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GPR Modeling for Rapid Characterization of Layered Media

Subrata Maiti1, *, Sarat K. Patra1, and Amitabha Bhattacharya2

Abstract—The success of a ground penetrating radar (GPR) signal modeling scheme largely depends
on its accuracy and computational efficiency. Most of the modeling schemes suffer from inaccuracy
because of unrealistic assumptions of complex GPR environment. In this respect full wave model
(FWM) of GPR signal is a promising approach for accurate characterization of multi-layered media.
However, large computation time of FWM compared to other simplified models makes the approach
inefficient for real time application. In this work an FWM scheme is developed based on electric field
equivalent magnetic current density at antenna phase center. The compact analytical expression of
Green’s function representing response due to layered media is derived. Then a plane wave model
(PWM) is proposed by introducing a spreading factor based on simplified expression of the FWM. The
model inversion is successfuly carried out by a gradient based algorithm. A stepped frequency continuous
wave GPR in off-ground monostatic configuration is implemented in laboratory environment to verify
performances of the models. Experimental analysis proves that the proposed PWM is as accurate as
FWM, and its computation efficiency is enormous to detect layered media parameters.

1. INTRODUCTION

Estimation of electrical and geometrical properties of layered media by ground penetrating radar (GPR)
technique finds many applications [1, 2] in the fields of civil engineering, archaeology, geology, military,
etc. Monostatic GPR is useful for achieving high scanning speed [3, 4]. The accuracy and scanning
speed are important requirements for an efficient GPR system. There is always compromise between
these important performance parameters to formulate a modeling scheme based on GPR application
requirement. The numerical modeling [5–8] can take care of the complex geometry and its boundary
conditions. However, they often suffer from low computational efficiency leading to difficulty in real time
implementation. Analytical modeling can be applied under simplified hypotheses on the nature of the
structure, resulting in problem specific solution. The common midpoint (CMP) method [9–11], based
on wave propagation speed is a popular approach used for GPR signal analysis. But it suffers from
processing delay as it requires several traces for single profile measurement. Spectral inversion method
proposed by [12, 13] is proven to be successful for estimating electrical parameters of the layered media
with low conductivity profile. This method is based on common reflection method with assumption of
plane wave propagation. Full wave models (FWM) are more promising schemes for accurate estimation
of media properties [14, 15]. Here 3-D Maxwell’s equations are solved to find the Green’s function
due to sub-surface media. In the field of off-ground monostatic stepped frequency continuous wave
(SFCW) GPR, Lambot et al. [14] have contributed significantly by introducing concept of linear transfer
function (LTF) model and an FWM scheme for characterization of multi-layered media. The scheme is
successfully used for estimating and monitoring soil water content [16]. However, computation efficiency
of this model is poor compared to other simplified models based on plane wave assumption. Many
researchers are proposing layer stripping (LS) techniques [4, 17, 18] for fast characterization of layered
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media. The drawbacks of these techniques are inaccuracy due to signal dispersion and accumulation of
error due to recursive formulation [18].

In this work, an FWM is formulated based on scattered reflected field due to electric field equivalent
magnetic current source at antenna phase center. Then a plane wave model (PWM) is proposed based
on common reflection mehtod and simplified expression of the FWM. By introducing a spreading factor,
the PWM becomes as accurate as FWMs without altering its speed of computation. A comprehensive
analysis on the PWM and FWMs established that they are highly correlated. An SFCW GPR is
implemented with help of a vector network analyzer (VNA) and a TEM horn antenna in laboratory.
The GPR detection performance of the proposed model is compared with [14] by testing a single layered
wet sand and a two layered media.

2. FORMULATION OF GPR SIGNAL MODEL

2.1. Modeling Assumption

The SFCW radar is emulated with help of a VNA and an antenna in monotstatic off-ground
configuration. For far field measurement, the antenna is assumed to be a point source and receiver
located at its phase center. The signal is assumed to be propagating in normal direction only, i.e., in z
directions. The VNA, antenna and sub-surface are modeled as linear systems [14] in series and parallel
as shown in Fig. 1(a). By applying Masson’s gain formula, the VNA measured complex reflection
coefficient S11(ω) is expressed as following.

S11 (ω) =
Y (ω)
X(ω)

= Hi (ω) +
Ht (ω) G↑

xx(ω)Hr (ω)

1 − Hf (ω)G↑
xx(ω)

(1)

where X(ω) is the transmitted signal and Y (ω) is the received signal at the VNA reference plane; Hi(ω),
Ht(ω), Hr(ω) and Hf (ω) are the return loss, transmit transfer function, receive transfer function, and
feedback loss transfer function respectively for the antenna. G↑

xx(ω) is the Green’s function representing
the air-subsurface media. All these frequency dependent transfer functions can be evaluated by suitable
calibration process as mentioned in [19]. The air-subsurface media is modeled as multi-layered media
(shown in Fig. 1(b)) where any nth layer is homogeneous and is characterized by its electric permittivity
(εn), electric conductivity (σn), magnetic permeability (μn) and thickness (hn). The permeability μn is
assumed to be free space value μ0. The soil materials are significantly dispersive because of frequency
dependency of effective dielectric constant (εe = σ+iωε). The frequency dependency is usually described
by the Debye relaxation equation [20] as given below.

