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Dyadic Green’s Functions for a Parallel Plate Waveguide Filled
with Anisotropic Uniaxial Media

Neil G. Rogers* and Michael J. Havrilla

Abstract—The dyadic Green’s functions for magnetic and electric currents immersed in a parallel
plate waveguide (PPWG) filled with dielectric-magnetic anisotropic uniaxial media are developed via a
field-based approach. First, the principal Green’s function is derived from the forced wave equation for
currents immersed in an unbounded uniaxial media. Next, the scattered Green’s function is developed
from the unforced wave equation. Finally, the total Green’s function is found by superposition and
subsequent application of the appropriate boundary conditions. The Green’s functions are derived
from Maxwell’s equations, using a spectral domain analysis and reveals several key physical insights.
First, the expected longitudinal depolarization dyads are observed. The expected depolarizing terms
arise through careful application of complex-plane analysis, leading to expressions that are valid both
internal and external to the source region. Secondly, the identification and decomposition of the total
Green’s function into TEz and TMz field contributions is demonstrated. Thirdly, the mathematical
forms of the principal and total Green’s functions are shown to be physically intuitive.

The primary contribution of this research is the development of the Green’s functions for a parallel
plate waveguide containing a dielectric and magnetic uniaxial medium directly from Maxwell’s equations.
Prior derivations considered dielectric-only uniaxial media in a parallel-plate waveguide, due to the
relative ease of analysis and readily available inverse identities found in [7]. Inclusion of magnetic
uniaxial characteristics adds considerable complexity (since no simplifying identities are available) and
provides additional insight into the field behavior, thus representing a significant contribution to the
electromagnetic analysis of complex media. Finally, practical applications of the Green’s functions
are considered, such as the non-destructive electromagnetic characterization of a variety of anisotropic
uniaxial media.

1. INTRODUCTION

Electromagnetic characterization is the process of determining the constitutive parameters of a given
material (permeability, permittivity and the magnetoelectric coupling parameters). Methods for
obtaining these parameters have existed for many years [5, 6, 12, 18, 24, 26]. Notably, methods such
as the two-Flanged Waveguide Measurement Technique (tFWMT) employed in [18, 19, 26] require a
Green’s function subject to the appropriate boundary conditions. Several methods exist for obtaining
the Green’s functions for this type of configuration, but the complexity of the solution is heavily
dependent on the method and the type of media under consideration. For example, the well-
known method of vector potentials has commonly been used in simple media (linear, homogeneous,
isotropic) [3, 10, 15, 27], but becomes difficult to employ when dealing with anisotropic media. More
recently, the technique of scalar potentials has been applied to obtain the Green’s functions for both
anisotropic and bianisotropic media[11, 14, 21–23, 25, 30, 31, 33–37]. In spite of the growing interest in
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complex media and the appearance of several forms of the principal Green’s functions for uniaxial media,
a field-based development of the total Green’s functions for electric and magnetic currents immersed
in a PPWG filled with dielectric magnetic uniaxial media has not appeared in previous literature.
This article presents a detailed development of the PPWG Green’s functions directly from Maxwell’s
equations, subject to the parallel plate boundary conditions, which are assumed to be perfect electrical
conductors (PEC). For isotropic media, solving Maxwell’s equations in a direct manner is a fairly
straightforward task, but becomes significantly more complicated when considering anisotropic media.
Most recently, in [16], Maxwell’s equations are solved directly for a magnetic current immersed in a
uniaxial, dielectric-filled PPWG structure. However, the more general case is solved here, incorporating
the possibilities of both dielectric and magnetic anisotropy, with excitation by an electric and magnetic
current. The total solution will be a superposition of the principal and reflected portion, subject to
PEC boundary conditions in the longitudinal (z) direction. These expressions represents a significant
contribution to the electromagnetic theory of anisotropic media.

After the Green’s functions are developed, a physical interpretation will be provided. One benefit
of the direct (referred to as field-based) solution to Maxwell’s equation is the improved physical insight
into the modal behavior that is gained. We will conclude with a brief discussion of a specific application
of these expressions in the electromagnetic characterization of anisotropic media.

It will be helpful to clarify the nomenclature used in this article. The subscripts e and h are used
to represent electric and magnetic components, respectively. When two components are combined, such
as eh-type, we mean the electric field (e) maintained by a magnetic source (h).

