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DOA Estimation by Using Luneburg Lens Antenna with Mode
Extraction and Signal Processing Technique
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Abstract—We propose a framework based on the use of a flat-base Luneburg lens antenna with
a waveguide array for Direction-of-Arrival (DOA) estimation, and also present a hybrid approach
which combines waveguide mode extraction and signal processing techniques for enhancing the angular
resolution of the lens antenna. The hybrid method involves sampling the electric field at specified
positions when the lens is operating in the receive mode, and extracting the weights of the possible
propagating modes in each waveguide. Following this, we correlate these weights with the known ones
that have been derived by either simulated or measured signals from single targets located at different
look angles, to make an initial estimate of the angular regions of possible DOAs. We then apply an
algorithm based on the Singular Value Decomposition (SVD) of the simulated or measured database
to estimate the angles of incidence. Numerical results show that the proposed framework, used in
conjunction with the hybrid approach, can achieve an enhanced resolution over the conventional limit
base on the 3 dB beamwidth of the lens antenna. Furthermore, it is capable of locating targets with
different scattering cross-sections and achieving an angular resolution as small as 2◦, for a Luneburg
lens antenna with an aperture size of 6.35λ and a Signal-to-Noise Ratio (SNR) of 30 dB.

1. INTRODUCTION

Wide-angle scanning and high angular resolution are highly desired in modern radar applications, for
which the mechanically steerable antennas and phased arrays are currently employed [1]. However,
antennas operated by a mechanical type of rotation device cannot meet the requirements of rapid
beam-scanning and flexible control. Moreover, the phased arrays-although they are sophisticated and
can serve multiple functions-are bulky, expensive to fabricate and often require complex hardware
systems. The lens proposed by Luneburg [2] has the capability of all-angle-scan regardless of the
operating frequency, as well as excellent focusing characteristics. Hence it is an attractive candidate for
many scenarios calling for multi-beam, multi-frequency and multi-polarization scanning in 3D space.
However, its gradient-index dielectric configuration is not only incompatible with the planar feeding and
receiving devices, but it also poses some difficulties from fabrication point of view [3]. Recently, several
research publications have focused on issues related to fabrication and realization of the Luneburg lens.
They include the design and implementation of 2D/3D Luneburg lens antenna by using a Sievenpiper
“mushroom” array [4]; a design based on liquid medium [5]; a parallel-plate waveguide with a Vivaldi
antenna inside [6]; and air-filled parallel plates [7], just to name a few.

Other contributions have concentrated on the applications of the Luneburg lens antenna. The
Luneburg lens was proposed as a potential antenna element for the Square Kilometer Array (SKA)
radio telescope because of its multiple advantages of beam-forming, inherent wide bandwidth, and
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very wide field of view [8]. Thanks to the recent technological advancements in realizing materials
with desired electrical properties the Luneburg lens antenna can be fabricated at a relatively low cost,
and it has attracted the attention of radar community. Specifically, Liang et al. [9] have fabricated
a Luneburg lens antenna and have reported an approach for detecting a single source, by using five
conformal detectors located on the curved surface of the lens. They have employed the Correlation
Method (CM) [10] for the Direction-of-arrival (DOA) estimating in their work.

In this paper we propose a two-step approach consisting of waveguide mode decomposition followed
by the use of a signal processing technique. The latter is a combination of the CM and the Singular
Value Decomposition (SVD) algorithms to distinguish between different angles of arrival of the incident
wave. To implement the proposed approach, a framework of Luneburg lens antenna with a waveguide
array, which was initially proposed by Jain et al. [11] as a means to achieve wide angle scanning in
the transmit mode, has been used. Numerical simulation results have verified the effectiveness and
robustness of the two-step method.

2. LUNEBURG LENS ANTENNA WITH WAVEGUIDE ARRAY FOR DOA
ESTIMATION

In [11], Jain et al. have proposed the design of a flat-base spherical Luneburg lens antenna which is
fed by a planar waveguide array (see Figure 1). The Luneburg lens is designed to focus a plane wave,
arriving from an arbitrary direction, at a point which is located diametrically opposite to that of the
incident side. Luneburg has shown that the problem of finding εr of the lens can be formulated in terms
of an integral equation [12], whose solution provides us the required material parameters of the lens.
The radial variation of εr is

εr = 2 − (r/R)2 (1)

where r is the distance from the center of the lens, and R is its radius.
Here, the same design has been used to develop a technique for DOA estimation because it not only

preserves the salutary features of the conventional Luneburg lens, but is also much more convenient for
measuring the fields on the planar surface of the array as opposed to the curved surface of the Luneburg
lens. For instance, the waveguide array is not only highly efficient for extracting the signal from the
incident waves in each waveguide, but it also has high isolation between the neighboring waveguides.
This framework preserves the original properties of the Luneburg lens, namely wide bandwidth; wide
scan angle capability and ability to handle multiple polarizations.

