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Analysis of Numerical Dispersion in the High-Order
2-D WLP-FDTD Method

Wei-Jun Chen1, *, Jun Quan2, and Shi-Yu Long1

Abstract—A theoretical analysis of numerical dispersion in the high-order finite-difference time-domain
(FDTD) method with weighted Laguerre polynomials (WLPs) is proposed in this paper. According to
the numerical dispersion relation for the two-dimensional (2-D) case, the numerical phase velocities
relevant to the direction of wave propagation, grid discretization and time-scale factor are obtained.
For a fixed relative error of the numerical phase velocity, the suitable sampling point density and time-
scale factor can be determined. Compared with the low-order WLP-FDTD, the high-order one shows
its good dispersion characteristics while a low sampling density is used. Three numerical examples are
included to validate the effectiveness of the high-order scheme.

1. INTRODUCTION

The finite-difference time-domain (FDTD) method is a very popular time-domain method for solving
electromagnetic problems, but its time step is constrained by the Courant-Friedrich-Levy (CFL) stability
condition [1]. To overcome this limitation, an unconditionally stable FDTD method, which combines
weighted Laguerre polynomials (WLPs) as the basis function with Galerkin’s testing procedure, was
proposed by Chung et al. [2]. For some problems with fine structures, this method shows much better
efficiency than the conventional FDTD method.

Generally, WLP-FDTD results in a huge sparse matrix equation, which is challenging to solve.
In [3–6], the factorization-splitting techniques were proposed to divide the huge matrix into small ones
corresponding to different electromagnetic components. Based on the solution of the Schur complement
system, a domain decomposition scheme is implemented in WLP-FDTD to improve the efficiency [7].
To reduce the number of unknowns in the huge matrix, scaling functions [8] and mixed-order scheme [9]
are introduced into WLP-FDTD to decrease the sampling density in space domain, respectively. Thus,
the produced sparse matrix with a much smaller number of unknowns leads to a more efficient solution
of WLP-FDTD.

For the fourth-order WLP-FDTD method, an analysis of numerical dispersion for the two-
dimensional (2-D) case is presented in this paper. Besides the direction of wave propagation and
grid discretization, the time-scale factor s is necessarily involved and influences the dispersion errors
to a great degree. From its numerical dispersion relation, small relative errors of the numerical phase
velocity can be obtained while the low sampling density is used. Three numerical examples are tested
to show the necessity of numerical dispersion analysis in the high-order scheme.
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2. NUMERICAL DISPERSION ANALYSIS

The time-domain Maxwell’s equations for a 2-D TEz wave propagating in free space can be written as
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where ε0 and μ0 are the electric permittivity and magnetic permeability of free space, respectively. With
reference to [2], the 2-D implicit formulation for WLP-FDTD can be given by introducing the Laguerre
basis functions and Galerkin’s testing procedure
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where s is the time-scale factor and p is the order of Laguerre functions. For a monochromatic wave,
Ep

x, Ep
y and Hp

z are expanded into a discrete set of Fourier modes as follows [6, 10]:{
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where (i, j) denotes the spatial index of a field component, Δx and Δy are the space steps along the
x- and y-axes, j0 =

√−1, k is the wavenumber, and ϕ is the angle between the propagation direction
and x-axis. The fourth-order central-difference formula for staggered grids can be written as [11]
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Inserting (3) and (4) into (2), we get
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where a = 0.5kΔx cos ϕ and b = 0.5kΔy sin ϕ. Using Euler’s formula, (5) can be written in a matrix
form as
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Eq, (6)
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where I is a 3×3 identity matrix. For a nontrivial solution of homogeneous Equation (7), the determinant
of its coefficient matrix should be zero, thus leading to |A|N+1 = 0. Consequently, it can be derived
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When Δx = Δy → 0 in (8), the theoretical solution of the time-scale factor can be expressed as

s0 = |Im(s)| =
2k√
ε0μ0

= 4πf0, (9)

where f0 is the operating frequency. It can be seen from (8) that the numerical dispersion of high-order
WLP-FDTD relates to the propagation direction, sampling density in space domain and time-scale
factor. The relative error of the numerical phase velocity is:
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where vp is the numerical phase velocity, c = 1/
√

ε0μ0 is the speed of light in free space, δ = Δx/λ0 =
Δy/λ0 and λ0 is the operating wavelength.

Figure 1 plots two regions that denote two different intended error ranges, δr ≤ 0.005 and
0.005 < δr ≤ 0.01. Here, the errors are the maximum ones for ϕ ∈ [0◦, 90◦] in (10). If the value
of an intended error is given, it is easy to determine the suitable combinations of s and δ.

Figure 2(a) plots the curves which illustrate the variation of vp with propagation angle ϕ. Here,
three different sampling densities with three different values of s/s0 are examined. For comparison, the
variation in the low-order method is also calculated in Figure 2(b). vp is dependent upon the direction
of wave propagation and it is maximum for waves propagating obliquely with the grid (ϕ = 45◦). To
obtain acceptable numerical dispersion errors, fewer grid cells per wavelength are required than those
in low-order WLP-FDTD. It is noteworthy from Figure 2 that the value of the time-scale factor s also
determines the numerical error. When s0/s = 1, vp is much closer to the speed of light c than the other
cases.

3. NUMERICAL RESULTS

As the first example, the first two cutoff frequencies of a 2-D air-filled rectangular waveguide
(1.2m × 0.6 m) are calculated with high-order WLP-FDTD. A sinusoidally modulated Gaussian pulse
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Table 1. Comparison between different time-scale factors.