2. ELECTRIC FIELD DYADIC GREEN’S FUNCTION

Consider a magnetic current, �Jh, and an electric current, �Je, immersed in a PPWG structure filled with
uniaxially dielectric and magnetic media having permittivity ↔

ε = x̂εtx̂ + ŷεtŷ + ẑεz ẑ and permeability
↔
μ = x̂μtx̂ + ŷμtŷ + ẑμzẑ, as depicted in Figure 1. The total fields in this environment comprise a
principal (i.e., forced) wave contribution and a reflected (i.e., unforced) wave contribution. Maxwell’s
curl equations for the principal and reflected contributions are, respectively,

↔∇ · �Ep(�ρ, z) = − �Jh(�ρ, z) − jω
↔
μ· �Hp(�ρ, z)

↔∇ · �Hp(�ρ, z) = �Je(�ρ, z) + jω
↔
ε · �Ep(�ρ, z)

(1)

↔∇ · �Er(�ρ, z) = −jω↔
μ· �Hr(�ρ, z)

↔∇ · �Hr(�ρ, z) = jω
↔
ε · �Er(�ρ, z)

(2)

where
↔∇ = ∇× ↔

I =
↔
I ×∇, ∇ = x̂ ∂

∂x + ŷ ∂
∂y + ẑ ∂

∂z and �ρ = x̂x+ ŷy.

2.1. Principal (Forced) Solution

Since the principal solution is assumed to exist in unbounded space, we are prompted to apply a Fourier
transform. Given the uniaxial nature of the media, we transform separately in the transverse and

 Jh
 Je

p

r r

ε , μ

z = d

z = 0

→ →

→

→

→

→

Figure 1. A PPWG filled with uniaxial media, where the distinguished (z) axis is normal to the PEC
walls and the parallel plates are assumed to be infinite in the x-y plane. The principal (p) and reflected
(r) waves are drawn to illustrate the superposition principle used in determining the total solution.
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longitudinal dimensions. Therefore, using the generic transform pairs

f̃(�λρ, z) =

∞∫∫
−∞

f(�ρ, z)e−j�λρ·�ρdxdy, f (�ρ, z) =
1

(2π)2

∞∫∫
−∞

f̃(�λρ, z)ej
�λρ·�ρdλxdλy (3)

and

˜̃
f(�λρ, λz) =

∞∫
−∞

f̃(�λρ, z)e−jλzzdz, f̃(�λρ, z) =
1
2π

∞∫
−∞

˜̃
f(�λρ, λz)ejλzzdλz (4)

we are able to write the principal curl equations as

j
↔
λ· �̃̃Ep(�λρ, z) = − �̃̃

Jh(�λρ, λz) − jω
↔
μ· �̃̃Hp(�λρ, z) (5)

j
↔
λ· �̃̃Hp(�λρ, z) =

�̃̃
Je(�λρ, λz) + jω

↔
ε · �̃̃Ep(�λρ, z) (6)

with
↔
λ =

↔
I × �λ = �λ× ↔

I and �λρ = x̂λx + ŷλy. It is observed that the coupled system of equations can
be solved by the usual matrix methods, leading to

�̃̃
Ep = −jω↔

w−1
e ·↔μ· �̃̃Je − j

↔
w−1
e · ↔

μ · ↔
λ · ↔

μ−1 · �̃̃Jh =
↔
˜̃G
p
ee ·

�̃̃
Je +

↔
˜̃G
p
eh ·

�̃̃
Jh (7)

�̃̃
Hp = j

↔
w−1
h · ↔

ε · ↔
λ·↔ε−1· �̃̃Je − jω

↔
w−1
h · ↔

ε · �̃̃Jh =
↔
˜̃G
p
he ·

�̃̃
Je +

↔
˜̃G
p
hh ·

�̃̃
Jh (8)

where ↔
we = −↔

μ · ↔
λ · ↔

μ−1 · ↔
λ − ↔

k
2
, ↔
wh = −↔

ε · ↔
λ · ↔

ε−1 · ↔
λ − ↔

k
2
. Note that, due to the diagonal form of ↔

ε

and ↔
μ, we have

↔
k

2
= ω2↔

ε · ↔
μ = ω2↔

μ · ↔
ε .

Although we have now determined expressions for the spectral domain Green’s functions, a
considerable amount of algebraic effort is required to determine ↔

w−1
e and ↔

w−1
h . In [16], only one of

the constitutive dyads is considered to be anisotropic. Therefore, finding ↔
w−1
e and ↔

w−1
h is considerably

simplified by utilizing a dyadic identity found in equation 1.128 of [7]. In this work, given the additional
vector terms in the dyads ↔

we and ↔
wh, such a simplification is not possible, because no corresponding

inverse identity exists. Not only does this increase the algebraic effort in computing the inverse dyads,
it also requires the Green’s functions to be calculated on a component-by-component basis. For the
sake of brevity, we will only detail the development of ↔

w−1
e , as ↔

w−1
h can be found by similar methods

(and also by duality). Using the definition of
↔
λ, namely

↔
λ =

↔
I × �λ = (x̂x̂ + ŷŷ + ẑẑ) × (x̂λx + ŷλy + ẑλz) =

[ 0 −λz λy
λz 0 −λx
−λy λx 0

]
, (9)

straightforward mathematical manipulation leads to the following result:

↔
we = −↔

μ·↔λ·↔μ−1·↔λ − ↔
k

2
=

⎡
⎢⎢⎢⎢⎢⎣
λ2
z − kρ

2 +
μt
μz
λ2
y −μt

μz
λxλy −λxλz

−μt
μz
λxλy λ2

z − kρ
2 +

μt
μz
λx

2 −λyλz
−μz
μt
λxλz −μz

μt
λyλz

μz
μt
λ2
ρ − k2

z

⎤
⎥⎥⎥⎥⎥⎦ (10)

with k2
ρ = ω2εtμt and k2

z = ω2εzμz. The inverse may now be computed by the adjoint method, whereby

↔
A−1 =

adj(
↔
A)

det(
↔
A)

(11)

Defining the eigenvalues λ2
zψ = k2

ρ − μt
μz
λ2
ρ and λ2

zθ = k2
ρ − εt

εz
λ2
ρ, we are able to find the determinant of

↔
we as

det(↔we) = −k2
z

(
λ2
z − λ2

zθ

) (
λ2
z − λ2

zψ

)
(12)



252 Rogers and Havrilla

The adjoint is computed by the co-factor matrix adj (↔we) =
↔
CT , Cmn = (−1)m+nMmn, where Mmn is

the determinant of the minor with the mth row and nth column removed. Utilizing this definition and
a considerable amount of mathematical manipulation, we find (where the indices of the M matrix have
not been rearranged, in order to clearly show the transpose operation):

adj (↔we) =
↔
CT =

[
M11 −M21 M31

−M12 M22 −M32

M13 −M23 M33

]

M11 =
(
λ2
z − λ2

zθ

)(−εzμz
εtμt

λ2
zψ

)
− εz
εt
λ2
y

(
εtμz
εzμt

λ2
z − λ2

zψ

)

M21 = −εz
εt
λxλy

(
εtμz
εzμt

λ2
z − λ2

zψ

)
M31 = λxλz

(
λ2
z − λ2

zθ

)
M12 = −εz

εt
λxλy

(
εtμz
εzμt

λ2
z − λ2

zψ

)

M22 =
(
λ2
z − λ2

zθ

)(−εzμz
εtμt

λ2
zψ

)
− εz
εt
λx

2

(
εtμz
εzμt

λ2
z − λ2

zψ

)
M32 = (−λyλz)

(
λ2
z − λ2

zθ

)
M13 =

(
λ2
z − λ2

zθ

)(μz
μt
λxλz

)

M23 =
(
λ2
z − λ2

zθ

)(−μz
μt
λyλz

)
M33 =

(
λ2
z − k2

ρ

) (
λ2
z − λ2

zθ

)

(13)

Now, recalling the definition of the eh-type Green’s function from (7) and simplifying as necessary,
we have the spectral domain Green’s function as

↔
˜̃G
p
eh = −j↔

w−1
e · ↔

μ · ↔
λ · ↔

μ−1 =

⎡
⎢⎢⎢⎣

˜̃Gpeh,xx
˜̃Gpeh,xy

˜̃Gpeh,xz
˜̃Gpeh,yx

˜̃Gpeh,yy
˜̃Gpeh,yz

˜̃Gpeh,zx
˜̃Gpeh,zy

˜̃Gpeh,zz

⎤
⎥⎥⎥⎦

= j

⎡
⎢⎢⎢⎢⎢⎢⎣

−λzM21 − λyμz
μt

M31
λxμz
μt

M31 − λzM11
λyμt
μz

M11 +
λxμt
μz

M21

λzM22 +
λyμz
μt

M32 λzM12 − λxμz
μt

M32 −λyμt
μz

M12 − λxμt
μz

M22

−λzM23 − λyμz
μt

M33
λxμz
μt

M33 − λzM13
λyμt
μz

M13 +
λxμt
μz

M23

⎤
⎥⎥⎥⎥⎥⎥⎦

−k2
z

(
λ2
z − λ2

zθ

)(
λ2
z − λ2

zψ

) (14)

Using (4), we perform the inverse Fourier transformation on the λz variable to find the (�λρ, z)
domain Green’s function representation of the electric field maintained by a generic magnetic current
existing between z = 0 and z = d:

�̃Eph(�λρ, z) =

d∫
0

↔
G̃peh(�λρ; z − z′) · �̃Jh(�λρ, z′)dz′ (15)

where
↔
G̃peh(�λρ; z − z′) =

1
2π

∞∫
−∞

↔
˜̃G
p
eh(�λρ, λz)e

jλz(z−z′)dλz (16)
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The (�λρ, z) domain Green’s function can be determined by complex plane analysis. Specifically, we
apply Cauchy’s Integral Theorem, Jordan’s Lemma and Cauchy’s Integral Formula to each element of
(16). As in [16], the Green’s function is found to be a superposition of a TEz and TMz contribution.

