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Electric Quadrupolarizability of a Source-Driven Dielectric Sphere

Arthur Yaghjian1, *, Mario Silveirinha2, Amir Askarpour3, and Andrea Alù4

Abstract—Since both metamaterials composed of artificial molecules (inclusions in a host material)
and natural molecular materials at optical and greater frequencies can exhibit significant electric
quadrupolarization as well as electric and magnetic dipolarization, we determine the passive,
causal electric quadrupolarizability for a spherically symmetric molecule, namely a dielectric sphere
subject to source-driven applied fields. For source-driven excitations, it is found that two electric
quadrupolarizability constants are generally required to characterize the electric quadrupolar response
of the sphere, with one of the constants multiplying the divergence of the applied electric field. For
source-free fields, such as the fields of the eigenmodes of an electric quadrupolar array, the local electric
field illuminating each inclusion is solenoidal, the constitutive relation is characterized by just one
quadrupolarizability constant, and the electric quadrupolarization becomes traceless. It is also found
that the electric quadrupolarization becomes very large and effectively traceless near the resonant
frequencies of electrically small plasmonic spheres with negative permittivity and for somewhat larger
spheres with positive permittivity.

1. INTRODUCTION

To explain the purpose of this paper, begin by considering Maxwell’s space-time differential curl
equations (Faraday’s and Ampère’s laws) for a continuum containing electric quadrupoles as well as
electric and magnetic dipoles, namely [1, Chapter 4 and Page 172], [2, 3]

∇× E(r, t) +
∂B(r, t)

∂t
= 0 (1)

1
μ0

∇× B(r, t) − ε0
∂E(r, t)

∂t
=

∂P(r, t)
∂t

+ ∇× M(r, t) − 1
2
∇ · ∂Q̄(r, t)

∂t
+ Ja(r, t) (2)

where E and B are the primary electric and magnetic fields; P and M are the electric and magnetic
dipolarization densities; Q̄ is the electric dyadic quadrupolarization density; ε0 and μ0 are the
permittivity and permeability of free space; Ja is the applied electric current density. For an enforced
plane-wave applied electric current density Ja(r, t) = Ja(β, ω)ei(β·r−ωt), with β = βxx̂ + βyŷ + βz ẑ,
these Maxwellian equations in (1) and (2) become

iβ × E(β, ω) − iωB(β, ω) = 0 (3)
1
μ0

iβ × B(β, ω) + iωε0E(β, ω) = −iωP(β, ω) + iβ ×M(β, ω) − 1
2
ωβ · Q̄(β, ω) + Ja(β, ω) (4)

where the plane-wave factor ei(β·r−ωt) multiplying each of the spectral vectors has been suppressed.
(Multiplying these two spectral equations by the ei(β·r−ωt) factor and integrating over (βx, βy, βz, ω)
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from −∞ to +∞, that is, taking the four-fold Fourier transform, returns them to the space-time
equations in (1) and (2)).

Equation (4) reveals that the electric quadrupolarization density Q̄ is multiplied by the product
ωβ, whereas the dipolarization densities P and M are only multiplied by ω and β, respectively. This
means that for ω and β sufficiently small, the contribution of the electric quadrupolarization density Q̄
to the primary fields E and B is negligible compared to that of the electric and magnetic dipolarization
densities P and M (assuming P or M approach a nonzero value for small values of the spatial and
temporal frequencies β and ω) [2]. Consequently, the electric quadrupolarization density in most natural
materials is negligible below optical frequencies [4, Page 111]. However, for natural materials used at
optical or greater frequencies, and for metamaterial arrays made with artificial molecules (inclusions),
the electric quadrupolarization can contribute significantly to the fields [5–7].

To theoretically investigate the propagation and scattering of fields in these electric quadrupolar
materials, it is useful to determine the electric quadrupolarizabilities of their constituent molecules
or inclusions. Toward this end, we determine in this paper the causal electric quadrupolarizability
of a dielectric sphere of radius a in an enforced plane-wave field produced by an applied current
density Ja(β, ω)ei(β·r−ωt) for |βa| � 1. Since this enforced plane wave is source driven with ±|β|
not generally equal to the free-space propagation constant, k0 = ω

√
μ0ε0 , we cannot simply use the Mie

solution [8, Sections 9.25–9.27] to the dielectric sphere illuminated by a plane wave in free space to derive
the source-driven electric quadrupolarizability of the sphere. Recent progress in the homogenization of
artificial materials has shown the effectiveness and rigor enabled by approaches based on a source-
driven excitation and Floquet modal analysis [2, 9–11]. The analysis and results of the present paper
provide an important step toward a quantitative inclusion of electric quadrupolar effects in these rigorous
approaches to the modeling of complex materials.

