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Floquet Modal Analysis to Modelize and Study 2-D Planar Almost
Periodic Structures in Finite and Infinite Extent with Coupled Motifs

Bilel Hamdi1, 2, *, Taoufik Aguili1, and Henri Baudrand2

Abstract—Studying of mutual coupling parameters between the antenna elements in an array
environment has been considered as the subject of feature research. That is why, in this paper, we
present a new Floquet modal analysis procedure for analyzing almost periodic structures. Accurate
evaluation of the mutual coupling could be achieved by this analysis. It is shown how Floquet analysis
can be exploited to study a finite array with arbitrary amplitude and linear phase distribution in
both x-y directions including mutual coupling effects. Two different calculation methods of coupling
coefficients between the array elements are presented, in spectral and spatial domains, to solve the
suggested problem. For modeling the given structures, the moment method combined with Generalized
Equivalent Circuit (MoM-GEC) is proposed. High gain in the running time and memory used is given
using Floquet analysis. To validate this work, several examples are shown.

1. INTRODUCTION

Recently, almost periodic planar structures in 2D-dimensional case becomes the subject of important
scientific research, in particular in defense and space applications, communication systems and
electronics devices such as: phased array radar systems, Frequency selective surfaces (FSSs) applications,
millimeter waves and optical wave regions (among the others, reflect-arrays, phased arrays and
electromagnetic band-gap structures, leaky waves antenna ect.) [10, 15, 22, 23]. Many numerical
techniques have been invested in this context, and their goal is to solve partial differential equations with
periodic boundaries conditions, for instance the finite element method (FEM), the method of moment
(MoM) and finite-difference time-domain (FDTD) [1, 15, 27].

In this paper, we need to calculate the mutual coupling parameters between antennas array in bi-
dimensional configuration and to emphasize their effects [6, 8, 15]. Most studies prove that it is difficult
to determine precise results in dealing the mutual coupling problems: element-by-element method and
infinite periodic structure method [2, 8, 16]. To take coupling effects into consideration, a new Floquet
modal analysis is required to decrease the complexity of the investigated problem [3, 7, 9, 14, 15, 17].

A number of works have been reported taking different radiating structures with spatial formulation
to study 2-D periodic planar dipole antenna array [6, 8]. But this work considers a new original modal
approach based on the Floquet’s theorem to facilitate the treatment of this kind of structure [1, 3, 4, 21].
The modal description of the impressed field has been given in spectral domain one, and the radiated
fields have discrete spectra in the wavenumber space. Then, the generalized Fourier series expansion is
usually introduced to express the field components, and the analysis region will be restraint to a single
periodicity cell [9, 11, 13, 14, 22].

An appropriate superposition of Floquet-periodic fields leads to an integral representation of the
sought solution that needs a careful numerical treatment, the integration being performed over all the
phase shifts inside one Brillouin domain [3, 13]. The field sources (e.g., located elements) arrangement
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follows the periodicity of the problem. Thus, as all Floquet approaches for periodic structures do, the
modal techniques based on direct application of Floquet’s expansion are useful (needful) [9, 13].

This modal analysis can show some fundamental properties of the impressed electromagnetic fields
and present the Periodic Fourier Transform to approach the radiated problem of periodic structures
in the spectral-domain [11, 14, 22]. For many periodic and almost periodic structures, several studies
have proven that the method of moments (MoM) represents an appropriate and a rigorous numerical
technique to compute the coupling between elements [1–3, 5, 16, 17].

In this work, we focus essentially on evaluating the electromagnetic interaction (the mutual coupling
parameters) produced between the narrow array elements (e.g., conducting metallic shape) in two-
dimensional periodic case. For solving this problem, we propose adopting an integral method based on
the generalized equivalent model and using the Floquet modes written as a group of excitation sources.
This proven Floquet modal technique allows to considerably reduce the running time and used memory
observed by other conventional methods [1, 26].