↔
G̃
p

eh(�λρ|z − z′) =

⎡
⎢⎢⎣
G̃peh,xx G̃peh,xy G̃peh,xz

G̃peh,yx G̃peh,yy G̃peh,yz

G̃peh,zx G̃peh,zy G̃peh,zz

⎤
⎥⎥⎦ =

↔
G̃
p,TE

eh +
↔
G̃
p,TM

eh

G̃peh,xx = −sgn(z − z′)
λxλy
2λ2

ρ

e−jλzθ|z−z
′| + sgn(z − z′)

λxλy
2λ2

ρ

e−jλzψ |z−z
′|

G̃peh,xy = −sgn(z − z′)
λ2
y

2λ2
ρ

e−jλzθ|z−z
′| − sgn(z − z′)

λ2
x

2λ2
ρ

e−jλzψ|z−z
′|

G̃peh,xz = −
μt
μz
λy

2λzθ
e−jλzθ|z−z

′| − 0

G̃peh,yx = sgn(z − z′)
λ2
x

2λ2
ρ

e−jλzθ|z−z
′| + sgn(z − z′)

λ2
y

2λ2
ρ

e−jλzψ|z−z
′|

G̃peh,yy = sgn(z − z′)
λxλy
2λ2

ρ

e−jλzθ|z−z
′| − sgn(z − z′)

λxλy
2λ2

ρ

e−jλzψ|z−z
′|

G̃peh,yz =
μt
μz
λx

2λzθ
e−jλzθ|z−z

′| + 0

G̃peh,zx = 0 +
εt
εz
λy

2λzψ
e−jλzψ|z−z

′|

G̃peh,zy = 0 −
εt
εz
λx

2λzψ
e−jλzψ|z−z

′|

G̃peh,zz = 0 + 0

(17)

Although we have only given the results here for the eh-type Green’s function, an analogous process
will produce the ee-type Green’s function. There is, however, one point of difference where care must be

taken in the application of Cauchy’s integral theorem. Namely, Jordan’s Lemma requires lim
λz→∞

↔
˜̃G
p

= 0

in order to properly apply Cauchy’s Integral Theorem. This is found to be true for all components of
the eh-type Green’s function and the ee-type Green’s function except ˜̃Gpee,zz. In this case, we find:

lim
λz→∞

˜̃Gpzz,ee = − 1
jωεz

Therefore, in order to ensure Jordan’s Lemma is satisfied, we add and subtract this term to the ẑẑ
component before performing the complex plane integration. When transforming from the (�λρ, λz)
domain to the (�λρ, z) domain, this leads to the well-known longitudinal depolarizing term (using
the properties of the Dirac delta function). A similar term is found when computing the hh-type
Green’s function. These terms are the longitudinal depolarizing terms reported in many previous
works [1, 2, 4, 8, 9, 13, 17, 20, 28, 29, 32, 38]. Physically, these depolarizing terms account for the source
point singularity and ensure the expressions are valid for the entire region under consideration, both
internal and external to the source. Notably, the same term is derived in [16] through an application
of Leibnitz’s rule to Faraday’s law in the (�λρ, z) domain. Both methods produce equivalent results.
Additionally, this term is found when using a scalar potential method [17] to find the principal Green’s
function.

One final point of interest is, upon expanding the expressions given in [16] (which are given for a
dielectric-only uniaxial material) and comparing term-by-term with the expressions above, we are able
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to find a vectorized form for the more general media. However, it is not clear to the authors how such a
form would be developed from the coupled solutions to Maxwell’s equations given in (1). The vectorized
forms given here are again found to be combinations of TEz and TMz contributions. However, they are
not used in any further computations, since they do not arise from a rigorous mathematical development.
They are presented merely to demonstrate the similarities between a dielectric-only uniaxial material
and a dielectric and magnetic uniaxial material.