2. DERIVATION OF THE ELECTRIC QUADRUPOLARIZABILITY

Consider the dyadic electric quadrupole moment of a dielectric sphere of radius a and relative complex
permittivity εr illuminated by an applied, current-driven electric field. This electric quadrupole
moment is produced by equal and opposite electric dipole moments in opposite hemispheres of the
sphere [12, Section 7.10.2]. To a first approximation, these opposite electric dipole moments are induced
by the first spatial derivatives of the incident electric field applied to the sphere. In particular, if we
consider a time-harmonic (e−iωt) applied electric field in the ẑ direction equal to Ea = Eaze

i(βzz−ωt)ẑ,
then the electric quadrupole moment q̄ of the sphere is given by

q̄ = [α1ẑẑ + α2 (x̂x̂ + ŷŷ)]
∂Eaz

∂z
(5)

where Eaz = Eaze
iβzz (with the time-harmonic dependence suppressed) and ∂Eaz/∂z = iβzEaz ≈ iβzEaz

for a sphere that is small with respect to the enforced spatial wavelength (that is, |βz |a � 1) but with an
arbitrary real value of the temporal frequency ω. The α1 term represents the ẑẑ component of the electric
quadrupole moment induced directly by ∂Eaz/∂z. The α2 term represents the orthogonal components
of the electric quadrupole moment produced by the equal and opposite electric fields induced in the
sphere by the ẑẑ component of the electric quadrupole moment. Because of the spherical symmetry, the
same α2 multiplies the x̂x̂ and ŷŷ components. This same argument actually applies successively to
each of the components of the electric quadrupole moment to give an infinite series whose sum results
in the constants α1 and α2.

Another way to understand (5) is to note that, with the applied electric field Ea = Eaze
i(βzz−ωt)ẑ,

the applied and scattered fields remain unchanged with the insertion of perfectly magnetically
conducting infinite planes at x = 0 and y = 0. Then it becomes apparent that the scattered Ex

and Ey fields, and, thus the Px and Py components of polarization have odd symmetry with respect to
x and y. This odd symmetry produces opposing electric dipoles in both the x and y directions that
generate the qxx and qyy components of electric quadrupole moment in (5).

If the applied electric field also has ∂Eax/∂x and ∂Eay/∂y variations, the expression in (5) generalizes
to

q̄ = (α1 − α2)
(

∂Eax

∂x
x̂x̂ +

∂Eay

∂y
ŷŷ +

∂Eaz

∂z
ẑẑ

)
+ α2(∇ · Ea)Ī. (6)
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Moreover, as explained in the footnote of the next section, the diagonal terms in (6) are not excited
by the transverse derivatives of Ea. The constants α1 and α2 are independent of Ea and the
orientation of the xyz rectangular coordinate system. Thus, they do not change under a rotation
of the coordinates. Also, ∇ · Ea is an invariant under a rotation of coordinates. However, the dyadic
(∂Eax/∂x x̂x̂+∂Eay/∂y ŷŷ+∂Eaz/∂z ẑẑ), which was derived under the assumption that all the other first
derivatives of Ea are zero, transforms to (∇Ea+Ea∇)/2 through a Eulerian-angle rotation of coordinates
(invoking spherical symmetry and the invariance of r, Ea, and ∇Ea under coordinate rotations) and,
thus, the full generalization of the expression in (6) for a sphere with Ea = Eae

i(β·r−ωt), |βa| � 1, is

q̄ = (α1 − α2)
1
2
(∇Ea + Ea∇) + α2(∇ · Ea)Ī (7)

where Ea∇ denotes the transpose of the dyadic ∇Ea.

2.1. Determination of the Constants α1(ω) and α2(ω)

The frequency dependent constants α1(ω) and α2(ω) in (7) can be found by returning to the simpler
Equation (5) and applying a ∂Eaz/∂z field to the dielectric sphere. This applied electric field can be
produced by an applied electric current density Ja = Jaẑeiβz in which we have omitted the subscripts
z on β and Ja, and again suppressed the e−iωt harmonic time dependence. Maxwell’s equations for the
applied fields in free space show that

Ea = Eaẑeiβz (8)

with Ea = Ja/(iωε0).
In view of (8), the total electric field of the dielectric sphere that produces the electric quadrupole

moment satisfies the Maxwellian equations

∇× e − iωb = 0 (9)
1
μ0

∇× b + iωε0

{
εr

1

}
e = iωε0Eae

iβz ẑ (10)

where the relative dielectric constant equals εr inside the sphere (r < a) and 1 outside the sphere (r > a).
The electric and magnetic fields are denoted by lower case letters in (9) and (10) because they are the
microscopic fields of the dielectric sphere.