The spherical Luneburg lens (see in Figure 1) consists of 11 layers starting from the center. The first
ten layers have a thickness of 3 mm each and the last layer is 1.75 mm thick. The dielectric parameters
of the layers vary depending on their distance from the center [2]. The walls of the 6×6 waveguide array
shown in Figure 1 are Perfect Electric Conductors (PECs) and they are 1 mm thick. Each waveguide
has a square cross-section with a side length of 9mm. It is well known that the angular resolution of
an antenna is usually determined by the half-power beamwidth, which is inversely proportional to its
aperture size. Assume that the aperture efficiency of the Luneburg lens is 100%, the predicted angular
resolution is found to be 9◦, when the operating frequency is 30 GHz and the aperture size D is 63.5 mm.

Figure 1. Luneburg lens antenna with waveguide array.
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3. WAVEGUIDE MODE EXTRACTION AND SIGNAL PROCESSING TECHNIQUES

To enhance the angular resolution of the lens, we propose a waveguide mode extraction technique
followed by the use of a two-step signal processing algorithm. We begin by sampling the electric
field at the cross-section plane of the waveguide array and then extracting the weights of the possible
propagating modes in each waveguide. Next, we apply the correlation method to obtain an initial
estimate of the possible DOAs. Following this we employ an SVD-based algorithm to achieve a more
precise estimate of the DOAs.

Next, we detail the procedure for waveguide mode extraction. The cutoff frequencies of the
electromagnetic waveguide can be complied from [13]:
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where a and b represent the dimensions of the waveguide aperture at the transverse (x-y) plane; ε and μ
are the permittivity and permeability of the medium inside the waveguide, respectively; and the integers
m and n indicate different modes.

We set the operating frequency to be f = 30 GHz and choose the side dimensions of each square
waveguide to be a = b = 9 mm. The cutoff frequencies for TE 10, TE 01, TE 11 and TM 11 modes are
calculated using (2) and are found to be 16.67 GHz, 16.67 GHz, 23.57 GHz, and 23.57 GHz, respectively.
The possible propagating modes within different frequency bands are listed in Table 1.

Table 1. Possible propagating modes within different frequency bands.

Frequency Band (GHz) Possible Propagating Modes
< 16.67 No propagating mode

16.67∼23.57 TE 10 and TE 01

23.57∼33.33 TE 10, TE 01, TE 11 and TM 11

> 33.33 TE 10, TE 01, TE 11, TM 11 and high modes

Once the possible modes are known, the field distribution on the face of each waveguide can be
expressed as a weighted sum of the field distributions for these possible modes as follows:

Ẽ = c1ẼTE10 + c2ẼTE01 + c3ẼTE11 + c4ẼTM 11 (3)

where ci (i = 1, 2, 3 and 4) are the weights of each mode and ẼTE10 , ẼTE01 , ẼTE11 and ẼTM 11 are the
bases corresponding to field distributions for TE 10, TE 01, TE 11 and TM 11 modes, respectively. The
field distributions corresponding to the possible modes form a complete set of orthogonal bases; hence,
they can be described any set of field distributions in the waveguide under consideration.

The weights can be obtained in two different ways. In the first approach, a dot product of (3) with
the electric field distribution of the four modes is taken one at a time as follows:〈

Ẽ · Ẽ′
〉
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where Ẽ′ represents ẼTE10 , ẼTE01 , ẼTE11 and ẼTM 11 . On doing so only one of the terms on the right
hand side of (4) will be non-zero and hence the corresponding weight can be determined.

In the second approach, a matrix A, whose column comprises of E-field components of four different
modes, e.g., ẼTE10 , ẼTE01 , ẼTE11 and ẼTM 11 , is generated; hence we can relate the sampling data Ẽ
and the weights in matrix form as:

E = A · c (5)

Then using the inverse matrix operation, the weight of each mode is determined.
The next question that needs to be addressed is how many field samples are really required inside

each waveguide to derive an accurate DOA estimation. As is known from (3), for the structure and
frequency range under consideration there are at most four degrees of freedom in each waveguide.
Viewing this issue from the perspective of the rank of the matrix A, if we only measure the Ex-, Ey- or
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Ez-component, the maximum rank of A would be 2, 2 and 1, respectively. Hence, we should measure
both Ex- and Ey-components to ensure that the matrix A is full-rank. Moreover, if all the sampling
points are on a straight line, say along the x- or the y-direction, the rank would again reduce to 3; and,
hence, a unique solution cannot be obtained. To circumvent this problem, we employ four samples taken
at different x- and y-positions within the cross-section of the waveguides. Specifically, we set the sample
points at (2.25 mm, 2.25 mm), (2.25 mm, 6.75 mm), (6.75 mm, 2.25 mm), and (6.75 mm, 6.75 mm) at the
cross-section plane of each waveguide.

