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Abstract—The asymptotic approach to the problem of high-frequency diffraction by elongated bodies
is discussed in this work. The classical expansion is shown to require the frequencies to be too high
for it to be applicable. Attempts to improve the approximating properties of the asymptotic methods
are discussed. It is shown that effective approximations appear under the supposition that the squared
transverse dimension of the body is proportional to its longitudinal size measured in wavelengths. This
is referred to herein as the case of strongly elongated body and is examined in detail. It is assumed that
the body has a rotational symmetry and can be well approximated by a spheroid. The cases of axial
incidence and that of incidence at a grazing angle to the axis are considered. Both the asymptotics
of the induced currents on the surface and of the far field amplitude are developed. Comparison with
numerical results for a set of test problems shows that the leading terms of the new asymptotics provide
good approximation in a uniform manner with respect to the rate of elongation. Some effects typical
for scattering by elongated bodies are discussed.

1. INTRODUCTION

Interest in high-frequency diffraction developed many years ago to fulfill the needs of numerous
applications in radioengineering. Since computers were not powerful at that time, alternatives to purely
numerical analysis were highly appreciated. Methods of high-frequency diffraction remain an important
tool for the analysis of wave phenomena even today. Classical results of Fock, Keller and others are
restricted to geometries in which there is a single large parameter kρ, which measures the characteristic
size in wavelengths. The condition of validity of these asymptotic expansions requires that all other
quantities describing the problem not compete with this large parameter. In some cases, this imposes
conditions that are too restrictive on the frequency, because they require the frequency to be very high.
One such case is the diffraction by elongated bodies.

It is worth noting that purely numerical methods may fail if the body is sufficiently large, and this
often prompts us to use high-frequency asymptotics or hybrid methods. However, if the body is highly
elongated, there may be a gap between frequencies at which numerical methods work and those for
which asymptotic approaches are viable. New asymptotic formulas, presented herein, aim to close this
gap.

To render the Maxwell’s equations symmetric we introduce the vectors E and H, where E is electric
vector divided by characteristic impedance of the space

√
μ/ε and H is magnetic vector. We assume

that the time factor omitted thorough out the paper is e−iωt. When dealing with general formulas valid
both for TE and TM waves as well as for scalar acoustic waves we shall denote the field by U .
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First, we remind the reader of the key issues of classical Fock asymptotics and describe the attempts
to improve the applicability of these asymptotics. Then, in Section 4, we discuss the recently proposed
asymptotic approach to the problems of diffraction by strongly elongated bodies. We present only the
leading order terms, and discuss their approximating properties by comparing asymptotic and numerical
results in Section 5.

2. FOCK ASYMPTOTICS

For elongated body, the problem possesses another large parameter Λ besides the usual asymptotically
large parameter kρ. The latter can be defined as the ratio of surface curvatures ρ/ρt, or the ratio of the
length of the body to its transverse dimensions.

If the frequency is very high then Λ � kρ, and the classical asymptotic results [1] are applicable.
We remind the reader that the asymptotics of the fields in the vicinity of the light-shadow boundary on
the surface of a convex body have been extensively developed in the past. This so-called Fock domain
appears to be the cradle of creeping waves which propagate to the shadow region of the boundary, and
of the Fresnel transition field in the penumbra region.

Our first step is to introduce a coordinate system in which the surface of the body coincides with
one of the coordinates surfaces. Usually such a coordinate system is formed by adding the normal to
the semi-geodesic coordinates on the surface. That is, we consider a set of geodesics whose directions
are defined by the rays of the incident field, and measure the first coordinate s along these geodesics
starting from a reference line, which is usually the light-shadow boundary on the surface. The second
surface coordinate t just parameterizes the geodesics from this set. In this approach, the way how the
normal coordinate is defined is not important, and it can be taken as the geometrical distance to the
surface. However, when dealing with elongated bodies at frequencies that are not too high we will
return to this question and choose the normal coordinate differently. Once the coordinate system has
been introduced, all the equations and the boundary conditions of the problem should be rewritten
in this coordinate system. The characteristics of the surface and the incident field, such as radius of
curvature ρ of the geodesics, their divergence, radius of transverse curvature ρt and the torsion appear
in the above equations.

The next step in the asymptotic procedure is to choose the scales of the coordinates. One should
scale the coordinates in a way such that the derivatives of the field by the scaled coordinates can be
considered as quantities that are on the order of unity. In our case, the field depends on s in the form
of a dominant factor eiks, multiplied by a slower varying function called the attenuation function

U = exp(iks)u(s, n). (1)

We substitute the above representation into the equation and rewrite it in terms of the coordinates
(s, n) as

2ik
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∂s
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u + . . . = 0. (2)

In (2) the dots denote higher order terms which will be omitted in our analysis.
Next, we choose the principal-order terms in this equation by introducing the stretched coordinates

kαs, kβn, where the exponents α and β are unknowns as yet. We assume that differentiation by the
stretched coordinates does not change the order of these terms. Since u does not vary with s faster
than the exponential factor in (1), α < 1. This enables us to consider ∂2u/∂s2 as a correction to the
term 2ik∂u/∂s and, therefore, we exclude it from the set of principal-order terms. Furthermore, to be
able to set the boundary condition at n = 0, and the radiation condition at n = +∞, the second-order
derivative with respect to n should be included in the set of the principal-order terms. This implies
that β > 0 and the terms with ∂u/∂n are smaller than ∂2u/∂n2. Finally, the n2 terms are smaller than
similar terms with the first power of n. In view of this, the following three terms may be considered
to be the principal terms in Equation (2): ∂2u

∂n2 , 2ik ∂u
∂s and 2k2 n

ρu. Preserving all three terms yields the
well known Leontovich parabolic equation:

2ik
∂u

∂s
+
∂2u

∂n2
+ 2k2n

ρ
u = 0. (3)
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Simultaneously, we have determined the size of the Fock domain. Parabolic Equation (3) fixes
the scales α = 1/3 and β = 2/3. Thus, the Fock domain is as small as k−1/3 along the surface, and
as small as k−2/3 in the direction of the normal. Within such a small domain any general surface is
almost cylindrical, which explains why derivatives with respect to the second surface coordinate t are
not included in the parabolic equation. Moreover, in the Fock domain, we can usually replace ρ(s, t)
by its value ρ0(t) = ρ(0, t). Then the coefficients of the parabolic equation become constant, and by
introducing the boundary-layer coordinates

σ = m
s

ρ0
, ν = 2m2 n

ρ0
, m =

(
kρ0

2

)1/3

, (4)

we can rewrite (3) in its simplest form

∂2u

∂ν2
+ i

∂u

∂σ
+ νu = 0. (5)

We solve the above equation via the use of Fourier transform to get:

u =

+∞∫
−∞

eiσζc(ζ)
(
v(ζ − ν) +R(ζ)w1(ζ − ν)