Substitution of b from (9) into (10) gives the following equation for the electric field†

∇×∇× e − k2
0

{
εr

1

}
e = −k2

0Ea(1 + iβz + . . .)ẑ. (11)

The exponential on the right-hand side of (10) has been replaced by its power series in (11). The
first term in the power series induces an electric dipole field in the sphere, the second term produces
an electric quadrupole field in the sphere, and |βa| for the sphere is assumed small enough that the
contribution of the higher-order terms in the power series is negligible. Thus, for the sake of determining
the electric quadrupole fields, we can ignore all the terms in the power series except the second and
rewrite (11) as

∇×∇× e − k2
0

{
εr

1

}
e = −iβk2

0Eazẑ. (12)

A particular solution ep to (12) is

ep = iβEazẑ
{

ε−1
r
1

}
(13)

and the corresponding magnetic field is found from (9) as

bp =
1
iω

∇× ep = 0. (14)

† It can be proven that if there were a transverse applied electric field on the right-hand side of (11), for example, Ea = Eax̂ei(β·r−ωt),
it would excite only a y-directed magnetic dipole and a qxz = qzx electric quadrupole, thereby confirming in (6) and (7) that the
diagonal terms are produced only by the longitudinal derivatives of the applied electric field.
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The remaining homogeneous solution satisfies the equations

∇×∇× eh − k2
0

{
εr

1

}
eh = 0 (15)

bh =
1
iω

∇× eh (16)

with continuous total tangential e and b across the surface r = a of the sphere, where

e = ep + eh (17)
b = bp + bh. (18)

The function zẑ can be written in spherical coordinates (r, θ, φ) as

zẑ = r

(
cos2 θ r̂− 1

2
sin 2θ θ̂

)
(19)

whose tangential component (the θ̂ term) is proportional to Stratton’s n02 even electric quadrupolar
vector spherical mode. Therefore, the solution to (15)–(16) can be obtained from Pages 416 and 608 of
Stratton [8] as

eh = An02 =
3A
2Kr

{
f2(Kr)(3 cos 2θ + 1) r̂ − [Krf2(Kr)]′ sin 2θ θ̂

}
(20)

bh =
1
iω

∇× eh =
KA

iω
m02 =

3KA

2iω
f2(Kr) sin 2θ φ̂ (21)

where

K =
{

k
k0

}
, A =

{
A1

A2

}
, f2(Kr) =

{
j2(kr)

h
(1)
2 (k0r)

}
r < a
r > a

(22)

with k = k0
√

εr . The j2 is the second order spherical Bessel function and h
(1)
2 is the second order

spherical Hankel function of the first kind. The prime denotes differentiation with respect to the
dimensionless product Kr, the Stratton function m02 = ∇×n02/K, and the constants, A1 and A2, are
found, as follows, from the boundary conditions of continuous tangential e and b fields across r = a.

Equating across r = a the tangential components of e and b obtained by adding the particular
fields in (13)–(14) to the homogeneous fields in (20)–(21), we find the two equations

3A1

ka
[kaj2(ka)]′ +

iβaEa

εr
=

3A2

k0a
[k0ah

(1)
2 (k0a)]′ + iβaEa (23)

A2 =
√

εr
j2(ka)

h
(1)
2 (k0a)

A1. (24)

Solving these two equations for A1 yields

A0 =
kA1

iβEa
=

(k0a)2(1 − ε−1
r )h(1)

2 (k0a)

3
{

ε−1
r h

(1)
2 (k0a)[kaj2(ka)]′ − j2(ka)[k0ah

(1)
2 (k0a)]′

} (25)

with A2 given by (24) in terms of A1.
The total electric field inside the sphere can be found by inserting A1 from (25) into (20) for the

homogeneous electric field and adding the particular electric field in (13) to get

e(r < a, θ) = iβEa

{[
9A0j2(kr)

k2r
+

r

εr

]
cos2 θ − 3A0j2(kr)

k2r

}
r̂− 1

2

{
3A0[krj2(kr)]′

k2r
+

r

εr

}
sin 2θ θ̂. (26)

The electric polarization density of the sphere is given by

p = (εr − 1)ε0e(r < a, θ) (27)

which is used in the next section to evaluate the electric quadrupole moment of the sphere.
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2.1.1. Evaluation of the Electric Quadrupole Moment