εe (f) = εe,∞ +
εe,0 − εe,∞
1 + j f

fr

(2)

(a) (b)

Figure 1. (a) Block diagram representing the VNA-antenna-multilayered medium system [14], (b)
model configuration of N-layered medium with a point source.
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where f is the frequency and fr is the relaxation frequency of the material, εe,0 is the static permittivity,
and εe,∞ is the permittivity at infinite frequency. Over the limited operating frequency, ε can be assumed
to be constant and σ as a linear function of frequency as given below.

σ (f) = σc + σr (f − fc) (3)

where σc is the static electric conductivity (S/m) at center frequency fc of the frequency band and σr

the linear variation rate (S/m/GHz) with frequency.

2.2. Derivation of FWM

The source and receiver part of the antenna is located at the antenna phase center at the origin O
of the coordinate system. For TEM horn antenna, the transmitted electric field Et

xp is assumed to
be directing towards x-direction only. Applying Huygen’s principle [21, pp. 575–581], the equivalent
magnetic current density Ms is expressed as following.

Ms = −2n̂× x̂Et
xp = −2Et

xpŷ (4)

and equivalent electric current density
Js = 0 (5)

The n̂ is acting towards the direction of EM wave propagation (in z-direction). The radiated far field due
to this equivalent magnetic source is to be derived by solving Maxwell’s equations. The Green’s function
G↑

xx(ω) is defined as the ratio between back scattered x-directed electric field and transmitted x-directed
electric field at antenna phase center at frequency ω rad/s. The spatial domain Green’s function at the
source point ((x, y, z) = 0) is obtained from the spectral domain Green’s function G̃↑

xx(kρ, ω) as

G↑
xx(0, ω) =

1
4π

+∞∫
0

G̃↑
xx (kρ, ω) kρdkρ (6)

The integration variable kρ is a spectral domain parameter. After a rigorous mathematical analysis
by following [22–25], the analytical expression of the spectral domain Green’s function is derived (see
Appendix A) and its final form is given below.

G̃↑
xx (kρ, ω) =

[
RTE

n − RTM
n

]
e−2Γnhn (7)

where RTM
n and RTE

n are transverse magnetic global reflection coefficient and transverse electric global
reflection coefficient respectively accounting for all reflections from the multi-layered interfaces as given
in [23, pp. 48–53].

RTM
n =

rTM
n + RTM

n+1 exp(−2Γn+1hn+1)
1 + rTM

n RTM
n+1 exp(−2Γn+1hn+1)

(8)

rTM
n =

ηn+1Γn − ηnΓn+1

ηn+1Γn + ηnΓn+1
(9)

RTE
n =

rTE
n + RTE

n+1 exp(−2Γn+1hn+1)
1 + rTE

n RTE
n+1 exp(−2Γn+1hn+1)

(10)

rTE
n =

μn+1Γn − μnΓn+1

μn+1Γn + μnΓn+1
(11)

Γn (=
√

k2
ρ − k2

n) is vertical wave number of nth layer, kn is free space propagation constant of nth layer

with relation k2
n = −ζnηn, ζn = iωμn, and ηn = σn + iωεn. Here h1 is the thickness of the air media

i.e., the height of the antenna phase center from the ground surface located at z1. Ideally the height
h1 should be function of frequency as the location of antenna phase center changes with frequency.
However, the antenna phase center can be placed at a fixed location like at the center of the antenna
aperture. A study by Jadoon et al. [26] proved that the linear transfer function model used to represent



220 Maiti, Patra, and Bhattacharya

the antenna behavior inherently accounts for the gain and delay due to frequency dependent antenna
phase center location through the calibration process.

By assuming TEM horn antenna as an infinitesimal x-directed electric dipole, the spectral domain
Green’s function [14] is obtained as following.

G̃↑
xx (kρ, ω) =

[
RTM

n

Γn

ηn
− RTE

n

ζn

Γn

]
e−2Γnhn (12)

Let us denote this FWM [14] as FWM-1 and the proposed one in Eq. (7) as FWM-2.

2.3. Formulation of PWM Based on Simplified Formula of FWM

Common reflection method based on plane wave propagation is found in various literatures [1, 12]
and it is mostly applied for approximate estimation of the layered media’s electrical parameters while
conductivity is negligible. Here this method is modified to make it very accurate to estimate both
conductivity and dielectric constant without altering its computational efficiency. For plane wave
propagation, reflection coefficient (rn,n+1) at any nth layer interface (zn) is given by following relation.

rn,n+1 =
Zn+1 − Zn

Zn+1 + Zn
(13)

Zn is the impedance of nth layer media given by

Zn =

√
ζn

ηn
=
√

iωμn

σn + iωεn
(14)

Any nth layer media propagation parameter (γn) is expressed as

γn = αn + iβn =
√

iωμn(σn + iωεn) =
√

ζnηn = ikn (15)

where αn and βn are attenuation and phase constants respectively for nth layer media. The first order
reflection (r̂1

n,n+1) from nth interface (zn) is given by

(
r̂1
n,n+1

)
= rn.n+1

n−1∏
j=1

(
1 − (rj,j+1)

2
) n∏

j=1

exp (−2γjhj) (16)

Plane wave propagation is possible when source is in infinite distance from the media. For finite distance
case, Eq. (16) needs to be modified to make it accurate. Here FWM-2 expression represented by Eqs. (6)
and (7) is simplified and important findings are used to modify the common reflection method to derive
the PWM.

Let us consider the case of two-layered media. A two-layered media can be created with half space
air media (σ1 = 0 and εr1 = 1) followed by a media having either conductivity (σ2) infinity or thickness
(h2) infinity. From Eqs. (6) and (7) we can write.