The step-by-step procedure can be summarized as follows:

(1) Measure the electric field distribution at the planar base of the Luneburg lens antenna with a
waveguide array for different incident angles. Save the observed Ex-, and Ey-components of the
field at the sampling points, and calculate the weights of the propagating modes in each of the 36
waveguides for each incident angle.

(2) Create a database matrix using the weights of the modes obtained in the previous step. The matrix
consists of the weights of the modes in all of the waveguides for different angles of incidence.

(3) Interpolate the database to achieve a finer interval for the angle of incidence. The finer database
matrix is written as B(N×M). Hence, we can generate an equation as follows:

eN×1 = BN×M · xM×1 (6)

where B(N×M) represents the database, and N (i.e., 4×36 = 144) is the number of the weights and
M is the number of incident angles. Here e(N×1) represents the “measured” weights, and x(M×1)
represents the possible DOAs.

(4) Calculate the weights of the modes from the “measured” data obtained from the field distribution
due to unknown targets. Correlate the “measured” weights, i.e., e(N×1), to B(N×M) to determine
the most probable target locations.

(5) Extract the columns of the database matrix that correspond to the most probable angular regions
as a sub-database matrix, i.e., Bs

(N×L), where L (L < M) represents the possible incident angles
in the angular region of the initial estimate. Hence, (6) can be rewritten as:

eN×1 = BS
N×L · xS

L×1 (7)

where the matrix Bs
(N×L) corresponds to the most probable angular regions, and xs

(M×1) represents
the most probable regions of the DOA.

(6) Equation (7) usually represents an ill-posed problem. Hence, we apply the SVD to the sub-database
matrix, i.e., to derive Bs = UDV, and use a threshold to reduce the matrix by deleting the singular
vectors whose singular values fall below the threshold.

(7) Take a dot product of the K (K < L) remaining singular vectors U(N×K) with the “measured”
weights, as well as the sub-database matrix, to obtain a reduced weight vector en

(K×1) and a reduced
matrix Bn

(K×L).

en
K×1 = Bn

K×L · xS
L×1 (8)

(8) Unlike (7), (8) represents a well-conditioned problem, and the size of the associated basis matrix
Bn

(K×L) is significantly reduced compared to that in (7). Hence, we directly pseudo-inverse the
reduced basis matrix Bn

(K×L) and take its product with the reduced vector en
(K×1) to derive the

final results.

The advantage of carrying out the first step by using the CM is to narrow the search region and
reduce the computational complexity. Once we have determined the approximate location of the targets,
we can use the second step to achieve more accurate estimates of the DOAs.

4. NUMERICAL RESULTS

A commercial Finite Difference Time Domain (FDTD) [14] code was used to simulate the model shown
in Figure 1, and obtain the field distribution data on the planar surface of the waveguide array. Without
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loss of generality, the structure was excited with 16 y-polarized plane waves with each a unit amplitude
but 16 different incident angles, corresponding to ϕ = 0◦ and θ varying from 30◦ to 45◦ with an interval
of 1◦. In addition, we also consider the effect of an additive Gaussian white noise to mimic realistic
scenarios.

Figure 2 shows the Ex-, Ey-, and Ez-field distributions on the cross-section plane for two selected
incident angles. Ey is always dominant over Ex and Ez, because the incident wave is y-polarized.
Moreover, these field distributions vary slightly with gradual changes in the angles of incidence. The
maximum of the electric field distribution shifts along the negative x-direction as θ varies from 30◦ to
45◦. Figure 3 shows a comparison of the weights for the entire 36 waveguides calculated by using the
two methods discussed, herein. We see from this figure that the agreement is quite good.

Figure 4 shows a comparison between the simulated and reproduced E-fields, derived by using the
waveguide mode extraction technique when θ = 30◦, ϕ = 0◦. It is evident that the waveguide mode
extraction technique is able to accurately calculate the weights of the propagating modes and reproduce
the field distribution, with less than 10% difference between the two. The 10% error can be attributed
to the evanescent modes propagating in the waveguide, since the guide is not long enough for these
modes to decay completely by the time they reach the cross-section plane.