Since −iωp in (27) is the equivalent electric current density of the dielectric sphere, the electric
quadrupole moment of the sphere can be expressed as [1, Page 83]

q̄ =
∫
V

(pr + rp)dV (28)

where the integration spans the volume V of the dielectric sphere. Carrying out this integration over
the sphere by substituting p and e from (27) and (26) into (28), then expressing the spherical unit
vectors (̂r, θ̂) in terms of the rectangular unit vectors (x̂, ŷ, ẑ), we find

q̄ =
8πa5(εr − 1)ε0

15

[(
1
εr

+
27A0A3

(ka)5

)
ẑẑ− 9A0A3

(ka)5
Ī
]

∂Eaz

∂z
(29)

in which ∂Eaz/∂z has replaced iβEa and

A3 = [1 − (ka)2/3] sin ka − ka cos ka. (30)

Comparing (5) with (29), one obtains the constants α1 and α2 as

α1(ω) − α2(ω) =
8πa5(εr − 1)ε0

15

(
1
εr

+
27A0A3

(ka)5

)
(31)

α2(ω) = −24πa5(εr − 1)ε0

5
A0A3

(ka)5
. (32)

For an arbitrary applied electric field, the full generalization of (29), as given in (7), is

q̄ =
8πa5(εr−1)ε0

15

[(
1
εr

+
27A0A3

(ka)5

)
(∇Ea+Ea∇)

2
− 9A0A3

(ka)5
(∇·Ea)Ī

]
(33)

or
q̄ = αq1ε0

(∇Ea + Ea∇)
2

+ αq2ε0(∇ · Ea)Ī (34)

where

αq1(ω) =
8πa5(εr − 1)

15

(
1
εr

+
27A0A3

(ka)5

)
(35)

and

αq2(ω) = −24πa5(εr − 1)
5

A0A3

(ka)5
. (36)

Recall that ∇·Ea is not necessarily zero because we are assuming a general applied electric field Ea that
is produced by an applied electric current density that (theoretically) permeates the sphere. (Theoretical
electric current density with eiβ·r spatial dependence that permeates all space becomes confined to a
finite volume upon a three-fold β = βyŷ + βxx̂ + βz ẑ Fourier transformation.) Nonetheless, it is shown
in Section 4 that the electric-quadrupolarizability expression in (34) is compatible with the Mie solution
to the dielectric sphere for which ∇ · Ea = 0.

3. LOW-FREQUENCY APPROXIMATION FOR THE ELECTRIC
QUADRUPOLARIZABILITY

The electric quadrupolarizability expression in (34) for the dielectric sphere in a source-driven applied
electric field holds for |βa| � 1 and for all real frequencies ω or, equivalently for all k0a. At low
frequencies, k0a → 0 and the small-argument approximations to A0 in (25) and A3 in (30) obtained
from

h
(1)
2 (u) u→0∼ − 3i

u3
, j2(u) u→0∼ u2

15
(37)
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and

sin(u) u→0∼ u − u3

6
+

u5

120
, cos(u) u→0∼ 1 − u2

2
+

u4

24
(38)

give

A0
k0a→0∼ 5(εr − 1)

εr(2εr + 3)
. (39)

A3
k0a→0∼ (ka)5

45
(40)

which reduce (34)–(36) to

q̄ k0a→0∼ 8π(εr − 1)a5

3(2εr + 3)
ε0

[(∇Ea + Ea∇
2

)
− (εr − 1)

5εr
(∇ · Ea)Ī

]
. (41)

An interesting feature of the quasi-static sphere electric quadrupolarizability in (41) is its resonance
as the value of the relative dielectric constant εr approaches −3/2 [13, Eq. (12.1)], [14]. For the
general-frequency electric quadrupolarizability factors αq1 and αq2 in (34)–(36), a large resonance
occurs for electrically small spheres (0 < k0a < 0.5) as the relative permittivity varies between the
values (−1.5 < εr < −1.6), as demonstrated in Figure 1 for the lossless εr = −1.55. This large
resonance suggests that electrically small metallic spheres at plasmonic frequencies may be used to
design metamaterials with a strong electric quadrupolar response. The loss tangents in the permittivity
of metals at plasmonic frequencies are higher than 0.1 [15] and, for fully metallic spheres, this amount
of loss essentially eliminates the resonance in the electric quadrupolar response, as indicated in Figure 2
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Figure 1. Absolute value of the quadrupolariz-
ability factors versus k0a for lossless εr = −1.55.
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Figure 2. Absolute value of the quadrupolariz-
ability factors versus k0a for lossy εr = −1.55(1−
0.1i).
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Figure 3. Absolute value of the ratio of the quadrupolarizability factors versus k0a for the lossless
εr = −1.55 and the lossy εr = −1.55(1 − 0.2i).
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for the lossy εr = −1.55(1 − 0.1i) [16]. However, for metallic shells covering ordinary dielectric spheres,
the losses can be kept low enough to retain significant electric quadrupolar plasmonic resonances [17].
And, of course, if the fully plasmonic spheres could be enhanced with gainy material, this gainy material
could compensate for the reduction in the size of the resonances produced by the passive loss tangents.
For spatially dispersive metamaterials used in applications that can tolerate resonances at larger values
of k0a, ordinary dielectric constants with positive real parts can be used to obtain electric quadrupolar
resonances. For example, a sphere with εr = 10(1+0.1i) has a significant electric quadrupolar resonance
at k0a ≈ 1.7 despite the fairly high loss tangent of 0.1.