G↑
xx(ω) =

1
4π

+∞∫
0

[
RTE

1 − RTM
1

]
e−2Γ1h1kρdkρ (17)

Here Γ1 =
√

k2
ρ − k2

1 =
√

k2
ρ + γ1

2 and the expression of global reflection coefficients for TE and TM

can be obtained as R1
TE = r1

TE and R1
TM = r1

TM from Eqs. (8)–(11). Therefore, Eq. (17) is modified
to

G↑
xx(ω) =

1
4π

+∞∫
0

[
rTE
1 − rTM

1

]
e−2h1

√
kρ

2+γ1
2
kρdkρ (18)

It can be observed in Eq. (18) that e−2h1

√
kρ

2+γ1
2 is highly oscillation function and

[
rTE
1 − rTM

1

]
changes

slowly with respect to the integration variable kρ. Now applying method of stationary phase [23, pp.
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79–82], integration in Eq. (18) can be simplified as following.

G↑
xx(ω) =

r1,2

2π

+∞∫
0

e−2h1

√
kρ

2+γ1
2
kρdkρ (19)

Note that d
dkρ

(
√

kρ
2 + γ1

2) = 0 at kρ = 0. Again at kρ = 0, rTE
1 = r1,2 = −rTM

1 , where r1,2 is TEM
wave reflection coefficient at z1 interface for normal incidence as defined in Eq. (13). Now applying
integration by parts repeatedly Eq. (19) is simplified to

G↑
xx(ω) =

r1,2

2π

⎡
⎢⎢⎣e−2γ1h1

2
h1

γ1

+
e−2γ1h1

4 (h1)
2

⎤
⎥⎥⎦ (20)

Now let us consider the case of three layered media. In this case RTE
1 and RTM

1 can be expressed as
following.

RTE
1 =

rTE
1 + RTE

2 exp(−2Γ2h2)
1 + rTE

1 RTE
2 exp(−2Γ2h2)

=
rTE
1 + rTE

2 exp(−2Γ2h2)
1 + rTE

1 rTE
2 exp(−2Γ2h2)

= rTE
1 + rTE

2

(
1 − rTE

1
2
)

e−2Γ2h2 + . . .

(21)
and

RTM
1 =

rTM
1 + RTM

2 exp(−2Γ2h2)
1 + rTM

1 RTM
2 exp(−2Γ2h2)

=
rTM
1 + rTM

2 exp(−2Γ2h2)
1 + rTM

1 rTM
2 exp(−2Γ2h2)

= rTM
1 +rTM

2

(
1 − rTM

1
2
)

e−2Γ2h2+. . .

(22)
Now Eq. (17) can be written as

G↑
xx(ω) =

1
4π

+∞∫
0

[(
rTE
1 − rTM

1

)
+
{

rTE
2

(
1 − rTE

1
2
)
− rTM

2

(
1 − rTM

1
2
)}

e−2Γ2h2 + . . .
]
e−2Γ1h1kρdkρ

(23)
Rearranging the terms we get

G↑
xx(ω)=

1
4π

+∞∫
0

[
rTE
1 − rTM

1

]
e−2Γ1h1kρdkρ

+
1
4π

+∞∫
0

[
rTE
2

(
1−rTE

1
2
)
−rTM

2

(
1−rTM

1
2
)]

e−2(Γ1h1+Γ2h2)kρdkρ + Higher order terms (24)

Again by applying method of stationary phase followed by integration by parts, Eq. (24) can be simplified
as following.

G↑
xx(ω) =

r1,2

2π

{
1

2h1
γ1

+
1

4 (h1)
2

}
e−2γ1h1

+
r2,3

(
1 − r2

1,2

)
2π

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
(

h1

γ1
+

h2

γ2

)+

(
h1

γ3
1

+
h2

γ3
2

)

4
(

h1

γ1
+

h2

γ2

)3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

e−2(γ1h1+γ2h2) + Higher order terms (25)

Note that terms with higher than h2 variation are neglected from the analytical expression of the
integration with highly oscillating term as given below.

+∞∫
0

e−2(Γ1h1+Γ2h2)kρdkρ = e−2(γ1h1+γ2h2)

⎡
⎢⎢⎢⎣ 1

2
(

h1

γ1
+

h2

γ2

) +

(
h1

γ3
1

+
h2

γ3
2

)

4
(

h1

γ1
+

h2

γ2

)3 + . . .

⎤
⎥⎥⎥⎦ (26)
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In Eq. (25), the 1st term signifies contribution due to 1st order reflection (R1
1,2) from interface z1.

R1
1,2 =

r1,2

2π

⎧⎪⎪⎨
⎪⎪⎩

1

2
h1

γ1

+
1

4 (h1)
2

⎫⎪⎪⎬
⎪⎪⎭ e−2γ1h1 =

r̂1
1,2

2π

⎧⎪⎪⎨
⎪⎪⎩

1

2
h1

γ1

+
1

4 (h1)
2

⎫⎪⎪⎬
⎪⎪⎭ (27)

where r̂1
1,2 expression is given by Eq. (16). The superscript of R1

1,2 denotes the order of reflection
coefficient. Similarly the 2nd term signifies contribution due to 1st order reflection (R1

2,3) from interface
z2.