)
dζ. (6)

Here v and w1 are the Airy functions in Fock notation. The part of the solution which contains the Airy
function v(ζ−ν) corresponds to the incident field while the part of the solution which contains the Airy
function w1(ζ − ν) represents the secondary field. The function w1 is chosen to satisfy the radiation
condition. The coefficient R is determined from the boundary condition. Thus from the Neumann
condition, for the TM polarization we find

RTM(ζ) = − v̇(ζ)
ẇ1(ζ)

, (7)

where dot denotes the derivative. For the TE polarization, by imposing the Dirichlet condition we find
that

RTE(ζ) = − v(ζ)
w1(ζ)

. (8)

The amplitude c(ζ) remains undetermined as yet, and it enables us to match the local asymptotics
in the Fock domain to the incident field. For this purpose we consider the incident wave and represent
it in the stretched coordinates (σ, ν) of the boundary layer. For example, for the case of an incident
plane wave we have

ui = ui(C) exp
{
i

(
σν − 1

3
σ3

)}
.

By inserting this expression in (6), we obtain the integral equation for the amplitude c(ζ), which reads
+∞∫

−∞
eiσζc(ζ)v(ζ − ν)dζ = ui(C) exp

{
i

(
σν − 1

3
σ3

)}
. (9)

Applying the Fourier transform we find

c(ζ) = ui(C)
1√
π
.

If we take the observation point on the surface in the Formula (6), i.e., if we let ν = 0, we obtain
the well-known expression for the field associated with the TE-polarized wave, viz.,

E = U i(C)
eiks

√
π

+∞∫
−∞

eiσζ dζ

w1(ζ)
. (10)
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Similarly, for the induced current of the TM wave, we get

J = U i(C)
eiks

√
π

+∞∫
−∞

eiσζ dζ

ẇ1(ζ)
. (11)

Although (10) and (11) only contain the leading order terms of the asymptotics, and the asymptotic
decomposition is carried out by using the inverse powers of m, i.e., fractional powers of kρ, they yield a
rather accurate approximation for the field even when the frequency is not too high. We can verify this
from Figure 1 taken from [2] (the original is in [3]), where the currents induced on a circular cylinder,
whose diameter is equal to the wavelength, have been presented. It is worthwhile to point out that
in the diffraction problem the current is formed by the interference of two waves. One travels in the
clockwise direction from the light-shadow boundary, while the other originates from the light-shadow
boundary on the opposite side of the cylinder and travels in the counter-clockwise direction. Both of
these waves are attenuated, but as the diameter of the cylinder is not large, the wave which encircles
the shadowed side does not travel a large distance, and its contribution remains noticeable in the form
of the oscillations of the field amplitude.

Since the second surface coordinate t is not involved in the higher-order operator, the leading-order
term of the asymptotics is not affected by the transverse curvature of the body. However the induced
currents are different if the body is not a cylinder, but a sphere, and the agreement between the real
currents and the asymptotics is not as good in this case as it is for the case of the cylinder. The
comparison with the numerical results presented in [4, 5] show that for the sphere with kρ = 10 the
accuracy of the asymptotic formulas is about 15–20% and for prolate spheroids the accuracy of the
asymptotics is much lower. Attempts to improve the situation entail the computation of the next-order
terms of the asymptotics, and we mention here only two previous works that have attempted to do
this. The first one is by Hong [6], who has derived the second-order term of the asymptotics, both
for the fields in the Fock domain and for creeping waves in the deep shadow. He has considered an
arbitrary (with some inessential restrictions) smooth convex surface with ideal boundary conditions.
For the case of a sphere, it was possible to find not only the second-order term, but the entire series
representation [7]. However, the latter result differs by a factor of 2 from the one by Hong. In spite of
the possibility of using the second- and higher-order terms, the lower bound of frequency domain where
the asymptotic formulas yield sufficiently accurate representations for the currents on the sphere, have
remained almost unchanged. This leads us to conclude that the higher-order terms do not enlarge the
domain of applicability of the first-order representation.
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Figure 1. Currents on a perfectly conducting
circular cylinder with the diameter equal to the
wavelength. Solid line — exact, dashed — Fock
asymptotics (11).
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Figure 2. Induced current amplitude on the
spheroid with semiaxes b = 1.25 m, a = 0.5 m at
frequencies 1, 2 and 4 GHz (curves 1, 2, 3) and
the asymptotic approximation by Fock (dotted
curve).
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3. MODERATELY ELONGATED BODIES

For elongated objects, such as spheroids, the lower frequency bound of the domain where Fock formulas
can be used shifts to kb > 100 and larger. We can deduce this by comparing the principal-order term
of the asymptotics with numerical results. Figure 2 presents the induced currents on the spheroid with
semiaxes a = 0.5 m and b = 1.25 m, at frequencies 1, 2 and 4GHz and the asymptotics (11). We use the
stretched coordinate σ in which the “size” of the spheroid changes with frequency, but the asymptotic
approximation remains unchanged. (More results can be found in [8]). Figure 2 shows that the Fock
formula underestimates the values for the currents. This is consistent with the observation that the
edges or surfaces with high transverse curvature decrease the attenuation of the creeping waves. That
is, large transverse curvature or sharp edges promote the propagation of waves, as exemplified by the
following cases. While studying diffraction by disks Senior [9] observed, in 1969, that a wave propagates
with low attenuation along the rim of the disk. The Sommerfeld wave [10] propagates with only a
logarithmic attenuation along conducting wires. Finally, a source on a cylinder excites a wave that
propagates along the generatrix of the cylinder, and only decreases as the inverse of the square root of
the distance [11].

The impact of transverse curvature on the propagation constant of creeping waves, and more
specifically, the case of creeping wave on elongated bodies, has been analyzed in [12] (see also [13]). In
the spirit of the work of Engineer et al. [14], who have studied the problem of diffraction by 2D slender
bodies, it was assumed that besides the usual asymptotic parameter kρ, the geometrical characteristics
of the body form another large parameter Λ = ρ/ρt, with which the asymptotic parameter may compete.
Analysis of the scales shows that reorganization of the usual creeping waves asymptotics as well as the
asymptotics in Fock domain takes place when Λ reaches the order of m, i.e., becomes as large as (kρ)1/3.
This case was referred to in [12] as the case of moderately elongated body.

In this case, as shown in [13], one can introduce the effective impedance

Z =
i

2kρt
(12)

to account for the effects of high transverse curvature. However, the approach for moderately elongated
bodies still results in an underestimation of the currents.

The strongly elongated body was defined in [12] as the body in which the transverse curvature 1/ρt

is on the order of k2/3ρ−1/3, implying that Λ ∼ m2. The approach given in [12], however, is not as
accurate as we desire and we will now describe a different method in the rest of the paper.