↔
G̃

p

eh(�λρ|z − z′) =

(
λ̂ρ × ẑ

)(
λ̂ρ × ẑ

)
· ↔
λ
h

θ

−2λzθ
e−jλzθ|z−z

′|

+

↔
λ
h

ψ −
(
1 − εtμz

εzμt

)
ẑẑ · ↔

λ
h

ψ −
(
λ̂ρ × ẑ

)(
λ̂ρ × ẑ

)
· ↔
λ
h

ψ

−2λzψ
e−jλzψ |z−z

′| (18)

where
↔
λ
h

α = x̂sgn(z − z′)λzαŷ+ x̂
μt
μz
λy ẑ− ŷsgn(z − z′)λzαx̂− ŷ

μt
μz
λxẑ− μt

μz
ẑλyx̂+

μt
μz

ẑλxŷ . . . α = θ, ψ (19)

2.2. Reflected (Unforced) Solution

Now that we have determined the principal solution to the fields for unbounded media, we look for the
scattered (reflected) solution in a source-free region bounded by parallel PEC plates. In this case, the
plates are assumed to be unbounded in the x and y directions, leading to Fourier transforms in the
transverse dimensions. Using a similar method as with the principal solution and intuition gained from
that development, we can write the spectral domain versions of Maxwell’s equations in a source-free
region:

j
↔
λ · �̃Er(�λρ, λz) = −jω↔

μ · �̃Hr(�λρ, λz) (20)

j
↔
λ · �̃Hr(�λρ, λz) = jω

↔
ε · �̃Er(�λρ, λz) (21)

which can then be solved in a similar method as before, leading to an expression for the electric field:
↔
we · �̃Er = 0 (22)

Assuming the usual solution for forward and reverse traveling waves
�̃Er(λρ, z) = �̃Er±o (λρ)e∓jλzz = �̃Er+o (λρ)e−jλzz + �̃Er−o (λρ)ejλzz (23)

where the forward and reverse traveling electric field vectors are specified by the condensed notation†
�̃Er±o = x̂ �̃Er±ox + ŷ �̃Er±oy + ẑ �̃Er±oz . Now, a general solution to (22) is given by the eigenvalues:

λz = ±λzθ,±λzψ (24)

These four solutions for λz represent the upward and downward propagating TEz and TMz waves.
Decomposing the assumed solution into the orthogonal modes in the (�λρ, z) domain leads to

�̃Er
(
�λρ, z

)
= �̃E

rθ + �̃E
rψ = �̃E

rθ+

o

(
�λρ

)
e−jλzθz + �̃E

rθ−
o

(
�λρ

)
ejλzθz

+ �̃E
rψ+

o

(
�λρ

)
e−jλzψz + �̃E

rψ−
o

(
�λρ

)
ejλzψz (25)

According to the superposition principle, we can examine the TEz and TMz contributions separately.
Using a compact notation for the forward and reverse traveling TEz and TMz waves, (22) becomes

↔
w
θ
e · �̃Erθ±o

(
�λρ

)
e∓jλzθz = 0 =⇒ ↔

w
θ
e · �̃Erθ±o = 0 (26)

↔
w
ψ
e · �̃Erψ±

o

(
�λρ

)
e∓jλzψz = 0 =⇒ ↔

w
ψ
e · �̃Erψ±

o = 0 (27)

† A plus sign in the superscript represents a forward traveling wave, which corresponds to a negative exponential, due to the chosen
time convention. The converse is true for reverse traveling waves.
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Noting that �̃Erθ±o = x̂Ẽrθ±ox + ŷẼrθ±oy + ẑẼrθ±oz and �̃Erψ
±

o = x̂Ẽrψ±ox + ŷẼrψ±oy + ẑẼrψ±oz , and after some
algebraic effort, we are able to find:

�̃Er,TE =
(
x̂− ŷ

λx
λy

)
Ẽrθ±ox e∓jλzθz (28)

�̃Er,TM =

(
x̂Ẽrψ±ox + ŷ

λy
λx
Ẽrψ±ox ± ẑ

εt
εz
λ2
ρ

λxλzψ
Ẽrψ±ox

)
e∓jλzψz (29)

We note that these expressions are consistent with Gauss’ law for a source-free region, providing
confirmation regarding the form of the expressions. Here, we see there are four unknown scattering
coefficients (Ẽrθ±ox , Ẽrψ±ox ), which can be found by subsequent boundary condition enforcement.
Furthermore, it can be easily shown that the decomposition of the electric field into orthogonal modes
is justified, as �̃Er,TE · �̃Er,TM = 0.

Now, the usual PEC boundary conditions are enforced on the total fields (the superposition of the
principal and reflected solutions):

Ẽθox(z = 0) = 0, Ẽθox(z = d) = 0, Ẽψox(z = 0) = 0, Ẽψox(z = d) = 0 (30)

Upon enforcement of these boundary conditions, it is found that

�̃Erh(�λρ, z) =

d∫
0

↔
G̃reh(�λρ; z − z′) · �̃Jh(�λρ, z′)dz′ (31)

where

↔
G̃
r
eh(�λρ; z − z′) =

⎡
⎢⎣
G̃r,TE
eh,xx G̃r,TE

eh,xy G̃r,TE
eh,xz

G̃r,TE
eh,yx G̃r,TE

eh,yy G̃r,TE
eh,yz

0 0 0

⎤
⎥⎦+

⎡
⎢⎢⎣
G̃r,TM
eh,xx G̃r,TM

eh,xy 0

G̃r,TM
eh,yx G̃r,TM

eh,yy 0

G̃r,TM
eh,zx G̃r,TM

eh,zy 0

⎤
⎥⎥⎦ (32)