R1
2,3 =

r̂1
2,3

2π

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
(

h1

γ1
+

h2

γ2

) +

(
h1

γ3
1

+
h2

γ3
2

)

4
(

h1

γ1
+

h2

γ2

)3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(28)

Based on simplified expressions found in Eqs. (20) and (25) for two and three layered media respectively
and using Eq. (16), the expression for 1st order reflection from zn can be generalized as following.

R1
n,n+1 =

(
r̂1
n,n+1

2πi

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

2
n∑

j=1

hj/γj

+

⎛
⎝ n∑

j=1

hj/γ
3
j

⎞
⎠

4

⎛
⎝ n∑

j=1

hj/γj

⎞
⎠

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(29)

One complex term ‘i’ is introduced at the denominator of the expression (29) to have phase matching
between Eqs. (16) and (29). All the higher order reflections due to multiple reflections at interface z2

can be obtained by following Eq. (29). As an example the mth order reflections from z2 can be found
as following.

Rm
2,3 =

r̂1
2,3

2πi
(r2,1r2,3)(m−1) e−(m−1)2γ2h2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
(

h1

γ1
+ m

h2

γ2

) +

(
h1

γ3
1

+ m
h2

γ3
2

)

4
(

h1

γ1
+ m

h2

γ2

)3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(30)

Eq. (30) can also be derived by considering mth order term in Eq. (25). With h2 variation insignificant,
Eq. (29) can be modified as following.

R1
n,n+1 =

(
r̂1
n,n+1

2πi

)
⎛
⎜⎜⎜⎜⎜⎝

1
n∑

j=1

2hj/γj

⎞
⎟⎟⎟⎟⎟⎠ (31)

The generalized formula for Rm
n,n+1 i.e., mth order reflection from interface zn can be obtained by

solving Eqs. (6)–(11) and finding terms corresponding to (ra1
1,2r

a2
2,3 . . . ran

n,n+1). Here ai are +Ve integer
constants related by

∑n
i=1ai = m and an ≥ 1. The overall Green’s function due to N -layered media

with maximum order of reflection No can be expressed as

G↑PWM
xx (ω) =

No∑
i=1

N−1∑
k=1

Ri
k,k+1 (32)

The No value should be decided best on accuracy requirement of the GPR system. Let us denote this
model (32) as plane wave model (PWM). The G↑PWM

xx obtained by considering only h variation term is
denoted as PWM-1 and PWM-2 for considering both h and h2 variations. With no integration required
to compute G↑PWM

xx compared to FWMs, the proposed PWM schemes are very time efficient.
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3. ANALYSIS AND INVERSION OF MODEL

3.1. Analysis of Models

A comprehensive analysis has been carried out for all the models in terms of correlation between Green’s
functions in frequency and time domain over wide range of parameter vector space. The correlation
coefficient (corr coff) between two real vectors X and Y is defined as

corr coff =

Nf∑
i=1

(xi − x̄)(yi − ȳ)

√√√√ Nf∑
i=1

(xi − x̄)2
Nf∑
i=1

(yi − ȳ)2

(33)

where xi, yi are the elements of vectors X and Y respectively, and x̄ and ȳ are mean values. Nf is
the number of frequency points and is taken as 101 here with spacing of 40 MHz over the frequency
band of 0.5 to 4.5 GHz. Parameters values are varied exponentially to compute total 4851 (11 along
εr, 21 along σ and 21 along h) iterations for comparing all types of Green’s functions over the wide
parameter vector space (2 < εr < 101; 10 < σ < 104 mS/m; 1 < h < 103 cm). It is observed that the
Green’s functions of FWM-1 [14] and FWM-2 differ by a constant amplitude factor and a phase shift
of 180◦. After compensating the phase shift and performing correlation analysis it is found that both
the models are highly correlated with correlation coefficients between GFWM−1

xx and GFWM−2
xx almost 1

(> 0.9999841) for real parts as well as for imaginary parts. Correlation coefficient between time domain
Green’s functions is found to be greater than 0.9999899. Therefore FWM-1 and FWM-2 can be treated
as one model with similar behavior in frequency and time domain. Next PWMs are compared with
FWM-2. For PWMs, the order of reflection (No) is varied from 5 to 25 with observation that GPWM

xx
doesn’t change as No is increased above 20 on the selected range of parameter vector space. Since PWMs
differ with FWM-2 by 90◦ as seen in Eqs. (29) and (31), the FWM-2 Green’s function is multiplied by
−1i before performing correlation coefficients matrices. The results of analysis are presented in Table 1.
It also includes averaged %RMS difference between the Green’s functions defined by following formula.

%RMS diff = 100 ×

√√√√√√√√√√

Nf∑
i=1

∣∣∣(G↑PWM
xx (ωi)

)
−
(
G↑FWM−2

xx (ωi)
)∣∣∣2

Nf∑
i=1

∣∣∣(G↑FWM−2
xx (ωi)

)∣∣∣2
(34)

Only the worst case values of corr coff between time domain Greens’s functions and %RMS diff
between frequency domain Green’s functions obtained for εr values 2, 16 and 81 over σ-h plane are
presented. It shows that PWMs and FWM-2 are highly correlated as we consider for h2 variation and
higher value of No. Similar results are obtained when PWMs are compared with FWM-1. The time
required to compute single Green’s functions over 101 frequency points and averaged over 1000 times
running in an 1.93 GHz core i3 laptop are presented in last row of Table 1. The results prove that the
PWMs are extremely time efficient compared to FWMs. The FWM-1 with SFCW radar based on VNA
platform is rigorously analyzed for uniqueness, stability, noise performances [19, 27]. It is expected that
the FWM-2 and PWMs will have similar noise and stability performance as they are highly correlated
with FWM-1.