4. DIFFRACTION BY A STRONGLY ELONGATED BODY

As explained above, we assume that besides the large asymptotic parameter kρ, the problem of
diffraction possesses another large parameter Λ = ρ/ρt such that Λ ∼ (kρ)2/3. If for such a problem
we maintain the same orders that define the size of Fock domain, then the entire strongly-elongated
body will be contained inside it, and this poses some difficulties. First of all, the field loses locality with
respect to the transverse coordinate and we are forced to consider only rotationally symmetric bodies.
Secondly, the radius of curvature ρ cannot be assumed to be constant as it can be in the classical case,
and its dependence on the surface coordinate should be taken into account. This second difficulty is
overcome by assuming that the body can be well approximated with an appropriately chosen spheroid.

4.1. Boundary Layer, Scales and Coordinates

Let the elongated body possess the symmetry of revolution and let ρ and ρt be its main radii of curvature
at the widest cross-section. We assume that the body is spheroid-like, i.e., its surface deviates from the
surface of the spheroid by an asymptotically small distance. The radii of curvature define the semiaxes
of this spheroid as

a = ρt, b =
√
ρρt. (13)

The assumption that the body be strongly elongated in terms of the semiaxes can be expressed as

χ ≡ ka2

b
= O(1). (14)
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The parameter χ is referred to as the elongation parameter. We use the spheroidal coordinates (ξ, η, ϕ)
related to the cylindrical (r, z, ϕ) ones via the formulas

z = pξη, r = p
√
ξ2 − 1

√
1 − η2, (15)

where p =
√
b2 − a2 is the half-focal distance and the z axis is the axis of the body.

For strongly elongated spheroids, the radial coordinate ξ is close to one in the boundary layer near
the surface. Thus, it is convenient to replace ξ with another coordinate, which we denote by τ . We
introduce such a coordinate by using the formula

τ = 2χ−1kb(ξ − 1), (16)
so that τ = 0 on the axis and it equals 1 on the surface. The coordinates (η, τ) serve as the coordinates
of the boundary layer, η replaces the surface coordinate σ and τ replaces the normal coordinate ν of
the Fock asymptotics.

Keeping in mind that a� b, we can simplify the formulas for the boundary-layer coordinates to⎧⎨
⎩
r = a

√
1 − η2

√
τ ,

z = bη +
a2

2b
(τ − 1)η.

(17)

This change does not influence the asymptotic procedure which pertains to the leading order, although
may affect the higher-order corrections, which we ignore however.

For an ordinary (not elongated) body, the use of the parabolic equation method suggests that the
factor eiks be separated. Computing the arc-length s on the spheroid is not an easy task; however, we
can use a simpler factor eikpη or eikbη if we again exploit the fact that a� b. These factors agree with
eiks up to the terms on the order of unity, and we can choose any of them. The formulas become a little
more compact if we choose eikpη instead, and we simplify it to

exp
(
ikbη − i

2
χη

)
. (18)

Once we have chosen the coordinates and the factor mentioned above, we can go ahead and
generalize the problem, by allowing the wave to be incident at an angle with respect to the axis.
However, the angle should be small, such that the phase shift corresponding to the trajectory of the
wave along the geodesics on the surface differs from the phase shift of the multiplier (18) by no more
than a quantity on the order of unity, implying that the angle of incidence ϑ should be such that

β ≡
√
kbϑ = O(1). (19)

Dimensionless quantities χ and β, that are on the order of unity, are the parameters of the asymptotic
formulas, which we will derive below.

4.2. Integral Representation of the Field

We search for the solution of Maxwell’s equations in the form of a Fourier series in terms of the angle
ϕ. For the part of the electromagnetic field which depends on the angle in the form ei
ϕ, we express
all the components of electric and magnetic vectors via the Eϕ and Hϕ components. Below we denote
the Fourier harmonics of these components as E
 and H
. The functions E
 and H
 are solutions of the
system of differential equations, which is cumbersome to handle, although it is standard in spheroidal
coordinates. Separation of variables is possible only if � = 0 [15], and it leads to a representation of the
field that utilizes spheroidal functions.

We now extract the dominant factor in (18), and neglect the lower-order terms by the asymptotic
parameter kb. For the leading order, we obtain a system of parabolic equations. It can be easily split
into two independent sets of equations for the new unknowns:

P
(τ, η) =
E
 + iH


2
, Q
(τ, η) =

E
 − iH


2
. (20)

These unknowns satisfy the equations
L
−1P
 = 0, L
+1Q
 = 0, (21)
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where

Ln = τ
∂2

∂τ2
+

∂

∂τ
+
iχ

2
(
1 − η2

) ∂

∂η
+

1
4

(
χ2τ − n2

τ
− χ2

(
1 − η2

))
. (22)

The differential equations in (21) are considered together with the boundary conditions. For the case of
a perfectly conducting surface, the boundary conditions require that the tangential components of the
electric vector be zero on the surface, which leads to the conditions

P
(1, η) +Q
(1, η) = 0, (23)
∂P
(1, η)

∂τ
+

1
2
P
(1, η) − ∂Q
(1, η)

∂τ
− 1

2
Q
(1, η) = 0. (24)

We also set the radiation conditions at infinity for the secondary field.
Parabolic operator (22) is amenable to a separation of variables. Elementary solution of the

equation LnU = 0 can be written in the form

Un =
1√

τ
√

1 − η2

(
1 − η

1 + η

)μ

Fμ,n/2 (−iχτ) , (25)

where Fμ,n/2(g) is a solution of the Whittaker equation [16]

F ′′ +
(
−1

4
+
μ

g
+

1 − n2

4g2

)
F = 0.

We choose the Whittaker functions Mμ,n/2(−iχτ) to represent the incident field in (25). These functions
are regular at τ = 0, which results in solutions that are regular in the entire space. For the secondary
field, we choose Whittaker functionsWμ,n/2(−iχτ) which correspond to solutions satisfying the radiation
condition in terms of τ .

We combine P
 and Q
 of the elementary solutions (25) in the form of integrals over the separation
parameter μ (compare with representation (6) of Fock asymptotics) to get:[

P
+1

Q
−1

]
=

1√
τ
√

1 − η2

∫ (
1 − η

1 + η

)μ

c(μ)

(
Mμ,
/2 (−iχτ) +

[
RP


+1

RQ

−1

]
Wμ,
/2 (−iχτ)

)
dμ.

In these representations we include the amplitude factors c and R that are dependent on μ. To define
the path of integration, and the amplitude factors, we first consider the incident field below.

4.3. Representation of the Incident Field

An arbitrarily polarized plane electromagnetic wave can be represented as a sum of transverse electric
(TE) and transverse magnetic (TM) waves. We define the transverse direction with respect to the plane
of incidence and assume that it coincides with the XOZ plane in Cartesian coordinates. The plane of
incidence is not defined for the axial case, but TE and TM waves can still be defined with respect to
the plane XOZ.