The components can be written in the form:

G̃r,TE

eh,yα = −λy
λx
G̃r,TE

eh,xα . . . α = λx, λy

=
(
−λy
λx

)⎧⎨
⎩
αλyλzθ

[
e−jλzθ(z+z′) + e−jλzθ(2d+z−z′) − e−jλzθ(2d−z−z′) − e−jλzθ(2d−z+z′)

]
−2λzθλ2

ρ (1 − e−j2λzθd)

⎫⎬
⎭ (33)

G̃r,TE

eh,yz = −λy
λx
G̃r,TE

eh,xz

=
(
−λy
λx

)⎧⎨
⎩

μt
μz
λyλ

2
ρ

[
−e−jλzθ(z+z′) + e−jλzθ(2d+z−z′) − e−jλzθ(2d−z−z′) + e−jλzθ(2d−z+z′)

]
−2λzθλ2

ρ (1 − e−j2λzθd)

⎫⎬
⎭(34)

Similar expressions are found for the TMz contribution, but are omitted here for the sake of brevity.
Having now obtained the principal and reflected portions, the total Green’s functions can be written
in standing wave form, using Euler’s identity. Each of the total Green’s functions (ee-, eh-, he- and
hh−type) are expanded component-wise and given explicitly in Appendix A for reference.

3. PHYSICAL INTERPRETATION AND POINTS OF INTEREST

In this section, we will discuss some interesting physical interpretations of the Green’s functions and a
primary application of these expressions. We begin with the reflected Green’s function. The individual
terms of the reflected Green’s functions represent the fundamental set of possible paths of a wave emitted
at a point z = z′ and observed at a point z. This is best illustrated by Figure 2. For example, the path
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r1 represents a upward propagating wave which reflects off of the lower boundary and corresponds to the
first exponential term in (34). This path undergoes a phase shift of z+z′ while traveling from the source
to the observer. Accordingly, the path r2 represents an upward propagating wave which is reflected off
both the upper and lower PEC plates and observed at the point z. This wave undergoes a phase shift of
(d− z′) + (d) + z = 2d+ z− z′ while traveling from the source to the observer and is represented by the
second exponential term of (34). Paths r3 and r4 correspond to the third and fourth exponential terms
of (34), respectively. Also, the principal contribution is shown, which is the direct path from the source
to the observation point. Naturally, an infinite number of possibilities exist, which are accounted for by
the poles in the denominator of the expressions. This is clearly the behavior one would expect inside a
PPWG geometry. Additionally, one physical insight that is seen through the detailed application of the
PEC boundary conditions in this direct method of solving Maxwell’s equations is the lack of coupling
between TEz and TMz waves at the PEC boundaries. Since the uniaxial constitutive parameter dyads
do not contain any off-diagonal terms, we would not expect any coupling between TEz and TMz modes.

We can also glean appropriate physical insight from the total Green’s functions. Let us consider
the individual components of the eh- and hh-type Green’s functions, given in (A3) and (A5). These
represent the electric and magnetic fields maintained by a magnetic current. First, we note that G̃TE

eh,zx,
G̃TE
eh,zy, G̃

TE
eh,zz = 0. This is, of course, the expected behavior, as Ez = 0 is the very definition of a TEz

field. Furthermore, for the TMz case, we know that Hz = 0. From the expressions, we see G̃TM
eh,xz, G̃

TM
eh,yz,

G̃TM
eh,zz = 0, which agrees with intuition, as any magnetic current with a component in the ẑ direction

would also produce an magnetic field in that direction; therefore all z-directed magnetic sources must
be zero. This fact also leads to G̃TM

hh,xz, G̃
TM
hh,yz, G̃

TM
hh,zx, G̃

TM
hh,zy, G̃

TM
hh,zz = 0.

We can also assign physical meaning to the non-zero contributions by use of three illustrations. Let
us first consider a ẑ-directed magnetic current, Jhz which maintains a non-zero magnetic field (Hz �= 0).
This would correspond to a TEz wave and is shown in Figure 3(a). Clearly, this current produces a
ẑ-directed magnetic field, leading to G̃TE

hh,zz �= 0. According to Maxwell’s equations, we would have
a rotational electric field consisting only of transverse (x̂ and ŷ) components. Therefore, we see that
G̃TE
eh,xz and G̃TE

eh,yz are non-zero, since x̂ and ŷ directed electric fields are produced from the ẑ-directed
magnetic current. Finally, we note from this case that a “secondary” magnetic field diverges from the
center of this rotational electric field, leading to non-zero G̃TE

hh,xz, G̃
TE
hh,yz components. This field is shown

in green in the Figure 3(a).
Now, consider a rotational magnetic current with only transverse components, �Jhtr (a TMz wave).