A property of the electric quadrupolarizability relation in (34) near the plasmonic resonance is that
the ratio of αq2 to αq1 is approximately equal to −1/3, as shown in Figure 3. In other words, near the
plasmonic resonance, the trace of q̄/αq1 is approximately zero even though ∇ · Ea 	= 0. Moreover, this
zero-trace ratio of approximately −1/3 is maintained if there are losses in the sphere as long as the loss
tangent in the permittivity is appreciably less than 1; see Figure 3.

4. COMPATIBILITY WITH THE MIE SOLUTION FOR THE DIELECTRIC SPHERE

The Mie solution for the dielectric sphere has the applied electric field equal to the incident plane wave
given by [8, Section 9.25]

Ea = E0e
ik0zx̂ (42)

which satisfies the solenoidal condition ∇ · Ea = 0. Such a plane wave will excite only the
qxz = qzx components of the electric quadrupole moment of the electrically small dielectric sphere.
From [1, Page 96] the far scattered electric field of these components of the electric quadrupole moment
is given by

E r→∞∼ − ik3
0

8πε0
qxz

(
cos 2θ cos φ θ̂ − cos θ sin φ φ̂

) eik0r

r
. (43)

The angular dependence in (43) corresponds to that of Stratton’s even n12 vector spherical mode.
Therefore, E in (43) can also be written in terms of the Mie solution in [8, Eq. (5), Page 565], namely

E r→∞∼ − 5i
2k0

br
2E0

(
cos 2θ cos φ θ̂ − cos θ sin φ φ̂

) eik0r

r
(44)

where br
2 is Stratton’s notation for the second-order electric-quadrupole scattering coefficient in the Mie

solution. Equating the electric far fields in (43) and (44) gives qxz in terms of br
2

qxz = qzx =
20πε0

k4
0

E0b
r
2. (45)

The low-frequency (k0a → 0) expression for q̄ that we derived in (41) predicts that qxz should also
be given by

qxz = x̂ · q̄ · ẑ =
1
2
αq1ε0

∂Ex

∂z
=

1
2
ik0αq1ε0E0 (46)

with

αq1
k0a→0∼ 8π(εr − 1)a5

3(2εr + 3)
. (47)

With qxz from (46) inserted into (45), one finds that the Stratton Mie scattering coefficient br
2 should

be given approximately by

br
2

k0a→0∼ i
(k0a)5(εr − 1)
15(2εr + 3)

. (48)

This small k0a approximation to br
2 agrees with Stratton’s asymptotic expansion of br

2
in [8, Eq. (40), Page 571] (except for a sign error in Stratton’s formula for br

2) and with the quasi-static
electric quadrupolarizability given by Alù and Engheta [14].
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5. PASSIVITY CONDITIONS FOR THE ELECTRIC QUADRUPOLARIZABILITY
FACTORS

The time-average power P delivered by an externally applied time-harmonic electric field Ea(r) to a
distribution of time-harmonic electric current density J (r) in a volume V is given by

P =
1
2
Re

∫
V

J (r) · E∗
a(r)dV (49)

where the superscript ∗ denotes the complex conjugate. From the Maxwellian equation in (2), one
sees that the equivalent electric current density for electric quadrupolarization density Q̄(r) is equal to
iω∇ · Q̄(r)/2. Thus, the time-average power Pq delivered by an externally applied electric field Ea(r)
to the electric quadrupole moment q̄ at the point r = r0, for which Q̄(r) = q̄δ(r − r0), is given by

Pq = Re

⎧⎨
⎩

iω

4

∫
V

∇ · [q̄δ(r − r0)] · E∗
a(r)dV

⎫⎬
⎭ . (50)

With the help of the vector-dyadic identities

∇ · [q̄δ(r − r0)] · E∗
a(r) = ∇δ(r − r0) · q̄ · E∗

a(r) = ∇ · [δ(r − r0)q̄ · E∗
a(r)] − δ(r − r0)∇ · [q̄ · E∗

a(r)] (51)