Let us consider the TE case first. We set a unit amplitude for the incident TE wave and express
its E and H fields as

Ei = exp (ikz cosϑ+ ikx sin ϑ) ey, (26)

Hi = exp (ikz cosϑ+ ikx sin ϑ) {− cos ϑex + sinϑez} , (27)

where ex, ey and ez are the unit vectors of Cartesian coordinates. Next, we represent the incident wave
in the form of a Fourier series as follows:

Ei
ϕ = exp (ikz cosϑ)

{
iJ1 (kr sinϑ) +

∞∑
n=1

in−1
(
Jn−1 (kr sinϑ) − Jn+1 (kr sinϑ)

)
cos(nϕ)

}
, (28)

H i
ϕ = exp (ikz cosϑ) cos ϑ

∞∑
n=1

in−1
(
Jn−1 (kr sinϑ) + Jn+1 (kr sinϑ)

)
sin(nϕ). (29)
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Each of the harmonics of (28), (29) can be expanded in an asymptotic series in terms of inverse
powers of kb. The leading order terms satisfy the parabolic Equation (21). Therefore the leading order
terms in the asymptotic expansion of (28), (29) can be represented as a combination of elementary
solutions (25) in which, as explained above, we should include the Whittaker function Mμ,n/2(−iχτ).
The problem of finding the leading-order representation of the incident wave as a combination of the
elementary solutions (25) reduces to that of finding such a representation for the functions

exp (ikz cos ϑ)Jn (kr sinϑ) .
When substituting here the expressions for the coordinates r and z we replace the trigonometric functions
of small ϑ by their approximations: sinϑ ≈ ϑ and cos ϑ ≈ 1− 1

2ϑ
2. By doing this, we obtain the equation

1√
τ
√

1 − η2

∫ (
1 − η

1 + η

)μ

An(μ)Mμ,n/2(−iχτ)dμ == V (η, τ). (30)

Both the left-hand as well as the right-hand side of this equation satisfy the parabolic equation with
operator Ln. Therefore, if we find the amplitude An(μ) for any fixed τ , it will satisfy (30) for all
other values of τ . This important property simplifies the problem of finding the solution. First, we
rewrite (30) in the form

1
√
χτβ

√
1 − η2

∫ (
1 − η

1 + η

)μ

Ωn(μ)Mμ,n/2

(
iβ2

)
Mμ,n/2 (−iχτ) dμ = V (η, τ), (31)

where

An(μ) =
Mμ,n/2

(−iβ2
)

√
χβ

Ωn(μ). (32)

We note that τ is presented in (31) only as the product χτ . Thus, since Ωn does not depend on τ , it
does not depend on χ either. Further more; since χτ and −β2 presented in (31) are symmetric, Ωn does
not depend on β either. This enables us to find Ωn for any chosen χτ and β. Equation (31) takes the
simplest form if β and χτ both → 0. Computing this limit and using the asymptotics

Mμ,n/2(g) ∼ g(1+n)/2, g → 0,

Jn(g) ∼ 1
n!

(g
2

)n
, g → 0

(33)

we reduce Equation (31) to ∫ (
1 − η

1 + η

)μ

Ωn(μ)dμ =
1

2nn!
(
1 − η2

)(n+1)/2
. (34)

We note that we have not yet chosen the path of integration. If we choose it now as the imaginary
axis and set

η =
s− 1
s+ 1

,

Equation (34) reduces to
+i∞∫

−i∞
s−μΩn(μ)dμ =

2
n!

( √
s

s+ 1

)n+1

.

We identify the left-hand side of this equation with inverse Mellin transform and find

Ωn(μ) =
1

π(n!)2
Γ
(
n+ 1

2
+ μ

)
Γ
(
n+ 1

2
− μ

)
. (35)

Using (35) and changing the integration variable to t = −iμ we can write the incident plane TE
wave in the form:

Ei
ϕ =−iexp(ikbη − iχη/2)√

1 − η2β
√
χτ

+∞∫
−∞

(
1 − η

1 + η

)it
{
−Ω1(it)Mit, 1

2
(−iχτ)Mit,1/2(iβ

2)

+
+∞∑

=1

i
 cos(�ϕ)
[
Ω
−1(it)Mit, �−1

2
(−iχτ)Mit, �−1

2

(
iβ2

)−Ω
+1(it)Mit, �+1
2

(−iχτ)Mit, �+1
2

(
iβ2

)]}
dt, (36)
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H i
ϕ =−iexp(ikbη − iχη/2)√

1 − η2β
√
χτ

+∞∫
−∞

(
1 − η

1 + η

)it +∞∑

=1

i
 sin(�ϕ)
[
Ω
−1(it)Mit, �−1

2
(−iχτ)Mit, �−1

2

(
iβ2

)

+Ω
+1(it)Mit, �+1
2

(−iχτ)Mit, �+1
2

(iβ2)
]
dt. (37)

The representations for the TM plane wave

Ei = exp (ikz cos ϑ+ ikx sinϑ) {cos ϑex − sinϑez} ,
Hi = exp (ikz cos ϑ+ ikx sinϑ) ey

can be derived analogously. The electric field is given by the expression (37) and the magnetic field can
be expressed as in (36) with the opposite sign.

4.4. Boundary Conditions and the Induced Currents

The representations for the secondary fields are similar to (36) and (37), the only change being
the replacement of Whittaker functions Mit,n(−iχτ) with the functions Wit,n(−iχτ). Note that the
Whittaker functions Wit,n(−iχτ) are chosen because they satisfy the radiation condition. For the TE
case we have, in accordance with (20) and (21),

Es
ϕ =−iexp(ikbη − iχη/2)√

1 − η2β
√
χτ

+∞∫
−∞

(
1 − η

1 + η

)it{
− Ω1(it)T0(t)Wit, 1

2
(−iχτ)Mit, 1

2

(
iβ2

)
+

+∞∑

=1

i
 cos(�ϕ)

×
[
Ω
−1(it)R
(t)Wit, �−1

2
(−iχτ)Mit, �−1

2

(
iβ2

)− Ω
+1(it)T
(t)Wit, �+1
2

(−iχτ)Mit, �+1
2

(
iβ2

)]}
dt, (38)

Hs
ϕ =−iexp(ikbη − iχη/2)√

1 − η2β
√
χτ

+∞∫
−∞

(
1 − η

1 + η

)it +∞∑

=1

i
 sin(�ϕ)
[
Ω
−1(it)R
(t)Wit, �−1

2
(−iχτ)Mit, �−1

2

(
iβ2

)

+Ω
+1(it)T
(t)Wit, �+1
2

(−iχτ)Mit, �+1
2

(
iβ2

)]
dt. (39)

The functions R
(t) and T
(t), introduced herein, play the role of the reflection coefficients in some sense,
and can be found when the sum of the incident and secondary fields is substituted in the boundary
conditions (23) and (24). Evidently, each of the harmonics satisfies the boundary conditions separately.
For the TE case, we find (for details of the derivations see [17]):

T0 = −Mit,1/2(−iχ)
Wit,1/2(−iχ)

, (40)

[1mm]T
 = −Y
−1,
+1

Z

− 1
Z


W(
−1)/2

C

, R
 = −Y
+1,
−1

Z

− 1
Z


W(
+1)/2C
, � = 1, 2, . . . (41)

where

C
 =
�2 + 4t

2�2(�+ 1)2
Mit,(
+1)/2(iβ2)
Mit,(
−1)/2(iβ2)

,

Yn,m =Wit, n
2
(−iχ)Ṁit, m

2
(−iχ) + Ẇit, n

2
(−iχ)Mit, m

2
(−iχ).

