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Calculation of Optical Waves Propagation through Gyrotropic
Anisotropic Media: lr- and sp-Polarization

Myroslav I. Kozak*

Abstract—A new method of electrodynamic analysis of gyrotropic (isotropic and anisotropic) media
is developed. This method is based on the scalar representation of Maxwell’s equations corresponding
to 4 × 4-matrix formulation and coupling equations for gyrotropic medium in the Drude’s form. It is
utilized by solving the wave equations of second and fourth order, followed by cross-linking the fields
at the boundary. The obtained results are experimentally verified by their good matching with the
popular benchmark data, such as quartz rotatory power and in comparison with a known standard
parameter of an optical element, such as λ/4-plate. This method simply summarizes the polarimetric
and ellipsometric calculations.

In 1972, Berreman finally formulated a theoretical approach to the electrodynamics of condensed
matter [1], first introduced by Teitler and Henvis [2], called 4 × 4-matrix technique or 4 × 4-matrix
formulation. According to this approach, the Maxwell’s equations, along with the constitutive equations
(also referred to as coupling equations) for a particular optical media, shall be converted into a scalar
system of four first order differential equations in four unknowns, which are the field components Ex, Ey,
Hx, Hy in the Cartesian coordinates system. These components should be chosen in the following way.
Let us consider a plane wave propagating from vacuum (air) in the xz plane of incidence in the direction
of the z axis, perpendicular to the plane xy, which is a boundary of the medium under investigation.
The field components along the x axis are assumed to be ∼ exp(ikxx), where kx is a coordinate along
the axis of the wave vector k0 of the reflected wave and the wave vector k of the refracted wave. The y
coordinate is expected to be ∂/∂y = 0. This makes it possible to eliminate components Ez and Hz in a
scalar system of the six first order differential equations equivalent to the Maxwell’s vector equations.

The Berreman’s method is a commonly used algebraic method for solving the matrix wave equation.
It is reduced to the calculation of the eigenvalue problem for a 4 × 4-matrix. However, the amount of
calculation in the corresponding numerical method is too high, which makes its practical implementation
difficult.

Nevertheless, it is difficult to overestimate the importance of the 4 × 4-matrix representation
due to the initial presentation of Maxwell equations as four scalar differential equations. This paper
presents a new method for solving this problem. Its main advantage when compared to the Berreman’s
method is computational efficiency. It is interesting that it is not necessary to use the flow of matrix
transformations, but to use only the basic theory of ordinary differential equations. For simplicity, but
without loss of generality, we will reduce our considerations here to some extension of the general case
of an anisotropic gyrotropic medium, combining two cases discussed in [1], namely orthorhombic crystal
and certain optically active medium. We will benefit from an important fact that a 4 × 4-matrix of
scalar equations is a sparse matrix, because more than a half of the coefficients of the system (the matrix
elements) are equal to zero. As will be shown below, this makes it possible to substitute a system of
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four first order equations by a simpler system of two second-order equations. In the case of a gyrotropic
medium the field components Ex and Ey (Hx and Hy) are dependent and coupled. A regular vision of
the basis of the two linearly independent waves comes back, if we consider the circular left l-wave and
right r-wave.

Let us go ahead and consider the following question. What will be the wave equation of order higher
than the second for some components of the field, if we formally consider the s- and p-polarizations, as
the basis of independent s- and p-waves no longer exists? It is wonderful that such an equation exists.
It is the fourth-order equation for Ey. This means that we can consider the s-wave as independent. This
makes it possible to design a simple technique of calculations for finding the reflection and transmission
of light at the boundaries of gyrotropic anisotropic plane-parallel plate (film) both at normal and at
oblique incidence of the wave. In turn, we are able to combine polarimetric and ellipsometric evaluations
in a common scheme [3]. The corresponding results will be illustrated below using simulation examples.

Let us take the Maxwell equations in the Landau and Lifshitz [4] representation where we set
H ≡ B and where the effects of a small deviation of the magnetic permeability of the units are included
in the dielectric tensor

∇× H =
iω

c
D, ∇× E = − iω

c
H. (1)

Here, the dependence of the fields E, H and D from time t at a frequency ω is built according to the
harmonic rule ∼ exp(iωt), where c is the speed of light in vacuum.