TE10 TE20

Solution (MHz) Error (%) Solution (MHz) Error (%)
Analytic 124.94 - 249.89 -
0.98s0 125.06 0.096 248.98 0.37
0.99s0 125.01 0.054 248.98 0.37

s0 125.01 0.054 249.13 0.30
1.01s0 124.96 0.013 249.05 0.33
1.02s0 125.03 0.075 249.03 0.34

is used as the incident electric current profile:

Jx(t) = exp

[
−

(
t − Tc

Td

)2
]

sin [2πfc (t − Tc)] , (11)

where Td = 1/(2fc), Tc = 6Td and fc = 0.2 GHz. And we choose the time duration Tf = 160 ns. This
duration is chosen in such a way that the waveforms of interest have practically decayed to zero [2].
Assuming the maximum operating frequency fmax = 520 MHz, we can obtain s = 6.5345× 109 with (9)
and N = 272 from [10]. In this example, uniform square cells with Δx = Δy = 0.1 m (about six cells
per λ, where λ is the wavelength corresponding to fmax) are used to divide the 2-D space domain.

By performing the fast Fourier transform (FFT) to the time-domain data from the high-order
WLP-FDTD with different time-scale factor s, we can obtain the first two cutoff frequencies and the
relative error, results as shown in Table 1. From Table 1, it is seen that the relative errors are all very
small (< 0.1%) for TE10 mode. And the error is the smallest while the time-scale factor s is chosen as
the theoretical solution s0 for TE20 mode.

As the second example, the cutoff frequencies of the first two modes in a 2-D partially loaded
rectangular waveguide, shown in Figure 3, are calculated. Since the geometry is uniform in the y
direction, the TE10 and TE20 modes have no y dependence [12]. The same modulated Gaussian pulse
and parameters as the first example are used.

Table 2 shows the computational efforts and results with the high-order and low-order WLP-FDTD
methods for different grid divisions. Considering the low-order WLP-FDTD method with the fine mesh
(120 × 60) as the benchmark, the high-order scheme shows its accurate results when occupying smaller
meshing size and less CPU time.

The third example is to calculate the reflected signal power in a 2-D parallel plate waveguide with
a thin dielectric interface, shown in Figure 4. The same modulated Gaussian pulse as (11) is used
as x-direction input current profile with fc = 0.4 GHz. And we choose the time duration Tf = 80 ns.
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Figure 1. Regions to determine s and δ for an intended fixed error.
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Figure 2. Variation of numerical phase velocity with the propagation angle, sampling density and
time-scale factor in (a) high-order and (b) low-order method.

Table 2. Comprison between high- and low-order schemes.

Method Meshing size Time (s)
TE10 mode TE20 mode

Fre. (MHz) Difference (%) Fre. (MHz) Difference (%)

High-order scheme
30 × 15 4.6 117.456 0.22 190.440 0.10

40 × 20 10.2 117.600 0.10 191.088 0.09

Low-order scheme

40 × 20 5.1 117.480 0.20 189.528 0.90

60 × 40 12.1 117.600 0.10 190.244 0.53

120 × 60 69.5 117.720 - 191.256 -
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Figure 3. Cross-section of a 2-D waveguide
loaded with a dielectric block of εr = 9.
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Figure 4. 2-D parallel plate waveguide with a
thin dielectric interface of εr = 9.

Assuming the maximum operating frequency fmax = 1GHz, we can obtain s = 1.2566×1010 with (9) and
N = 261 from [10]. A perfectly matched layer (PML) with 2nd-order central-difference as the absorbing
boundary condition is used to truncate the open areas [9]. In this example, the PML includes‘8 layers
with quadratic polynomial increase of conductivity of 0.1% theoretical reflection coefficients at normal
incidence.

From the calculated temporal electric fields, the reflected signal powers are obtained through
discrete Fourier transform (DFT). Figure 5 shows that the reflected signal powers from the high-
order and low-order WLP-FDTDs with different grid discretization. Table 3 shows the requirement
of CPU time and memory. Considering the low-order method with the grid discretization of 15 cell/λ
(λ is the wavelength corresponding to fmax) as the benchmark, the difference from the high-order
method with 10 cell/λ is in good agreement with it while less CPU time and memory requirement
are needed. When a lower sampling density of 8 cell/λ is involved, much less CPU time and memory
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Figure 5. Reflected signal power calculated with high- and low-order WLP-FDTDs.

Table 3. Comparison between Different Methods.

Method Meshing size Memory (MB) CPU time (s) Difference (%)
High-order (8 cell/λ) 160 × 32 5.15 64 0.87
High-order (10 cell/λ) 200 × 40 7.23 97 0.037
Low-order (15 cell/λ) 300 × 60 11.7 126 -

requirement are needed with the accepted numerical difference. The difference are calculated by the
formula: (PH−O

min − PB−M
min )/PB−M

min × 100%, where PH−O
min , PB−M

min index the minimum reflected signal
power for high order and the benchmark, respectively. The value of relative permeability is equal to 1.
All calculations have been performed on an AMD Phenom II ×6 2.80 GHz machine with 8 GB RAM.

4. CONCLUSION

In this paper, with the fourth-order central difference in space domain, the numerical dispersion of high-
order 2-D WLP-FDTD is analyzed. Its dispersion relation is associated with the propagation direction,
sampling density in space domain and time-scale factor. Different from the conventional FDTD,
the suitable selection of the time-scale factor leads to low numerical dispersion errors. Furthermore,
compared with low-order WLP-FDTD, good dispersion characteristic can be observed with the low
sampling density.
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