Zn =Wiλ, n−1
2

(−iχ)Ẇiλ, n+1
2

(−iχ) + Ẇiλ, n−1
2

(−iχ)Wiλ, n+1
2

(−iχ)

and Wn is the Wronskian of Whittaker functions [16]

Wn = Ṁit,n(g)Wit,n(g) −Mit,n(g)Ẇit,n(g) =
Γ(1 + 2n)

Γ(1/2 + n− it)
. (42)
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For the TM case, the formulas are similar. For this case, Eϕ is given by the right-hand side of (39)
while Hϕ is given by the right-hand side of (38), with the common multiplier (−1). The reflection
coefficients in these two formulas are as follows:

T0 = −Ṁit,1/2(−iχ)

Ẇit,1/2(−iχ)
(43)

and the other coefficients T
, � = 1, 2, . . . and coefficients R
 are defined by Formula (41), but with
C
±1 replaced with −C
±1.

The expressions given in (36) through (39) describe the electromagnetic fields in the boundary layer
near the surface of the spheroid. In contrast to the classical Fock asymptotics, they do not have locality
with respect to the transverse surface coordinate. Indeed, by restricting our analysis to the bodies
of revolution we obtain the Fourier series in terms of the transverse angular coordinate ϕ. In other
respects, the structure of these set of formulas has some similarity with the classical asymptotics of the
field in the Fock domain. For example, the Fourier integral in ζ in the classical asymptotics is replaced
by another integral transform which is reducible to the Mellin transform. The Airy function v(ζ − ν),
which represents the incident plane wave in (6), is replaced with the Whittaker function Mit,n(−iχτ),
while the Airy function w1(ζ − ν) which represents the secondary wave outgoing from the surface is
replaced with the Whittaker function Wit,n(−iχτ). The reflection coefficients (7) and (8) become more
complex and are given by the expressions in (40), (41), and (43).

The induced current J = n × H|τ=1 can be found by using (36) through (39), with its principal
component directed along η. After simple manipulations we can obtain

Jη = eikbηA(η, χ, β, ϕ), (44)

where, in the TE case A = ATE,

ATE(η, χ, β, ϕ)=−2
π

e−iχη/2√
1−η2√χβ

+∞∫
−∞

(
1−η
1+η

)it ∞∑

=1

i
−1 sin(�ϕ)
(�+ 1)!Z


{
Γ
(
�

2
+1+iλ

)
Mit, �+1

2

(
iβ2

)
Wit, �−1

2
(−iχ)

+�(�+1)Γ
(
�

2
+it

)
Mit, �−1

2

(
iβ2

)
Wit, �+1

2
(−iχ)

}
dt.

It is also convenient to represent the special function ATE in terms of the Coulomb wave functions
F and H+ [16], and to use the program developed in [18] for their computation. Using the formulas

Mit, �+1
2

(iβ2) =
2ieiπ
/4+πt/2Γ(�+ 2)√

Γ(�/2 + 1 + it)Γ(�/2 + 1 − it)
F �

2

(
t,
β2

2

)
,

Wit, �−1
2

(−iχ) = −ieiπ
/4+πt/2

√
Γ(�/2 + it)
Γ(�/2 − it)

H+
�
2
−1

(
−t, χ

2

)
we obtain

ATE =
−8e−iχη/2

π
√

1−η2√χβ

+∞∫
−∞

(
1−η
1+η

)it ∞∑
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i
sin(�ϕ)
F �
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(
t, β2

2

)
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�−2
2

(−t, χ
2

)
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2

(
t, β2

2

)
H+

�
2

(−t, χ
2

)
H+

�−2
2

(−t, χ
2

)
Ḣ+

�
2

(−t, χ
2

)
+Ḣ+

�−2
2

(−t, χ
2

)
H+

�
2

(−t, χ
2

)dt. (45)

Similarly, for the TM case we can obtain

ATM(η, χ, β, ϕ) =
8e−iχη/2

π
√

1 − η2√χβ

+∞∫
−∞

(
1 − η

1 + η

)it
⎧⎨
⎩1

2

F0

(
t, β2

2

)
Ḣ+

0

(−t, χ
2

) +
∞∑


=1

i
 cos(�ϕ)

×
F �
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(
t, β2

2

)
H+

�−2
2

(−t, χ
2

)− F �−2
2

(
t, β2

2

)
H+

�
2

(−t, χ
2

)
H+

�−2
2

(−t, χ
2

)
Ḣ+

�
2

(−t, χ
2

)
+Ḣ+

�−2
2

(−t, χ
2

)
H+

�
2

(−t, χ
2

)
⎫⎪⎬
⎪⎭ dt. (46)
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It is worth noting that for the case of axial incidence, one should consider the limit as β → 0 in
the above formulas. Only the Coulomb wave function F−1

2
has a non-zero contribution in this case and

the special functions ATE and ATM simplify to

ATE(η, χ, 0, ϕ) = A(η, χ) sinϕ,

ATM(η, χ, 0, ϕ) = A(η, χ) cos ϕ,

where

A(η, χ)=− 4e−iχη/2

√
πχ
√

1 − η2

+i∞∫
−i∞

(
1 − η

1 + η

)it
e−πt/2√
cosh(πt)

H+
1/2

(−t, χ
2

)
dt

H+

− 1
2

(−t, χ
2

)
Ḣ+

1
2

(−t, χ
2

)
+ Ḣ+

− 1
2

(−t, χ
2

)
H+

1
2

(−t, χ
2

) . (47)

The expressions in (45), (46) and (47) are more cumbersome in comparison to the classical Fock
function (11). However, with the help of the program from [18] their computations are relatively
straightforward. The integrals converge quite rapidly and only a small interval contributes to the
integral. As shown in [8] the function A reduces to the Fock function (11), when χ→ +∞.