This situation is shown in Figure 3(b). The rotational current maintains a counter-rotating magnetic
field, which gives rise to non-zero G̃TM

hh,xx, G̃
TM
hh,xy, G̃

TM
hh,yx, G̃

TM
hh,yy terms. Additionally, we see the electric

field rotating around this transverse magnetic field, leading to all possible electric field components
except G̃TM

eh,xz, G̃
TM
eh,yz, and G̃TM

eh,zz, since a ẑ-directed magnetic source is not allowed for a TMz wave.

z = d

z = 0

z = z

z = z '

r1 r2 r3 r4 p

ejλ zψ |z − z ' |

R ψ

R  ψ

Figure 2. A visual representation of the terms given in (34). The terms represent waves that are
reflected from the top and bottom of the parallel plate. The path r1 represents the first term, path r2
represents the second term, path r3 represents the third term and the path r4 represents the fourth.
The principal solution is also shown on the far right.
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Figure 3. (a) The 3-D fields for a ẑ-directed magnetic current, �Jhz . (b) The 3-D fields for a transverse,
rotating magnetic current �Jhtr , viewed from the side. (c) Two notional vectors in a diverging lamellar
current, shown in 3-D.

There is one further case to consider — that of a sheet of lamellar magnetic current in the transverse
direction, �Jhtl , maintaining a lamellar magnetic field, �Hhtl . It is a bit more complicated to see that this
is a TEz case, but is shown graphically in Figure 3(c). Note that this sheet is actually comprised of
an infinite density of vectors, but we have only shown two for clarity. It is clear that we have non-zero
G̃TE
hh,xx, G̃

TE
hh,xy, G̃

TE
hh,yx, G̃

TE
hh,yy components. Also, in this case, we see the electric fields rotating around

the lamellar magnetic field vectors, leading to non-zero G̃TE
eh,xx, G̃

TE
eh,xy, G̃

TE
eh,yx, G̃

TE
eh,yy components. Note

that the ẑ components of adjacent rotating electric fields cancel one another out — leading to a net
zero ẑ component; this allows us to see it as a TEz field. A “secondary” magnetic field will diverge
from the center of each rotating electric field, leading to non-zero G̃TE

hh,zx, G̃
TE
hh,zy components, similar to

the “secondary” (green) magnetic field in Figure 3(a). From the preceding analysis, we see that each
component of the Green’s function is explicitly tied to the physical picture we would expect from a basic
application of Maxwell’s equations. A similar analysis holds for the terms associated with an electric
current.

4. CONCLUSIONS

This paper has presented the detailed development of the total Green’s functions, directly from
Maxwell’s equations, for a parallel plate waveguide (PPWG) filled with dielectric and magnetic uniaxial
media. Due to the increased complexity introduced by allowing both dielectric and magnetic anisotropy,
we see a significant increase in the amount of analysis required to obtain the desired expressions over [17],
where only dielectric anisotropy was considered. This increase in work arises from two main areas:
the manual algebraic inversion of a 3 × 3 matrix (since no simplifying identities were found) and the
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computation of the Green’s function on a component-by-component basis. Although it may be possible
to extend this direct solution of Maxwell’s equations to more complex media (i.e., — gyrotropic), the
substantial increase in work would likely make it an unattractive approach. These Green’s functions
are now available for use in a non-destructive evaluation configuration, such as the two-Flanged
Waveguide Measurement Technique (tFWMT) given in [18, 19], for the extraction of the transverse
and longitudinal permittivity and permeability of uniaxial media. This would represent a novel and
exciting nondestructive characterization method for anisotropic media. Additionally, it paves the way
for the nondestructive electromagnetic characterization of more general types of media (gyrotropic,
chiral, etc.). Future work will concentrate on developing the tFWMT for use in characterizing uniaxial
media.

