
PP () = (20~ 1) =2 (") —p"  0<j<3 (B34)
P (u,0) = 4pp{) - 3<j<6 (B35)

where € = jmod 3, and 6 = (j + 1) mod 3. Using Equation (B31) to re-express equations (B34)
and (B35) in terms of coefficient matrices, Rj2 , yields:

@ _ o (pM o pMY _ pM) . g
R! _2(Rj ® R} )—Rj L 0<j<3 (B36)

2 1 .
RY =4rRMW e R} : 3<j<6. (B37)
Thus the bivariate monomial coefficients of the polynomial II3(u,v) can be computed in terms of the
interpolation coefficients U; and coefficient matrices R;g) of the second order basis functions by:

5
Tap= | Y URP| . (B38)
7=0 a,b

Algorithm 2 Compute bivariate monomial coefficients of a simple interpolant.
Input: Triangle ¥ : {Po,P1,P2} and set of coefficients {U;} of the N-th order simple interpolant
SWN) (u,v) with rule ({7:;},{Ci}).
1: Compute coordinate system S for triangle > according to Equation (9).
2: Compute (u,v) coordinates of {Py,P1,Py} in S.
3: Form the matrices R§-1) of the coefficients of the 1st order polynomials in the bivariate monomial
basis according to Equations (B26), (B27), and (B28).
4: Compute the coefficient matrices R;N) of the N-th order basis polynomials according to
Equation (B31) and the rule ({v; ;},{Ci}).

5. Sum the coefficient matrices R§-1) weighted by their interpolation coefficient U; according to
Equation (B32) to obtain the matrix M.
6: Map each element of M to the bivariate monomials coefficient s,; of S () (u,v) according to the
isomorphism A~!: Ty — Py.
Output: The set of bivariate monomials coefficients {s, 5} of SNV (u,v).
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In a similar fashion, this method can be applied to any class of simple interpolants, summarized in
algorithm (2).
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