4.5. Backward Wave

The total field in the boundary layer near the surface is the sum of the primary wave running in the
positive direction of z together with waves that are formed when the primary wave encircles the ends
of the spheroid. The asymptotics in (45) and (46) only describe the primary wave and are valid in the
middle part of the spheroid. The reflected backward wave representation in the boundary layer can be
written by noting that the backward wave runs in the opposite direction and that there is no incident
backward wave. For the case of the axial incidence, considered in [19], the representation of the current
corresponding to the backward wave is given by

JTE
b = e−ikbηB(η, χ) sinϕ, JTM

b = e−ikbηB(η, χ) cosϕ,

where

B(η, χ)=− 4eiχη/2

√
πχ
√

1−η2

+i∞∫
−i∞

(
1+η
1−η

)it e−πt/2√
cosh(πt)

H+
1/2

(−t, χ
2

)
r(t)dt

H+
− 1

2

(−t,χ2 )Ḣ+
1
2

(−t, χ
2

)
+Ḣ+

− 1
2

(−t, χ
2

)
H+

1
2

(−t, χ
2

) . (48)

The special function B is defined by the expression similar to the one given in (47) in which we change
the sign of η and introduce an additional multiplier r(t). The latter may be interpreted as the reflection
coefficient from the tip of the spheroid. To find this multiplier one needs to construct the field in the
vicinity of the spheroid tip, that is for η ≈ 1, and match the sum J + Jb with that field. The difficulty
is that there is no asymptotic parameter in the region near the tip of the spheroid. Indeed, the radius
of curvature of the surface at the tip is ρe = a2/b. Therefore the parameter kρe, which is equal to the
elongation parameter χ, is on the order of unity. However, there is a way to circumvent this difficulty,
as shown in [19], which is based on the observation that a very elongated ellipse is well-approximated
by a parabola. Hence, if we replace the surface of the spheroid by the surface of the paraboloid defined
by the equation

r2 = 2
a2

b

(
b− z

)
,

we can use the exact solution of Fock [20] to approximate the field. Matching this Fock solution to the
sum of the forward and backward waves allows the reflection coefficient to be found

r(t) = ie2ikb−iχ Γ(1/2 + it)
Γ(1/2 − it)

√
2t− i

2t+ i
(4kb)−2it. (49)

We note that the asymptotic parameter kb is presented in (49) and, rigorously speaking, the formula
requires further asymptotic simplifications in the process of computing the integral in (48), as the
contribution of the residues in the zeros of the denominator

H+
− 1

2

(
−t, χ

2

)
Ḣ+

1
2

(
−t, χ

2

)
+ Ḣ+

− 1
2

(
−t, χ

2

)
H+

1
2

(
−t, χ

2

)
= 0. (50)
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Figure 3. Amplitudes of the induced current on the spheroid No. 1 — red, No. 2 — green, No. 3 —
blue (FEM — solid, asymptotics — dashed), (a) at 1GHz and (b) at 2GHz.

Table 1. Parameters of the test problems.

No. a (m) b (m)
at 1 GHz at 2GHz

χ kb χ kb

1 0.5 1.25 4.19169 26.19806 8.38338 52.39613
2 0.5 1.76776695 2.96397 37.04966 5.92795 74.09931
3 0.3125 1.39754249 1.46452 29.29032 2.92903 58.58065

Solutions of Equation (50) lie in the lower complex half-plane of t (see [21] where solutions of (50) have
been analyzed) and the main contribution to (48) is due to the residue in the pole with the maximal
imaginary part of t. However, finding the solutions of the dispersion Equation (50) is not easy, and we
compute the integral directly instead. Moreover, we expect that the formulas can also be applied in the
case of values of kb, that are not too large, say kb ≈ 3, when the approximation with one residue fails.

To illustrate the approximating nature of the asymptotic formulas we present in Figure 3 the results
of the comparison in [19] of the currents induced by the axially incident plane wave on the surface
of perfectly conducting spheroids. The trigonometric multiplier of ϕ is not considered. The results
computed by the Finite Element Method (FEM) are plotted with solid curves and the asymptotic
results are shown with dashed curves. The parameters of the test examples are presented in Table 1.
We see that the agreement is quite good and it is slightly better for spheroids with larger elongations.
This was expected, because the fact that a spheroid is strongly elongated was used when deriving the
asymptotic formulas, in all of our derivations, and the terms that are small for elongated spheroids were
neglected.

For ϑ 	= 0, backward wave asymptotics can be found by using the same approach, but this has not
been carried out as yet.

4.6. The Far Field Asymptotics

Since we have been able to obtain good approximations for the field in the boundary layer near the
surface, the use of the Stratton-Chu formula in [22] enables us to derive the scattered fields. For perfectly
conducting bodies this formula reduces to

Hs(r0) = − 1
4π

∫∫
J(r) ×∇G(r, r0)dS, (51)

where J is the total induced current, × the vector product, G the scalar Green’s function, and the
integration is carried over the surface of the body.
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Moving the observation point r0 in (51) to infinity along the ray, defined by the spherical coordinates
ϑ0 and ϕ0, we compute the limit under the integration sign to obtain the formula for the far field
amplitude of the magnetic field, which reads

Ψ = − 1
4π

∫∫
J×∇ψdS. (52)

Here ψ is the far field amplitude of G. Its representation in the boundary layer near the surface can be
found in [23]

ψ =
1
2
ψ0 +

+∞∑
m=1

ψm cos[m(ϕ− ϕ0)], (53)

ψm =
2im+1e−ikbη+iχη/2√

1 − η2√χτβ0

+∞∫
−∞

(
1 + η

1 − η

)is

Mis, m
2
(iβ2

0)Ωm(s)Mis, m
2
(−iχτ)ds, (54)

where β0 =
√
kbϑ0 is the scaled observation angle, and the amplitudes Ωm are defined by (35).

Our goal is to find the leading order asymptotics of Ψ. Towards this end, we substitute the
asymptotics of the currents in (52). The approximations (38), (39) are not valid near the tips of the
spheroid where focusing effects take place. Also, these formulas describe only the forward wave which
runs from the illuminated domain to the shadow. Therefore, we can determine the far field only in
those directions for which the main contribution to the integral in (52) arises from the middle part
of the surface. These are the directions in the forward narrow cone near the axis of the spheroid. In
this cone, the main components of the far field amplitude are the transverse components, while Ψz is
asymptotically small.