Let us consider the orthorhombic crystal with a regular optical activity. Its coupling equation for
the electric displacement D and the electric vector E is

D = ε̂E + γ∇× E, (2)

where ε̂ is a second rank diagonal complex tensor and γ an optical activity index introduced by Drude [5]
associated with the rotatory power (it will be shown below how exactly this association is established).
The system (1) with the constitutive Equation (2) is equivalent to the system of six scalar equations.
Two of them do not contain the derivatives

ikxHy = ik0εzzEz + γk2
0Hz, kxEy = −k0Hz, (3)

where kx = k0 sin φ0, k0 = ω/c = 2π/λ, φ0 — an angle of incidence, and λ is the wavelength in vacuum.
Solving (3) for Ez and Hz and substituting these values in the remaining four equations that contain

derivatives, we obtain a fourth order system with the unknowns Ex, Ey, Hx, Hy, which can be written
as follows ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
E′

x = m12Ey +m14Hy,

E′
y = m23Hx,

H ′
x = m32Ey +m34Hy,

H ′
y = m41Ex +m43Hx,

(4)

where

m12 =
γk2

x

εzz
, m14 = − ik2

z

k0εzz
, m23 = ik0,

m32 =
ik2

y

k0
, m34 = k2

0γ, m41 = −ik0εxx, m43 = −k2
0γ,

k2
y = k2

0εyy − k2
x, k2

z = k2
0εzz − k2

x.

Hereafter, the prime (′) denotes differentiation with respect to z. Let us consider the following two cases:
i) the transformation to a system of two second order coupled equations and ii) the transformation to
a single fourth order equation. Hence we obtain the following.

i) From the first and second equations of (4) we may express Hx and Hy through Ex and Ey and
substitute them in the third and fourth equations of this system. As a result, we obtain a system of
two second-order equations

E′′
y + a1E

′
x + b1Ey = 0, E′′

x + a2E
′
y + b2Ex = 0, (5)
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where

a1 =
k4
0γεzz

k2
z

, b1 = k2
y − k4

0γ
2k2

x

k2
z

, a2 = −k2
0γ, b2 =

εxx

εzz
k2

z .

Similarly, we obtain a system for magnetic components Hx and Hy. The systems for electric and
magnetic components are identical, while for isotropic media and at normal incidence they have the
following form: {

E′′
y + k2

0γE′
x + k2

0εEy = 0,

E′′
x − k2

0γE′
y + k2

0εEx = 0,
(6)

where ε is a dielectric constant.
It should be noted that the system of Equation (6) describes free mechanical gyrator, where Ex

and Ey represent two general coordinates of the system, and z – the time [6]. Thus, we have a model
of the electromagnetic gyrator, whose existence was noticed in Tellegen’s remarkable work [6].

Let us now add the first equation from the system (6) to the second one two times, multiplying it
first time by the imaginary unit i, and then by −i. In this way, we obtain an equation for the left and
right circularly polarized waves

Φ′′
± ± ik2

0γΦ′
± + k2

0εΦ± = 0, (7)

where Φ± = Ex ± iEy.
Two independent particular solutions of (7) are

Φ±(z) = exp

{
−ik0

(
±k0γ

2
+

√
ε +

k2
0γ

2

4

)
z

}
(8)

They describe the waves of left and right circular polarization. The difference in the refractive
indices for distinct circular polarization is

|n+ − n−| = k0γ. (9)

Such waves, when passing a parallel plate with the thickness d, compose a linearly polarized wave
with an azimuth different from the original at an angle ρ when coming into vacuum. Matching the
solutions at z = d, it is easy to get the value of this angle in radians as follows

ρ =
k2
0γ

2
d =

π

λ
|n+ − n−| d.

Note that � has the dimensions of length, as it follows from (2). The Formula (9) gives us a regular
rotatory power in rad/cm for d = 1 and λ expressed in cm.

So far, this is all what can be obtained from the system (5), as in the general case of oblique
incidence of the wave. It is not possible to solve this system in some simple way [7].

ii) Let us make the following transformations: from the second equation of system (4) we obtain

Hx =
1

ik0
E′

y. (10)

Substituting this into the third equation of the same system, we obtain the following

Hy =
1

ik3
0γ

(
E′′

y + k2
yEy

)
. (11)

Then the magnetic components shall be substituted in the fourth equation, so

Ex =
1

k4
0γεxx

[
E′′

y +
(
k2

y + k4
0γ

2
)
Ey

]′
. (12)

Finally, value Ex shall be substituted in the first equation, where, taking into account (11), we obtain
the following fourth order equation (

E′′
y

)′′ −AE′′
y + BEy = 0 (13)
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where
A =

εxx

εzz
k2

z + k2
y + k4

0γ
2, B =

εxx

εzz

(
k2

yk
2
z − k4

0k
2
xγ2
)
.