APPENDIX A. EXPANDED TOTAL GREEN’S FUNCTIONS

Here, the total Green’s functions are given component-wise. In order to present as compact a notation
as possible, we define the following 8 terms (4 for λzθ and 4 for λzψ):

Υα
1 =

cos (λzα [d− |z − z′|])− cos (λzα [d−(z + z′)])
sin (λzαd)

Υα
2 =

cos (λzα [d− |z − z′|]) + cos (λzα [d− (z + z′)])
sin (λzαd)

Υα
3 =

sgn(z − z′) sin (λzα [d− |z − z′|]) − sin (λzα [d− (z + z′)])
sin (λzαd)

Υα
4 =

sgn(z − z′) sin (λzα [d− |z − z′|]) + sin (λzα [d− (z + z′)])
sin (λzαd)

. . . α = θ, ψ

(A1)

A.1. ee-type Green’s Function

↔
G̃ee =

↔
G̃

TE

ee +
↔
G̃

TM

ee +
↔
G̃

d
ee

↔
G̃

TE

ee =
(
jωμt

2λzθλ2
ρ

)⎡⎢⎣
λ2
y −λxλy 0

−λxλy λ2
x 0

0 0 0

⎤
⎥⎦Υθ

1

↔
G̃

TM

ee =
(

j

2ωεtλ2
ρ

)
⎡
⎢⎢⎢⎢⎢⎣

λ2
xλzψΥψ

1 λxλyλzψΥψ
1 j εtεz λxλ

2
ρΥ

ψ
4

λxλyλzψΥψ
1 λ2

yλzψΥψ
1 j εtεzλyλ

2
ρΥ

ψ
4

j εtεz λxΥ
ψ
3 j εtεzλyλ

2
ρΥ

ψ
3

(
j

λzψ

)(
εtλ

2
ρ

εz

)2

Υψ
2

⎤
⎥⎥⎥⎥⎥⎦

↔
G̃

d
ee = − 1

jωεz
δ(z − z′)

(A2)
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A.2. eh-type Green’s Function

↔
G̃eh =

↔
G̃

TE

eh +
↔
G̃

TM

eh

↔
G̃

TE

eh =
(

1
2λ2

ρ

)
⎡
⎢⎢⎢⎢⎢⎣

−λxλyΥθ
4 −λ2

yΥθ
4

jμtλyλ
2
ρ

μzλzθ
Υθ

1

λ2
xΥ

θ
4 λxλyΥθ

4 −jμtλxλ
2
ρ

μzλzθ
Υθ

1

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

↔
G̃

TM

eh =
(

1
2λ2

ρ

)⎡⎢⎢⎢⎣
λxλyΥ

ψ
4 −λ2

xΥ
ψ
4 0

λ2
yΥ

ψ
4 −λxλyΥψ

4 0

−jεtλyλ
2
ρ

εzλzψ
Υψ

2

jεtλxλ
2
ρ

εzλzψ
Υψ

2 0

⎤
⎥⎥⎥⎦

(A3)

A.3. he-type Green’s Function

↔
G̃he =

↔
G̃

TE

he +
↔
G̃

TM

he

↔
G̃

TE

he =
(

1
2λ2

ρ

)⎡⎢⎢⎢⎣
−λxλyΥθ

3 λ2
xΥθ

3 0
−λ2

yΥθ
3 λxλyΥθ

3 0
jμtλyλ

2
ρ

μzλzθ
Υθ

1 −jμtλxλ
2
ρ

μzλzθ
Υθ

1 0

⎤
⎥⎥⎥⎦

↔
G̃

TM

he =
(

1
2λ2

ρ

)
⎡
⎢⎢⎢⎢⎢⎣
λxλyΥ

ψ
3 λ2

yΥ
ψ
3 −jεtλyλ

2
ρ

εzλzψ
Υψ

2

−λ2
xΥ

ψ
4 −λxλyΥψ

3

jμtλxλ
2
ρ

μzλzψ
Υψ

2

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(A4)

A.4. hh-type Green’s Function

↔
G̃hh =

↔
G̃

TE

hh +
↔
G̃

TM

hh +
↔
G̃

d
hh

↔
G̃

TE

hh =
(

j

2ωμtλ2
ρ

)
⎡
⎢⎢⎢⎢⎢⎢⎣

λ2
xλzθΥθ

2 λxλyλzψΥθ
2 j

μt
μz
λxλ

2
ρΥ

θ
3

λxλyλzθΥθ
2 λ2

yλzθΥθ
2 j

μt
μz
λyλ

2
ρΥ

θ
3

j
μt
μz
λxΥθ

4 j
μt
μz
λyλ

2
ρΥ

θ
4

(
j

λzψ

)(
μtλ

2
ρ

μz
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Υθ
1

⎤
⎥⎥⎥⎥⎥⎥⎦

↔
G̃

TM

hh =
(

jωεt
2λzψλ2

ρ

)⎡⎣ λ2
y −λxλy 0

−λxλy λ2
x 0

0 0 0

⎤
⎦Υψ

2

↔
G̃

d
hh = − 1

jωμz
δ(z − z′)

(A5)

Note, the total spatial-domain fields may be found by dotting the total dyadic Green’s function
terms in (A2)–(A5) by the appropriate current, followed by Fourier inversion via (3), the details of
which are omitted for the sake of brevity.
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