We use the Cartesian components of the vectors, but perform the integration in the coordinates of
the boundary layer, where

dS = bdηa
√

1 − η2dϕ. (55)
The unit vector along the η coordinate almost coincides with the unit vector along z, that is Jz = Jη

in the leading order, but the correction produces the Jr-component

Jr = −a
b

η√
1 − η2

Jη. (56)

Using the fact that Jη = Hϕ, Jϕ = −Hη, and the expression

Hη =
−i√

kbχτ
√

1 − η2

(
2τ
∂Eϕ

∂τ
+ Eϕ +

∂Hϕ

∂ϕ

)
(57)

it is relatively straightforward to get

Jz = Hϕ, Jr = −a
b

η√
1 − η2

Hϕ, Jϕ =
i

ka
√

1 − η2

(
2
∂Eϕ

∂τ
− ∂Hϕ

∂ϕ

)
. (58)

Let us now consider the gradient of ψ. The differentiation by z at the leading order reduces to the
multiplication by −ik and the other derivatives can be expressed by the formulas

∂ψ

∂x
=

1

a
√

1 − η2

((
2
∂ψ

∂τ
− iχηψ

)
cosϕ− ∂ψ

∂ϕ
sinϕ

)
, (59)

∂ψ

∂y
=

1

a
√

1 − η2

((
2
∂ψ

∂τ
− iχηψ

)
sinϕ+

∂ψ

∂ϕ
cosϕ

)
. (60)

The substitution of the above expressions to the formula for Ψ yields

Ψx = − b

4π

1∫
−1

dη

2π∫
0

dϕ

{(
2
∂Eϕ

∂τ
− ∂Hϕ

∂ϕ

)
ψ cosϕ−Hϕ

(
2
∂ψ

∂τ
sinϕ+

∂ψ

∂ϕ
cosϕ

)}
, (61)

Ψy = − b

4π

1∫
−1

dη

2π∫
0

dϕ

{(
2
∂Eϕ

∂τ
− ∂Hϕ

∂ϕ

)
ψ sinϕ+Hϕ

(
2
∂ψ

∂τ
cosϕ− ∂ψ

∂ϕ
sinϕ

)}
. (62)
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Next, we compute the integrals that express ϕ. The subintegral terms contain products of three
trigonometric functions. Evidently the nonzero contributions are due to terms containing the products
of three cosines, or two sines and one cosine with |m − n| = 1. One can show that, in view of the
symmetry of the problem, the following formulas hold:

ΨTE
x =

+∞∑
n=0

ΨTE
nx cos(nϕ0), ΨTE

y =
+∞∑
n=1

ΨTE
ny sin(nϕ0), (63)

ΨTM
x =

+∞∑
n=1

ΨTM
nx sin(nϕ0), ΨTM

y =
+∞∑
n=0

ΨTM
ny cos(nϕ0). (64)

For the harmonics we get

Ψnx = − b
4

1∫
−1

{
ψn

(
∂

∂τ
+

1
2

)
(En+1 + En−1) ± (Hn+1 −Hn−1)

(
∂

∂τ
+

1
2

)
ψn

}
dη, (65)

Ψny = − b
4

1∫
−1

{
ψn

(
∂

∂τ
+

1
2

)
(En+1 − En−1) ± (Hn+1 +Hn−1)

(
∂

∂τ
+

1
2

)
ψn

}
dη. (66)

In the above, the plus signs are to be used for the TM incident wave and the minus signs for the TE
case. The quantities En and Hn in (65) and (66) stand for the angular harmonics of Eϕ and Hϕ; the
expressions for which can be deduced from (38) and (39). When substituting these expressions, the
terms with the indexes n − 2 and n + 2 appear. These terms can be excluded by using the properties
of the reflection coefficients. Further, we change the order of integration and use the formula

1∫
−1

(
1 − η

1 + η

)i(t−s) dη

1 − η2
= πδ(t− s), (67)

which reduces the integration by s and results in the compensation of the terms containing Whittaker
functions Mit,n/2(−iχ). The Wronskians of Whittaker functions (42) are separated in the other terms,
and we get⎡
⎢⎢⎢⎢⎢⎣

ΨTE
nx

ΨTE
ny

ΨTM
nx

ΨTM
ny

⎤
⎥⎥⎥⎥⎥⎦=

ib(−1)n

π(n!)3ββ0

+∞∫
−∞

Γ2
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2 +it
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(
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2 −it)Mit,n/2(iβ

2)Mit,n/2

(
iβ2

0

)
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n+1

TTE
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−TTM
n−1 +RTM

n+1

TTM
n−1 +RTM
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⎤
⎥⎥⎥⎥⎥⎦dt, (68)

In the above formulas, we have used the fact that TTE−1 ≡ 0 and TTM−1 ≡ 0.
Finally, we substitute the expressions for the reflection coefficients given by (40), (41), and (43),

in (68), and rewrite Whittaker functions in terms of the Coulomb wave functions F and H+ [16]. These
cumbersome, though straightforward derivations result in the following expressions for the far field
amplitudes of the magnetic vector:[

ΨTE
x

ΨTE
y

]
=

8ib
πββ0

+∞∑

=0

+∞∫
−∞

[
(a+


 + b+
 ) cos(�ϕ)
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 ) sin(�ϕ)

]
dt, (69)

[
ΨTM

x

ΨTM
y

]
=

8ib
πββ0

+∞∑

=0

+∞∫
−∞

[
(a−
 + b−
 ) sin(�ϕ)

(a−
 − b−
 ) cos(�ϕ)

]
dt. (70)
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Here
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b+0 = 0, b+1 = F0
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2
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)
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0
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) , (72)

b−0 = 0, b−1 = F0
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z
 =H+
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2

(−t, 1
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Ḣ+
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+ Ḣ+
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2
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2
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)
. (76)

In the above formulas, the dots over F or H+ denote the derivatives of the Coulomb wave functions
with respect to their second argument. For the case of β = 0 or β0 = 0, the representations (69), (69)

Table 2. Tests for RCS (in Db) for different frequencies f (in GHz).

Spheroid No. 1: a = 0.5, b = 1.25

f χ kb RCS (asympt.) RCS (ANSYS) error (%)

0.1 0.419 2.620 −3.465522 −3.093652 12.0

0.5 2.096 13.099 13.563413 13.640915 −0.6

1.0 4.192 26.198 19.714119 19.709806 0.02

1.5 6.288 39.297 23.189528 23.133993 0.24

2.0 8.383 52.396 25.640673 25.534817 0.41

3.0 12.575 78.594 29.096819 28.866631 0.80

4.0 16.767 104.792 31.555742 31.119144 1.40

Spheroid No. 2: a = 0.5, b = 1.77

f χ kb RCS (asympt.) RCS (ANSYS) error (%)

0.1 0.296 3.710 −4.778582 −4.666430 2.40

0.5 1.480 18.548 13.297679 13.350484 −0.4

1.0 2.960 37.096 19.698526 19.673893 0.13

1.5 4.440 55.645 23.232285 23.148338 0.36

2.0 5.920 74.193 25.697454 25.551617 0.57

3.0 8.881 111.289 29.152752 28.824957 1.13

4.0 11.841 148.386 31.604748 31.050392 1.78

Spheroid No. 3: a = 0.3125, b = 1.39

f χ kb RCS (asympt.) RCS (ANSYS) error (%)