In the particular case of a non-gyrotropic anisotropic medium only diagonal elements in the matrix
of the system (4) are nonzero. Then system (5) is transformed into the following two independent
equations:

E′′
y + k2

yEy = 0, E′′
x +

εxx

εzz
k2

zEx = 0 (14)

for s-wave and p-wave, respectively. The elementary case of isotropic non-gyrotropic media, as noted
by Landau [4], is degenerated because the equations for the s-wave and p-wave in (14) are identical.

The general solution of a fourth-order differential equation is a linear combination of the four
particular solutions of the form

Ey =
∑4

j=1
Cj exp(Λjz),

where Cj are constants to be defined for a specific type of a problem, and Λj are the roots of the
characteristic equation

Λ4 −AΛ2 + B = 0.

Fortunately, the last equation is a biquadratic equation, and we get the roots in an elegant form

Λ±
1,2 = ±i

√
−A/2 ∓

√
A2/4 − B = ±iK±

z .

In the case of an isotropic gyrotropic medium we get the following:

K±2
z =

k4
0γ

2

2
+ k2

z ∓ k3
0γ

√
k2
0γ

2

4
+ ε.

Hence, we obtain the dispersion equation since
K±2

z + k2
x = k2

0n
2
±

where n± is a refractive indices of two waves propagating in the same direction. Then, neglecting terms
with γ2, we obtain

n2
∓ = ε ∓ k0γ

√
ε. (15)

Let us also use the dispersion Equation (15) to show the importance of the gyrotropy indicator γ,
which is in fact more important than the one obtained for the lr-polarizations. Using the equality

n2
+ − n2

− = (n+ + n−)(n+ − n−),

and the approximate equation n+ + n− ≈ 2
√

ε we obtain Formula (9).
It is seen from the above considerations that the field components Ey and Hx are related to each

other in the same regular way, as for a non-gyrotropic medium according to (10). We may assume that
the wave corresponding to them is an independent s-wave, while the p-wave depends on it according
to (11) and (12), as it is for a gyrotropic medium. Based on that, we may consider our evaluations as
performed in the quasi-basis of sp-polarization.

Let us show now a direct process of calculation and consider the reflection and transmission of a
linearly polarized wave on a plane-parallel plate (film) with the boundaries z = 0 and z = d. In a
vacuum (medium-1), Equation (14) has the following solutions:

Ey = exp
(
−ik(0)

z z
)

+ rs exp
(
ik(0)

z z
)

,

Ex = exp
(
−ik(0)

z z
)

+ rp exp
(
ik(0)

z z
)

,

where k
(0)
z =

√
k2
0 − k2

x, rs and rp are reflectivities of the s- and p-waves, respectively. The azimuth is
45◦, so for the incident wave its magnitude is 1.

After passing through the plate, light gets in vacuum or in an isotropic medium (medium-2) with
a dielectric constant εs, where solutions of Equation (14) can be written as

Ey = ts exp
(
−ik(s)

z z
)

, Ex = tp exp
(
−ik(s)

z z
)

; k(s)
z =

√
k2
0εs − k2

x
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where ts and tp are transmissivities of s- and p-waves, respectively. We obtain the rest of the field
components Hx and Hy for medium-1 and medium-2 from (4) setting � = 0.

Finally, for a most anisotropic and gyrotropic plate a main wave shall be selected as a solution of
Equation (13):

Ey = τ1 exp
(−iK−

z z
)

+ τ2 exp
(−iK+

z z
)
+ρ1 exp

(
iK−

z z
)

+ ρ2 exp
(
iK+

z z
)
,

where the constants τ1, τ2; ρ1, ρ2 correspond to the internal transmittance and reflectance, respectively.
Then it is possible to express the fields Hx, Hy and Ex through Ey according to Formulas (10)–(12).

Now it is possible to show how to staple the fields at the boundary of the plate. Setting Ey, Hx,
Hy and Ex equal to each other on the plate boundary with the medium-1 at z = 0 and on the border
with the medium-2 at z = d, we obtain a linear system of algebraic equations in eight unknowns

SX = C, (16)

where S = [slm]

S=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 −1 −1 −1 0 0

k(0)z 0 K−
z K+

z −K−
z −K+

z 0 0

0 − k0

k
(0)
z

K−2
z

m23m34

K+2
z

m23m34

−K−2
z

m23m34

−K+2
z

m23m34
0 0

0 1
−iK−3

z +iK−
z μ

m23m34m41

−iK−3
z +iK−

z μ

m23m34m41

−iK−3
z +iK−

z μ

m23m34m41

−iK−3
z +iK−

z μ

m23m34m41
0 0

0 0 e−− e+
− e−+ e+

+ − exp
(
−ik(s)

z d
)