(50) integrates to

Pq = −Re
{

iω

4
∇0 · [q̄ · E∗

a(r0)]
}

= −Re
{

iω

4
Tr[q̄ · ∇0E∗

a(r0)]
}

. (52)

With Ea = Eae
iβ·r, we have ∇0E∗

a(r0) = −iβE∗
ae

−iβ·r0 and the electric quadrupole moment q̄ can be
written from (34) in terms of Ea as

q̄ = i

[
αq1ε0

(βEa + Eaβ)
2

+ αq2ε0(β ·Ea)Ī
]

eiβ·r0 (53)

which converts (52) to

Pq = −Re
{

iωε0

4
Tr

[αq1

2
|β|2EaE∗

a +
(αq1

2
+ αq2

)
(β · Ea)βE∗

a

]}
(54)

or
Pq =

ωε0

4
Im

[αq1

2
|β|2|Ea|2 +

(αq1

2
+ αq2

)
|β · Ea|2

]
≥ 0. (55)

The inequality in (55) holds for passive electric quadrupole moments because passivity requires that
power cannot be extracted from the quadrupoles and thus the power delivered to the quadrupole moment
by the externally applied field must be equal to or greater than zero.

Since Ea can be chosen arbitrarily, first let β · Ea = 0, which implies from (55) the electric
quadrupolar passivity condition

ωIm[αq1] ≥ 0 (56)

provided, of course, that the microscopic permittivity εr of the dielectric sphere satisfies the passivity
relation ωIm[εr] ≥ 0. As an example of this quadrupolar passivity condition, the real and imaginary
parts of αq1 are plotted over the domain 0 < k0a < 10 in Figure 4 for the lossy relative microscopic
permittivity εr = −1.55(1 − 0.1i) used in Figure 2. Although the real part of αq1 in Figure 4 ranges
over positive and negative values, its imaginary part remains positive over the entire range.

If next one chooses Ea = Eaẑ with β = βẑ, the inequality in (55) implies the second electric
quadrupolar passivity condition

ωIm[(αq1 + αq2)] ≥ 0 (57)

assuming the microscopic permittivity εr of the dielectric sphere satisfies the passivity relation ωIm[εr] ≥
0. The real and imaginary parts of (αq1 +αq2) are plotted over the domain 0 < k0a < 10 in Figure 5 for
the lossy relative microscopic permittivity εr = −1.55(1 − 0.1i) used in Figure 2. Again, although the
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real part of (αq1 + αq2) in Figure 5 ranges over positive and negative values, its imaginary part remains
positive over the entire range.

Lastly, we note that one can prove by inserting A0 and A3 from (25) and (30) directly into (36)
that ωIm[αq2] ≤ 0. However, it appears that this result cannot be proven from the general passivity
condition in (55).

6. CAUSALITY OF THE ELECTRIC QUADRUPOLARIZABILITY FACTORS

One of the distinct advantages of the source-driven constitutive relations is that the constitutive
parameters are causal functions of the temporal frequency ω at each fixed value of the real spatial
frequency β [2]. (This stands in contrast to the noncausal constitutive parameters defined for source-
free incident fields [18].) The basic reason for this is that none of the material in the inclusions is subject
to incident fields before the time at which the source current turns on (usually taken to be the time t = 0)
and the polarizations are defined directly in terms of integrals of the sources as in (28). The electric
quadrupolarizability constitutive relation for a fixed β is given in (53) for a source-driven incident Ea

electric field. This constitutive relation implies that iβαq1(ω) and iβαq2(ω) should be causal functions
of ω at a fixed β = ββ̂. Specifically, in terms of k0a = ωa/c, where c = 1/

√
μ0ε0 is the free-space speed

of light, these causality relations can be written as

αq1(τ) = 2Re

+∞∫
0

[αq1(k0a) − αq1(∞)]e−ik0aτd(k0a) = 0 (58)

αq2(τ) = 2Re

+∞∫
0

αq2(k0a)e−ik0aτd(k0a) = 0 (59)

for τ = ct/a < 0, where the sources turn on at the time t = 0. (Note that the driving field in (53) is
iβEa, whose ω Fourier transform is an imaginary field since the Fourier transform of Ea must be a real
field. Also, αq2(∞) = 0.) The Fourier transforms can be written as in (58) and (59) because of the
reality conditions satisfied by iβαq1 and iβαq2, namely [2]

iβαq1(ω) = [i(−β)αq1(−ω)]∗ ⇒ αq1(ω) = α∗
q1(−ω) (60)

iβαq2(ω) = [i(−β)α∗
q2(−ω)]∗ ⇒ αq2(ω) = α∗

q2(−ω). (61)