0.1 0.147 2.913 −16.194632 −16.029930 1.03

0.5 0.736 14.566 3.977269 4.044432 −1.66

1.0 1.472 29.132 11.148134 11.121439 0.24

1.5 2.209 43.698 14.966856 14.862905 0.70

2.0 2.945 58.264 17.553463 17.369444 1.05

3.0 4.417 87.397 21.088469 20.732029 1.72

4.0 5.890 116.529 23.554020 22.986029 2.47
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Figure 4. RCS for spheroid No. 1: (a), (d) for axially incident TE plane wave, (b), (e) for TE
incident wave at 5◦ and for (c), (f) TM incident wave at 5◦. The section by the plane ϕ = 0◦ is given
in (a), (b), (c) and the section at ϑ = 90◦ is in (d), (e), (f). Solid lines are for the results obtained by
ANSYS, dashed lines present asymptotic results.

contain an ambiguity. When avoiding it, we take into account of the fact that

F−1/2

(
t, 1

2β
2
)

β
→
√

π/2
e2πit + 1

(77)

while Coulomb wave functions F
 with other indices vanish.
Though Formulas (69) and (69) are rather cumbersome and contain infinite integration and

summation, computational difficulties are mostly encountered in the computation of the Coulomb wave
functions, but are effectively resolved by using the Fortran program developed in [18]. The integrals in
Formulas (69), (69) exponentially converge at infinity. For the purpose of numerical computation, we
discard the semi-infinite intervals for which the absolute value of the integrated function is more than a
million times less than its maximum value. For the remaining interval, it is usually sufficient to choose
the step of integration smaller than 0.4. To minimize the computational errors we use a step which is
10 times smaller; i.e., 0.04, which typically results in 150–300 integration nodes, less for smaller values
of the elongation parameter χ and scaled angles β and β0. The number of terms in the series depends
on the parameters β and β0, but it is usually sufficient to consider no more than 10 terms. We used 20
terms for the results presented below.

5. COMPARISON WITH NUMERICAL TESTS AND EFFECT OF STRONG
ELONGATION

We validate the above asymptotic approach by comparing the RCS
RCS = 4π‖Ψ‖2 (78)
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Figure 5. RCS for spheroid No. 2 (see caption of Figure 4).
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Figure 6. RCS for spheroid No. 3 (see caption of Figure 4).
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Figure 7. RCS of TE wave on the spheroid No. 4 for the incidence at 0, 1◦ and 5◦.

Figure 8. RCS of TM wave on the spheroid No. 4 for the incidence at 0, 1◦ and 5◦.

computed by using (69) through (76), with those obtained by using the FEM/Boundary Element code
HFSS from ANSYS†. For this purpose, we choose the same spheroids as above, but consider a larger set
of frequencies, namely 100 MHz, 500 MHz, 1GHz, 1.5 GHz, 2GHz, 3 GHz and 4 GHz. The parameters
of this comparison are listed in Table 2. We present in this table the values of the RCS on the axis for
the case of axial incidence. It shows that the smallest difference between the asymptotic and numerical
results for all three spheroids is achieved for 1GHz frequency and corresponds to the values of the
asymptotic parameter kb of about 26–37. For smaller values of the parameter kb, the asymptotics is less
accurate. For larger, the difference is probably due to insufficient accuracy of numerical computations
with ANSYS.

The RCS for different angles of observation are plotted in Figures 4 through 6. We consider in these
figures the case of axial incidence and the case of incidence at an angle of 5◦ to the axis. Results for the
frequency of 0.1 GHz are shown in red, for f = 0.5 GHz — in green, for 1 GHz in blue and for 1.5 GHz
in black. We see that the agreement between the asymptotic and numerical results is at approximately
the same level of accuracy as in Table 2 if the angles do not exceed 10◦. For larger angles the agreement
becomes less accurate, which is an expected result because when deriving the asymptotics we assumed
the angles to be small.

Formulas (69) and (69) enable us to study the effect of strong elongation on the directivity of the
scattered field. Figures 4 through 6 show that for moderately long spheroids, the main leaf of the RCS
points to the direction of the incidence, and that there is no qualitative difference between the results
for the TE and TM polarizations. For the case of spheroid No. 3, which is the most elongated, the
main beam is not represented as well, though the maximum of the scattered field amplitude continues
to point to approximate the direction of incidence.

For spheroids with larger elongations, the situation is significantly different and the influence of
† Computations were performed by D. Shevnin, CADFEM CIS Branch in North-West Federal Region. See also [24].
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the polarization of the incident wave becomes more noticeable. Figures 7 and 8 present the RCS for
the spheroid No. 4, with the semiaxes b = 1 m, a = 5 cm, at 5 GHz. We observe that for axial incidence
the maximum of the RCS is not located on the axis, but at approximately ϑ = 10◦. Inside the cone
formed by this maximum there are two directions in which the scattering amplitude has minima. For
axial incidence these directions are on the opposite sides of the axis at about 5◦. When the angle of
incidence increases, some perturbations of these minima take place. For the TE case they both shift
towards the direction of incidence and this decreases the RCS in that direction. As a result, we see
the effect that the amplitude of the scattered field is more pronounced on the opposite side, as if the
spheroid reflects the incident wave. For the TM case, one of the minima disappears when the angle of
incidence increases from zero while the other shifts towards the axis.

6. CONCLUSION

In this paper, we have discussed the application of high-frequency asymptotic technique to solve the
problem of diffraction by elongated bodies. We have shown that the classical asymptotic expansions
provide reasonable approximations for such problems only if the asymptotic parameter is extremely
large, which results in a possible gap between very large-scale problems, and moderately large
problems for which numerical approaches are viable. The asymptotic representations derived under the
supposition of a strongly elongated body enable us to close this gap. We have derived the approximations
for both the induced currents and for the far field amplitude of the scattered field in the forward
directions. These new formulas are uniform with respect to the elongation parameter χ. When this
parameter increases to infinity, which can be achieved by setting the frequency very high, the formulas
simplify to the classical asymptotic expressions. However, they remain applicable for moderately high
frequencies, where the classical asymptotics fail.

In the frame of the presented approach, one can obtain asymptotic expansions for backward wave
in the case of a skewed incidence on a strongly elongated body and for the back-scattering amplitude.
This was done recently in [23] for the acoustic wave. One can also consider diffraction of spherical waves
(for acoustics see [25]) or Gaussian beams. The approach is applicable also to some other canonical
geometries [26] such as hyperboloids, cones [27], or elliptic cylinders [28].

More difficult extensions [29] would involve the implementation of the impedance boundary
condition and application to geometries which do not possess a rotational symmetry.
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