0

0 0 −s23e
−
− −s24e

+
− −s25e

−
+ −s26e

+
+ K(s)

z exp
(
−ik(s)

z d
)

0

0 0 −s33e
−
− −s34e

+
− −s35e

−
+ −s36e

+
+ 0 −

k0εs exp
(
−ik

(s)
z d
)

K
(s)
z

0 0 −s43e
−
− −s44e

+
− −s45e

−
+ −s46e

+
+ 0 − exp

(
−ik(s)

z d
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X=[rs; rp; τ1; τ2; ρ1; ρ2; ts; tp]

is a column-vector of unknown coefficients,

C =
[
−1; k

(0)
z /k0; −k0/k

(0)
z ; −1; 0; 0; 0; 0

]
is the definite column-vector,

e−− = exp(−iK−
z d), e+

− = exp
(−iK+

z d
)
,

e−+ = exp
(
iK−

z d
)
, e+

+ = exp
(
iK+

z d
)
; μ = m23m32 + m34m43.

For compact representation of the matrix S using recursion, terms s23, s24, . . . s46 are matrix
elements as defined above in lines 2–4.

Solving the system (16), we find the unknown coefficients, which form vector X. Out of all the
unknown coefficients we are more interested in the external reflection coefficients rs and rp, and
transmissions ts and tp, through which we calculate the observable quantities, i.e., the rotation and
depolarization:

ρr = Ψ = arctan (|rp/rs|) , δr = Δ = arg (rp/rs) , ρt = arctan(|tp/ts|), δt = arg (tp/ts) ,

where Ψ and Δ are ellipsometrics angles.
In the conclusion, we would like to present two examples, which illustrate the obtained new solution.

The first example is the calculation for the well-studied quartz crystal, whose |n+ − n−| = 6.6 × 10−5

and rotatory power is equal to 188 deg/cm at the HeNe-laser wavelength λ = 0.6328µm [8]. The
ordinary and extraordinary refractive indices of quartz for this wavelength are no = 1.54, ne = 1.55,
respectively [9]. Consider a quartz plate thickness to show it as a gyrator and as a compensator.
Known [10] that the thickness λ/4-plate is determined by the formula

d =
∣∣∣∣ 2m + 1
no − ne

∣∣∣∣ λ

4
,
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where m is an integer. We choose m = 0, λ = 0.6328µm, then d = 15.82 µm. If the plate cut normal to
the optical axis, it will operate as a gyrator. As can be seen from Figure 1 (line 1), at normal incidence
depolarization δt = 0, the wave at the exit from the plate is linearly polarized. The plane of polarization
ρt = 0.297 deg, which is exactly the rotatory power of quartz.

In addition, we note that the calculation shows that at normal incidence, the rotatory power is
very weakly dependent on the refractive indices of the crystal. Of course, the refractive indices in the
xy plane should be equal, i.e., crystal was cut out normal to the optical axis

In the second case, suppose that the optical axis is directed along the axis x, for example.
At the exit of the plate light acquires a phase shift −90 deg, i.e., it becomes circularly polarized.
Rotation ρt naturally loses practical sense. Figure 1 shows a perfect agreement between the theoretical
considerations and the experimental results.

The second example is from the ellipsometry of the thin films [11]. We considered a film obtained
by vacuum deposition of chalcogenide glass As2S3 (the substrate is crystal KCl, ns = 1.488 at
λ = 0.6328 µm). Previously, we already considered the anisotropy method described above for such
films, but excluding gyrotropy [12]. This experiment confirms that gyrotropy is very weakly manifested
in reflected light. As can be seen from Figure 2, only for a sufficiently large γ ∼ 10−3 µm corresponding
to about gigantic gyrotropy, noticeable differences in the calculations are observed.
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Figure 1. (a) The rotation angle ρt and (b) the depolarization angle δt for the quartz plate, thickness
d = 15.82µm. Lines 1: nx = 1.54, ny = 1.54, nz = 1.55. Lines 2: nx = 1.55, ny = 1.54, nz = 1.54.
Everywhere γ = 6.6 × 10−5/k0 ≈ 6.6 × 10−6 (µm).
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Figure 2. Ellipsometric angles Ψ and Δ as a function of the incidence angle φ0 of thin film, refractive
index nf = 2.453, d = 2.103µm at different γ.
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