In order to explain how the spreading term for higher order reflection looks, a synthetic model of
two layered media (εr1 = 0, σ1 = 0, h1 = 35 cm, εr2 = 81, σ2 = 10mS/m, h2 = 1cm) is chosen for
which worst case correlation between PWM and FWM is observed. Fig. 2 explains how PWM2 Green’s
function becomes closer to the FWM as order of reflection coefficient (No) is increased from 5 to 20. For
No = 5, amplitude difference between PWM and FWM is clearly observed in frequency domain plot,
and this difference is observed after 5th order reflection in time domain plot. As for No = 20, these
differences are minimal as observed in the plots.
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Table 1. Comparison of Models in terms of %RMS diff , Corr coff and timing efficiency.

Max %RMS diff with FWM-2 in σ-h plane Min Corr coff with FWM-2 in σ-h plane

εr
PWM-1 PWM-2 PWM-1 PWM-2

No = 5 No = 20 No = 5 No = 20 No = 5 No = 20 No = 5 No = 20
2 4.4075 4.4096 0.1376 0.1351 0.9991483 0.9991476 0.9999995 0.9999995
16 6.0538 2.6394 5.5798 0.0674 0.9980958 0.9996207 0.9984172 0.9999998
81 21.2627 2.5535 21.127 0.6580 0.9803440 0.9996406 0.9806714 0.9999815

Processing time of Gxx(ω) in milliseconds
PWM-1 PWM-2 FWM-1 FWM-2

6.2414 6.9968 6.3512 8.6450 2280.0 2278.2
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Figure 2. Plot of Green’s functions (Gxx(ω)) for the synthetic model of two layered media in (a)
frequency domain and (b) in time domain.

3.2. Inversion Approach

The estimation of subsurface media parameters by inverse modeling is a nonlinear problem. By
formulating the inverse problem in least-squares sense, the objective function can be defined as following.

Φ (b) =
∣∣∣G↑∗

xx (ω) − G↑
xx(ω,b)

∣∣∣T ∣∣∣G↑∗
xx (ω) − G↑

xx(ω,b)
∣∣∣ (35)

where G↑∗
xx(ω) are the vectors containing measured, and G↑

xx(ω,b) are the vectors containing simulated
Green’s function of the layered media. The parameter vector b (consists of μn, εn, σn, hn) needs to be
estimated by minimizing the objective function Φ(b) in Eq. (35). The objective function for all the
models, i.e., FWMs and PWMs are highly non linear having multiple minimas over the parmater vector
space. A layer stripping technique (LS) is utilized to get preliminary information of layer thickness
and electrical parameters and then gradient based algorithm of Matlab software is used to optimize the
objective function. By LS method the properties of the multi layered media is recursively estimated by
resolving one layer at a time starting from the top layer. A brief description is presented to describe
the approach.
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3.3. Layer Stripping (LS)

In this method, analysis of the GPR signal is done in time domain. Let us assume that the parameters
for 1st to nth layer are known. Neglecting presence of multiple reflections, the parameters of (n + 1)th
layer media can be extracted by following steps as given below.

Step 1. Extracting εr,n+1 and hn+1: Synthetically generate a Green’s function for a PEC placed at
zn interface by using Eq. (31). Find the peak Apc

n due to the PEC by taking IFFT of the frequency
domain Green’s function. For PEC at zn, rn,n+1 = −1. Now comparing PEC reflection Apc

n with the
1st order reflection An from zn interface of the layered media under test, following expression can be
written based on Eq. (13).

− An

Apc
n

= rn,n+1 =
Zn+1 − Zn

Zn+1 + Zn
(36)

Now μr = 1 for all the layers and εr,n and σn are known. Neglecting conductivities of both the layers
i.e., σn and σn+1, εr,n+1 of (n + 1)th layer media can be evaluated from Eq. (36). Then find thickness
hn+1 of (n + 1)th layer media by relation

hn+1 = −c × (tn+1 − tn)
2βn+1/β1

(37)

where β1 is the propagation constant of free space, and tn and tn+1 are the time of arrival for 1st order
reflection from the interfaces zn and zn+1, respectively. For σn+1 = 0, Eq. (37) is simplified to

hn+1 = −c × (tn+1 − tn)
2√εr,n+1

(38)

Step 2. Extracting σn+1 and updating hn+1 and σn+1: Now synthetically generate a Green’s function
for a (n+1) layer media bounded by PEC at bottom by using Eq. (31). Find 1st order (n + 1)th peak
i.e., reflection Apc

n+1 due to zn+1 interface by taking IFFT of the frequency domain Green’s function.
Now ratio of Apc

n+1 with An can be written based on Eq. (31) as following.

Apc
n+1

An
=

(
1 − r2

n,n+1

−rn,n+1

) n∑
j=1

hj/γj

n+1∑
j=1

hj/γj

exp (−2αn+1hn+1) (39)

Neglect σn+1 to calculate
∑n+1

j=1 hj/γj . Now αn+1 can be approximated at center frequency as

αn+1 =
σc,n+1

2√εr,n+1
Z1 (40)

where σc,n+1 is the effective conductivity of (n + 1)th layer at center frequency (fc) and Z1 the free
space impedance. Now σc,n+1 can be evaluated by solving Eq. (39) after replacing αn+1 from Eq. (40).
Then update the thickness hn+1 of (n + 1)th layer media by relation (37) and using the newly obtained
value of σc,n+1. Repeat the step 2 few times as long as σc,n+1 and hn+1 settle to almost constant values
with pre defined accuracy.