A case of three targets with angular separations as small as 2◦ was used to validate the approach.
The three incident angles are set to be 31.5◦, 34◦ and 36◦ in θ, with ϕ = 0◦. Their scattering cross-
sections are set to be (0.66, 1.0, and 0.72) in Figure 5(a) and (0.15, 0.6, and 1.0) in Figure 5(b). From
Figure 5(a) it is obvious that the proposed method is capable of recovering the DOAs with high accuracy
even if the targets are located in angular proximity of each other, a case which cannot be detected by
using the CM alone. Figure 5(b) shows that when the scattering cross-section of the first target located
at 31.5◦ is relatively low (15% of the maximum one), a false alarm emerges around 32◦, indicating that

(a) (θ=30  , φ=0  )o o (b) (θ=40  , φ=0  )o o

Figure 2. E-field distribution on cross-section plane of waveguide array for different incident angles:
(a) θ = 30◦ and (b) θ = 40◦, with ϕ = 0◦.

(a) (b) (c)

Figure 3. Comparison of weights calculated in
two different ways.

(a) (b) (c)

Figure 4. Comparison between simulated E-field
and reproduced E-field by using waveguide mode
extraction.
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(a) (b)

Figure 5. Recovered DOAs by using proposed joint method.

scatterer would be difficult to locate if its radar cross-section is low, which is not entirely unexpected.
Figure 5 also shows that the recovered DOAs are very close to the real ones; however, the recovered
scattering cross-sections do not match the real ones, although their magnitudes do maintain the same
relative order w.r.t. each other.

Finally, for the sake of completeness, we add Gaussian noise to the measured field values, with an
amplitude level 30 dB below that of the signal.

5. CONCLUSIONS

In this work, we have presented a two-step approach, which is capable of achieving improved resolution in
DOA estimation than that predicted by the half-power beamwidth of the aperture of a flat-base spherical
Luneberg Lens with a planar waveguide array feed. The two-step approach, which involves waveguide
mode extraction and signal processing techniques, has been shown to accurately detect multiple targets
with an angular separation as small as 2◦, as long as the SNR is better than 30 dB. This concept can be
naturally and readily extended to 2D/DOA scenarios, of course with increased computational burden.

REFERENCES

1. Balanis, C. A., Modern Antenna Handbook, Wiley, 2008.
2. Luneburg, R. K., Mathematical Theory of Optics, University of California Press, 1964.
3. Ma, H. F., B. G. Cai, T. X. Zhang, et al., “Three-dimensional gradient-index materials and their

applications in microwave lens antennas,” IEEE Trans. Antennas Propag., Vol. 61, 2561–2569,
2013.

4. Dockrey, J. A., M. J. Lockyear, S. J. Berry, et al., “Thin metamaterial Luneburg lens for surface
waves,” Physical Review B, Vol. 87, 125137, 2013.

5. Wu, L., X. Tian, M. Yin, et al., “Three-dimensional liquid flattened Luneburg lens with ultra-wide
viewing angle and frequency band,” Appl. Phys. Lett., Vol. 103, 084102, 2013.

6. Dhouibi, A., S. N. Burokur, A. Lustrac, et al., “Compact metamaterial-based substrate-integrated
Luneburg lens antenna,” IEEE Antennas and Wireless Propag. Lett., Vol. 11, 1504–1507, 2012.

7. Hua, C., X. Wu, N. Yang, and W. Wu, “Air-filled parallel-plate cylindrical modified Luneberg lens
antenna for multiple-beam scanning at millimeter-wave frequencies,” IEEE Trans. Microw. Theory
Tech., Vol. 61, No. 1, 436–443, 2013.

8. James, G., A. Parfitt, J. Kot, and P. Hall, “A case for the Luneburg lens as the antenna element
for the square-kilometre array radio telescope,” Radio Science Bulletin, Vol. 293, 32–37, Jun. 2000.

9. Liang, M., X. Yu, S.-G. Rafael, W.-R. Ng, M. E. Gehm, and H. Xin, “Direction of arrival
estimation using Luneburg lens,” IEEE International Microwave Symposium (IMS) Digest (MTT),
1–3, Jun. 17–22, 2012.

10. Mittra, R., Ed., Computational Electromagnetics — Recent Advances and Engineering Applications,
Chapter 16, 553–574, Springer, New York, 2013.



Progress In Electromagnetics Research C, Vol. 56, 2015 151

11. Jain, S., R. Mittra, and M. Abdel-Mageed, “Broadband flat-base Luneburg lens for wide angle
scan,” 2014 IEEE Antennas and Propagation Society International Symposium (APS/URSI 2014),
Memphis, TN, Jul. 6–11, 2014.

12. Luneburg, R. K., Mathematical Theory of Optics, University of California Press, 1964.
13. Guru, B. and H. Hiziroglu, Electromagnetic Field Theory Fundamentals, 2nd Edition, Cambridge

University Press, 2004.
14. Yu, W., X. Yang, Y. Liu, et al., Advanced FDTD Methods: Parallelization, Acceleration, and

Engineering Applications, Artech House, 2011.