It is assumed that the integrands in (58) and (59) approach zero as k0a → ∞ and that the frequency
dependence of εr is chosen such that the integrals exist. The causality of the electric quadrupolarizability
factors is confirmed, as shown in Figures 6 and 7, by computing the integrals in (58) and (59) for a
causal, lossy εr = 5 + i/(k0a) inserted into the expressions for αq1 and αq2 in (35) and (36). (The
slight imperfections in the causality curves are caused by the finite increments as well as finite upper
limits chosen for the integrations, and the finite time intervals in τ used to plot the curves.) There are
discrete jumps in the time-domain electric quadrupolarizability functions αq1(τ) and αq2(τ) separated
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by Δτ ≈ 2
√

εrr ≈ 4.5 (εrr = 5 is the real part of εr) because for k0a � 1

αq1(k0a) − αq1(∞) ∼ 8π(εr − 1)2

5εr
√

εr

a5 sin(ka)
k0a[cos(ka) − i

√
εr sin(ka)]

(62)

αq2(k0a) ∼ −8π(εr − 1)2

15εr
√

εr

a5 sin(ka)
k0a[cos(ka) − i

√
εr sin(ka)]

(63)

and for k0a � 1

sin(ka)
k0a[cos(ka) − i

√
εr sin(ka)]

∼ 1
ik0a

∞∑
n=0

Ane2ink0
√

εrr a, An real (64)

whose Fourier transform is the unit step-function series

−2π
∞∑

n=0

Anu(τ − 2n
√

εrr ). (65)

The terms in the series of (64) represent successive internal reflections of the fields across the dielectric
sphere. A Fourier transform of the electric-dipole polarizability found in equation (13.107) of the first
reference in [2] shows that it exhibits similar successive internal reflections in the frequency domain
and step-function series in the time domain. These internal reflections are analogous to those found
in the scattered field produced by a plane wave incident on a dielectric slab. For the sphere, which
is entirely illuminated in the time domain by an applied-current field with delta function (δ(t)) time
dependence, the boundary at r = a produces sources of a spherical wave beginning at t = 0 that not
only radiates outwardly but also inwardly through the center of the sphere and back out to the boundary
at r = a where it reflects and transmits another spherical wave. It does this ad infinitum to form the
unit step-function time series in (65).

Because αq1(ω) and αq2(ω) are causal functions, they also satisfy the Kramers-Kronig causality
relations, which can be found by taking the real and imaginary parts of their compact complex version
given as [19, Page 98]

αq1(ω) − αq1(∞) =
i

π

+∞∫−
−∞

αq1(ν) − αq1(∞)
ω − ν

dν (66)

αq2(ω) =
i

π

+∞∫−
−∞

αq2(ν)
ω − ν

dν (67)

where the lines through the integrals denote Cauchy principal values. It is assumed in (66) that αq1(∞)
is real. A sufficient condition for the principal value integrals to be well defined for all real ω is that
αq1(ω) − αq1(∞) and αq2(ω) be Hölder continuous [20, Chapter 1].

7. CONCLUDING DISCUSSION

The expression in (34) for the electric quadrupolarizability of a dielectric sphere of radius a, illuminated
by an applied, source-driven electric field Ea = Eae

i(β·r−ωt) with |βa| � 1 and ∇ · Ea not necessarily
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equal to zero, holds for all real temporal frequencies ω and for all passive, causal complex dielectric
constants εr. If the incident electric field has no sources over the volume of the sphere, then ∇ · Ea = 0
and (34) reduces to

q̄ = αq1ε0

(∇Ea + Ea∇
2

)
. (68)

The trace of q̄ in (68) is zero since
Tr(q̄) = αq1ε0 (∇ · Ea) = 0. (69)

We observe from (41) that, even if ∇ · Ea 	= 0, (68) applies approximately to electrically small
spheres (|k0a| � 1) for weak dielectrics with εr close to the free space value, that is, for εr ≈ 1. As
k0a → 0, the electric quadrupole moment q̄ becomes resonant with an unbounded value as εr → −3/2.
This unbounded resonance as k0a → 0 becomes bounded if either k0a 	= 0 or εr has a small loss, that
is, if ωεr has a small positive imaginary part.