4. RESULTS AND DISCUSSION

4.1. Experimental Setup

The SFCW radar setup presented in Fig. 3 is assembled with a VNA (E5071C of Agilent), TEM horn
antenna (BBHA 9120A, Schwarzbeck Mess-Elektronik) and a wooden tank (138.5 cm×98.5 cm×30 cm)
containing material under test. A metal plate (122 cm × 81 cm) is kept at the bottom of the tank to
control the boundary condition. The whole setup was kept at the roof top in outdoor environment
without control of environment temperature, humidity. VNA and cable connecting the antenna was
calibrated by standard OSM kit to bring the reference measurement plane at cable and antenna interface.
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(a) (b)

Figure 3. (a) Model of the laboratory experimental setup and (b) experimental setup at the roof top.

The frequency range from 800 MHz to 4000 MHz was swept with frequency step of 4MHz. During GPR
calibration we need to measure S11(ω) while keeping antenna aperture on different heights above the
metal plate. Due to manual adjustment of the antenna stand, our height measurement inaccuracy was
around ±2 mm.

4.2. GPR Calibration

First the experimental GPR system was calibrated by taking reflection coefficient S11(ω) measurements
with antenna at different heights above a large size metal plate following the process mentioned in [19].
Plot for the various transfer functions (LTFs) and extracted Green’s functions for metal plate placed at
different heights are presented in Fig. 4. Fig. 4(a) presents the plot for antenna reflection coefficients
Hi(ω) obtained by calibration process as well as three free space measurements. Fig. 4(b) presents
the plot of feedback loss transfer function (Hf (ω)). In Fig. 4(c), H(ω) (= Ht(ω)Hr(ω)) magnitude and
phase are plotted. Finally Fig. 4(d) presents the amplitude plots of extracted Green’s functions for metal
plates placed at different heights. Theoretically (from Eq. (31)) the Green’s function Gxx(ω) for metal
plate should be proportional to frequency and inversely proportional to the antenna height. However,
it can be observed that Gxx(ω) for different heights fluctuate a lot with crossing each other. Since
effect of millimetre inaccuracy of height measurements are more towards high frequency, fluctuation of
Gxx(ω) are more towards higher frequencies. The effect of calibration error is also observed in the plots
of Hi(ω) with difference between calibrated and free space measurement data increasing towards high
frequencies. This error limits the usable bandwidth [19] for GPR detection. Based on optimum GPR
detection performance, the bandwidth from 0.9 to 2.1 GHz is selected for GPR processing.

4.3. Detection of Single Layered (1L) Sand

A single layered media was created in the laboratory environment by placing wet sand in the wooden
box. At the bottom there is a metal plate to form a PEC boundary. The sand layer was prepared
homogeneously with uniform thickness of approximate 10 cm. After the GPR experiment, simulation
was conducted for all the modeling schemes to estimate the sand’s electrical parameters. The total
number of parameters to be estimated here are 5 i.e., height of the antenna from sand surface (h1), sand
layer thickness (h2), its relative dielectric constant (εr2), conductivity (σc2) at center frequency (fc)
and conductivity variation coefficients (σr2). For both the PWMs, maximum up to 5th order reflection
was considered to calculate the Green’s function. The Table 2 presents the results of GPR inversion
and frequency averaged %RMS error of Green’s function after optimization. It can be observed that
PWMs are as accurate as FWMs to estimate electrical and geometrical parameters of single layered
sand. Resulted %RMS errors are comparable with small difference in fraction number. The timing
efficiency gained by PWMs are enormous. Further the LS has yielded approximate values for the media
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parameters. Fig. 5 presents plot of measured and modeled Green’s function in frequency and time
domain. Here FWM Green’s functions are multiplied by appropriate complex constants to normalize
and phase synchronise with PWMs. It can be observed that the phase response is reproduced well
by model inversion. However, there is significant amplitude error resulting in RMS error between
measured and modeled Green’s function. The RMS error is largely contributed by the calibration error
due to manual height measurement inaccuracy of the test setup. The time domain plot shows very
good agreement between measured and modeled Green’s function even for the higher order reflection
coefficients.

4.4. Detection of Two Layered (2L) Media

A two-layered media was created in the laboratory environment by placing wood powder above the same
wet sand layer used for single layer testing. Thickness of wood powder layer was approximately 20.5 cm.
As usual metal sheet was kept below the wet sand layer. The total number of parameters estimated
here are 7 i.e., 1st layer thickness (h2), relative dielectric constants (εr2 and εr3), conductivities (σc2

and σc3) at center frequency (fc) and conductivity variation coefficients (σr2, σr3). Antenna height (h1)
from surface of 1st layer and 2nd layer thickness (h3) were taken as known parameters and were fixed
at manual measurement values 33 cm and 10 cm respectively. For both the PWMs maximum up to 5th
order reflection from the interface z2 and up to 2nd order reflection from z3 are considered to calculate
the Green’s function. The GPR estimation results are presented in the Table 3. As usual it is observed
that PWMs are highly time efficient compared to the FWMs. Very good similarities are observed among
the estimated layer parameters by all four models. However, with percentage RMS errors higher than
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Figure 4. LTF parameters extracted by calibration.
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Table 2. Results of GPR estimation with single layered wet sand.