Lastly, consider a random three-dimensional distribution of inclusions with the electric
quadrupolarizability of each of the inclusions given in (34). Assuming the temporal and spatial
frequencies of the sources and fields are low enough that the ensemble behaves as an isotropic continuum,
the source-free modes in the continuum will have a macroscopic electric quadrupole density that is
traceless because the electric quadrupole moment of each of the inclusions is traceless in the microscopic,
solenoidal, source-free, electric field that illuminates each inclusion. In other words, the source-free,
macroscopic, time-harmonic electric quadrupolarization density Q̄ will satisfy the traceless isotropic
constitutive relation [3]

Q̄ = αQε0

[
1
2
(∇E + E∇) − 1

3
(∇ ·E)Ī

]
(70)

where E is the macroscopic continuum electric field, which is not necessarily solenoidal because

∇ ·E =
1

2ε0
∇ · (∇ · Q̄)

(71)

even though Tr(Q̄) = 0. The αQ in (70) is a bulk electric quadrupolarizability constant.
Even for source-driven macroscopic fields, the trace of the electric quadrupolarization density Q̄

does not affect the magnetic field. However, the trace of Q̄ does, in general, change the electric field
and thus, in general, it is not permissible to redefine Q̄ to make its trace equal to zero. To prove this,
express B in terms of its vector potential A; specifically

B(r) = ∇×A(r) =
iωμ0

2
∇×

∫
V

Q̄(r′) · ∇G(r, r′)dV ′ (72)

with G(r, r′) = exp(ik0|r − r′|)/(4π|r − r′|). Next, let
Q̄0(r) = Q̄(r) − Tr[Q̄(r)]Ī/3 = Q̄(r) − C(r)Ī (73)

so that Q̄0(r) has zero trace for all r. Then

B(r)=
iωμ0

2
∇×

∫
V

Q̄0(r′) · ∇GdV ′ +
iωμ0

2
∇×

∫
V

C(r′)∇GdV ′=
iωμ0

2
∇×

∫
V

Q̄0(r′) · ∇G(r, r′)dV ′ (74)

because ∇×∇G = 0. Thus, B(r) has not been changed by making the trace of Q̄(r) zero, and it can
be rewritten in terms of the traceless Q̄0(r).

The electric field E(r) can be expressed in terms of the magnetic field and electric quadrupolar
density Q̄(r) along with the applied current density Ja(r) from Maxwell’s second equation as

E(r) = − 1
iωμ0ε0

∇× B(r) +
1

2ε0
∇ · Q̄(r) +

Ja(r)
iωε0

. (75)

This equation reveals that even though making the trace of Q̄(r) zero, that is, replacing it by Q̄0(r),
does not change B(r) or Ja(r), it would change ∇ · Q̄(r) by an amount equal to ∇C(r), and therefore
E(r) would change unless ∇C(r) = 0. Consequently, for source-driven macroscopic fields, the electric
quadrupolarization density Q̄(r) cannot generally be redefined to reduce its trace to zero.
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2. Yaghjian, A. D., A. Alù, and M. G. Silveirinha, “Anisotropic representation for spatially dispersive
periodic metamaterial arrays,” Transformation Electromagnetics and Metamaterials, Chapter 13,
Springer, 2014, also “Homogenization of spatially dispersive metamaterial arrays in terms of
generalized electric and magnetic polarizations,” Photonics and Nanostructures — Fundamentals
and Applications, 374–396, Nov. 2013.

3. Yaghjian, A. D., “Boundary conditions for electric quadrupolar continua,” Radio Science, Vol. 49,
1289–1299, Dec. 2014.

4. Scott, W. T., The Physics of Electricity and Magnetism, Robert E. Krieger, Huntington, NY, 1977.
5. Raab, R. E. and O. L. de Lange, Multipole Theory in Electromagnetism, Clarendon Press, Oxford

NY, 2005.
6. Cho, D. J., F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance

in optical metamaterials,” Phys. Rev. B, Vol. 78, 121101(1–4), 2008.
7. Silveirinha, M. G., “Boundary conditions for electric quadrupolar metamaterials,” New Journal of

Physics, Vol. 16, 083042(1–30), 2014.
8. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.
9. Agranovich, V. M. and V. L. Ginzburg, Spatial Dispersion in Crystal Optics and the Theory of

Excitons, Wiley-Interscience, New York, 1966; also see 2nd Edition, Springer, New York, 1984.
10. Silveirinha, M. G., “Nonlocal homogenization theory of structured materials,” Metamaterials

Handbook: Theory and Phenomena of Metamaterials, Chapter 13, F. Capolino (ed.), CRC Press,
Boca Raton, 2009,

11. Chebykin, A. V., A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov,
“Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B,
Vol. 84, 115438(1–9), 2011.

12. Van Bladel, J. G., Electromagnetic Fields, 2nd Edition, IEEE/Wiley, Piscataway, NJ, 2007.
13. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John

Wiley, New York, 1983.
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