Model
used

Estimated Sand Layer Parameters
h1

(cm)
h2

(cm)
εr2

σc2

(mS/m)
σr2

(mS/m/GHz)
Run

time(s)
%RMS
error

LS 32.5002 9.1113 6.7848 15.3203 – 0.8327 –
PWM-1 32.3315 10.0780 5.7825 17.0768 22.1853 0.3433 11.0198
PWM-2 32.3281 10.0553 5.8220 17.1302 22.3376 0.2865 11.0485
FWM-1 32.3271 10.0209 5.8583 17.2685 22.2603 136.33 11.0663
FWM-2 32.3279 10.0714 5.7990 17.1518 22.0697 90.96 11.0848

1 1.2 1.4 1.6 1.8 2
0

5

10

15

|G
xx

|

Meas. PWM 1 PWM 2 FWM 1 FWM 2

1 1.2 1.4 1.6 1.8 2
 -5

0

5

G
xx

 (
ra

d)

1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

Frequency (GHz)

R
M

S
 E

rr
or

 (
G

xx
)

(a)

0 2 4 6 8 10 12
 -3

 -2

 -1

0

1

2

3

Time (ns)

g xx
(t

)

Meas.
PWM 1
PWM 2
FWM 1
FWM 2

(b)

Figure 5. Compare measured and modeled Green’s functions for single layered wet sand in (a) frequency
domain and (b) in time domain.
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domain and (b) in time domain.
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Table 3. Results of GPR estimation with two layered media.

Model
used

Estimated Sand Layer Parameters
h2

(cm)
εr2 εr3

σc2

(mS/m)
σr2 (mS/
m/GHz)

σc3

(mS/m)
σr3 (mS/
m/GHz)

Run
time(s)

%RMS
error

LS 21.5188 2.4532 5.7867 17.4788 – 79.5612 – 1.1686 –
PWM-1 20.4694 2.3304 6.2386 26.4405 20.4477 23.6606 28.3045 0.4655 21.5407
PWM-2 20.5096 2.3255 6.2488 26.2595 20.6708 23.8719 27.2110 0.4436 21.7214
FWM-1 20.4226 2.3412 6.2638 26.0235 22.7457 25.4625 20.2707 352.53 21.9360
FWM-2 20.4925 2.3258 6.2612 25.9421 22.4331 25.1261 20.7312 232.07 21.8701

21 for all the models, it is quite possible that models inversions yield error in parameter estimation. By
comparing Table 2 and Table 3 for wet sand parameters, it can be observed that inverted εr values are
changed by maximum up to 8% and much higher changes are observed for conductivities (σ) values.
Due to manual setup, uniform thickness and homogeneity of two-layered media could not be obtained.
The imperfect model of two-layered media along with calibration inaccuracy majorly contributes to such
a high amount of RMS error. The plots of measured and the modeled Green’s functions in frequency
and time domain are presented in Fig. 6. Similar errors for frequency response and time response for
Green’s functions are observed across all the models.

4.5. Discussion

The efficiency of PWMs depends on the choice of maximum order of reflections No. No value should
be decided based on compromise between accuracy and speed requirement as well as the range of
wide parameters vector space over which GPR estimation needs to be carried out. Without doing a
comprehensive analysis, the choices of No values can be justified by comparing the average %RMS
error performance of PWMs with FWMs. The GPR experiments on 1L and 2L media have shown the
advantage of PWM schemes over FWMs in terms of speed of computation. Though the timing efficiency
achieved by PWMs is enormous compared to FWMs, both types of models require evaluation of linear
transfer functions by time consuming calibration process. The future works need to address this issue.

5. CONCLUSIONS

We propose an SFCW monostatic GPR based on a fast and accurate modeling scheme called PWM
which can reconstruct the electrical and geometrical parameters of layered media. Analysis data and
laboratory experiments show that the proposed PWM closely matches with FWM resulting accuracy
of GPR detection as good as FWM schemes. The proposed layer stripping approach has potential to
resolve the layered media parameters including conductivities approximately. This helps the gradient
based approach to work efficiently to invert the model for single layered and two layered media. Clearly
the proposed integrated approach gives a valuable alternative for efficient characterization of layered
media. With low detection time for two layered media, this inverse modeling approach can be suitable
for real time GPR applications. Future works will focus on to simplify the process of calibration and
extend the model for more number of layers.

APPENDIX A. COMPUTATION OF THE SPECTRAL DOMAIN GREEN’S
FUNCTION G↑

XX(Kρ,ω)

Scattering field computation due to layered media for various types of sources is treated by authors as
in [22–25]. Here multi-layered media in Fig. 1(b) is placed at the far field of the antenna. We wish to
compute the reflected scattered fields (E, H) at the receiver antenna phase center (r(x, y, z) = 0) due
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to specified current distributions (J, M) at transmitter antenna phase center. These fields are governed
by the Maxwell’s equations, and its time harmonic differential form [28] are given below.

∇× H − η (ω)E = Js (A1)
∇×E + ζ (ω)H = −Ms (A2)

ζ(ω) and η(ω) are the media’s EM parameters defined as ζ(ω) = jωμ and η(ω) = σ + jωε. Js and Ms

denote electric and magnetic specific source currents respectively, and they are located at the origin of
the Cartesian coordinate system. The time dependence is implicit with an exp(jωt) dependence in the
formulation. For multi-layered horizontal media distributed over infinite length and width it is easier
to solve the fields in spectral domain by splitting them into a set of transverse electric (TE) fields and
another set of transverse magnetic (TM) fields. The Fourier transformation of a scalar function f(x, y)
with respect to the transverse coordinates is defined as

f̃ (kT ) =
∫ +∞

−∞

∫ +∞

−∞
exp(jkT .xT )f (xT ) dxdy (A3)

where kT = {kx, ky} and xT = {x, y}T . Let us introduce the horizontal vector partial derivative,
∂T = {∂x, ∂y}, and ∂T = −jkT . From Eqs. (4) and (5) it is clear that there is only magnetic current
source for which we need to solve the reflected electric field. In a homogeneous media the Maxwell’s
equations Eqs. (A1) and (A2) can be written in spectral domain as

∂z ẑ × H̃ − jkT × H̃ − ηẼ = 0 (A4)

∂z ẑ × Ẽ − jkT × Ẽ + ζH̃ = −M̃s (A5)
These equations can be separated in terms of TE and TM forms, and transverse components can be
expressed as summation of contributions due to TE and TM fields. The vertical component of the
electric and magnetic fields are found by solving modified Helmholtz equation as following.

Ẽz = ẑ.
(
jkT × M̃s

T

)
G̃ (z) (A6)

H̃z =
{
−ηM̃ s

z − ζ−1∂z

(
jkT · M̃s

T − ∂zM̃
s
z

)}
G̃ (z) (A7)

where
G̃ (z) =

exp(−Γ |z|)
2Γ

, (A8)

Γ =
(
kT .kT + γ2

) 1
2 , γ2 = ηζ. After some steps of derivations, the horizontal components of the electric

field are expressed as following.

ẼT = −jkT

k2
ρ

∂zẼz +
ζ

k2
ρ

(
jkT × ẑH̃z + ẑ × M̃s

T

)
(A9)

Keeping the separation of TE and TM modes and substituting Eqs. (A6) and (A7) in Eq. (A9), the
final expression of electric field is obtained as following.

Ẽ = G̃TMMJM̃s + G̃TEMJM̃s (A10)

where M̃ s =
{
M̃ s

x, M̃ s
y , M̃ s

z

}T
and

G̃TMMJ =

⎛
⎜⎜⎜⎜⎜⎝

−jkxjkyΓsign(z)
k2

ρ

jkxjkxΓsign(z)
k2

ρ

0

−jkyjkyΓsign(z)
k2

ρ

jkxjkyΓsign(z)
k2

ρ

0

−jky jkx 0

⎞
⎟⎟⎟⎟⎟⎠ , (A11)

G̃TEMJ =

⎛
⎜⎜⎜⎜⎜⎝

jkxjkyΓsign(z)
k2

ρ

jkyjkyΓsign(z)
k2

ρ

jky

−jkxjkxΓsign(z)
k2

ρ

−jkxjkyΓsign(z)
k2

ρ

−jkx

0 0 0

⎞
⎟⎟⎟⎟⎟⎠ (A12)
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Since there is only y-directed magnetic source term M̃ s
y , the general solution for the vertical electric

and magnetic fields in the region (0 < z < z1) are written as

Ẽz =
jkxM̃ s

y

2Γ
[
exp (−Γ1z) + RTM

1 exp (Γ1 (z − 2z1))
]

(A13)

H̃z =
jkyM̃

s
y

2ζ
[
exp (−Γ1z) + RTE

1 exp (Γ1 (z − 2z1))
]

(A14)

For the monostatic SFCW radar with single TEM horn antenna, the emitter and receiver both are
assumed to be located at the antenna phase center at z = 0. By substituting Eqs. (A13) and (A14) in
Eq. (A9) the x-directed electric field at phase center is computed as

Ẽx,z=0 =
1

2k2
ρ

[−2ζ − k2
ρ

]
M̃y +

1
2k2

ρ

[
k2

xRTM
1 − k2

yR
TE
1

]
exp (−2Γ1z1) M̃y (A15)

Considering only the backscattered field (Ẽr
x,z=0) and using the relation Ms = −2Et

xpŷ from Eq. (4),
Eq. (A15) is simplified to

Ẽr
x,z=0 =

1
2k2

ρ

[
k2

xRTM
1 − k2

yR
TE
1

]
exp (−2Γ1z1)

(
−2Ẽt

xp

)
(A16)

Accordingly, the response due to the multilayered medium is defined as following.

G̃↑
xx (kρ, ω) =

Ẽr
x,z=0

Ẽt
xp

=
1
k2

ρ

[
k2

yR
TE
1 − k2

xRTM
1

]
exp (−2Γ1z1) (A17)

Transforming to polar coordinate Eq. (A17) is modified to

G̃↑
xx (kρ, ω) =

[
J0 (kρρ)

{
RTE

1 − RTM
1

}
+ J2 (kρρ) cos 2θ

{
RTE

1 + RTM
1

}]
e−2Γ1h1 (A18)

where θ = arctan( y
x), h1 = z1 − z0 is the thickness of 1st layer media. For monostatic configuration,

the 1st layer is the air media. For the specific monostatic configuration (ρ = 0), the Green’s function is
further simplified to a single integral as given below.

G̃↑
xx (kρ, ω) =

[
RTE

1 − RTM
1

]
e−2Γ1h1 (A19)
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