This paper is structured as follows. The first step is to present the essential theoretical Floquet
modal analysis. To begin with, the Finite Fourier Transform (FFT) and spectral decomposition are
given. Next, in Section 3 the studied problem is formulated by an integral equation based on the
formalism of the admittance (or impedance) operator using Generalized Equivalent Circuit (GEC)
cited in [1, 3]. Then, in Section 4 numerical results are presented and discussed for many applications.
Finally, in the last section some conclusions are drawn.

2. MODAL ANALYSIS

The study is devoted to explain the periodic assemblies of identical elements arranged in one-dimensional
extent (configuration), then the bi-dimensional case can be easily given.

Using the modal analysis, the periodic symmetry of the structure allows us to concentrate on one
cell of the array. The unit cell can be defined as the basic building block (can be an arbitrary metallic
shape) of the array that repeats itself infinitely defined by the periodicity (dx, dy), as mentioned in
Figure 1.

Generally, any periodic array can be excited in two ways: incident plane wave Ei,αβ (passive array)
or individual source connected to every elements (active array).

In this work, we are always interested in the active manner that a real voltage source (with uniform
field) represents the excitation term associated with feeding element location connected to the radiating
surface with arbitrary metallic shape.

This kind of source must also respect the property of the located element which should be smaller
than the wavelength (dimensions are inferior to λ

10 ) in order to introduce a neglected phase shift. It is
possible to express the excitation source by a non-uniform field [1, 20].

Figure 1. Periodic cells with arbitrary planar metallic shape (arbitrary motifs).
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Based on Floquet states or Floquet eigen modes, we will identify all proper phases shift of the unit
cell surrounded by others cells. The passage from each element to the other is provided through this
phases.

The interaction and mutual coupling between cells are taken into account through the adequate
periodic boundary conditions at the borders of the basic cell (Floquet’s theorem).

Applying superposition theorem leads to predict mutual coupling parameters established between
distinct elements which belong to the whole structure.

The determination of [S] matrix is more complex by using old spatial method (direct manner).
To overcome this limitation, it is facile to estimate it by a simple elegant Fourier Transform based on
Floquet’s modes. A good accuracy is satisfied by this important mutual coupling expression.

The Floquet modal analysis, possibly, permits to study almost periodic structure with spatial
irregularities. In the studied structure with periodicity character, we can find some cells with defects.
Hence, each defect in any cell can be represented by replacing its source by an impedance surface
to carry back the structure’s geometry which has periodic symmetry, and cells become identical and
uniform [10].

Note that this new modal study remains successfully valid for several geometries of radiating planar
metallic shape in various periodic or aperiodic configurations.

As we have already seen, this efficient original modal analysis introduces a new way to decompose
excitation source in spectral domain, which is applicable to finite and infinite periodic structures that
remove the complexity of the problem under consideration to model and analyze the periodic structure
when motifs are strongly or weakly coupled.

To make modal analysis more comprehensive, we should briefly remind the 1D-Fourier’s principle
of the feeding sources that easily provide explanation of the high-dimensional case with different
periodicities and axis orientations especially for practical case of finite number of planar motif with
arbitrary shape.

2.1. 1D-Fourier Transform’s Principle of the Feeding Sources: Floquet’s Theorem

This section, referring to [1], will describe the Floquet modal analysis and to show its detailed expressions
in order to study the 1D-almost periodic array model in finite and infinite configurations.

2.2. 2D-Fourier Transform’s Principle of the Feeding Sources: Floquet’S Theorem

In this section, to tackle all elements in 2D-configuration we propose to generalize the preceding case
with more complex periodicities [1]. Consider a 2-D structure, linear array of point sources on the x-y
plane with its (i, s)th element placed at −→ris = (idx, sdy, 0) with −Nx

2 ≤ i ≤ Nx
2 − 1, −Ny

2 ≤ s ≤ Ny

2 − 1,
dx and dy being the inter-element periods in the x and y coordinates, respectively. Add the second
direction leads to two Floquet modes (αp, βq) in the modal space when each element is surrounded by
suitable periodic walls along (ox) and (oy) directions [3].

As in the 1-D case, for a 2-D grid the source field E(i, s) is decomposed as:

E(idx, sdy) =
1√

NxNy

Nx
2

−1,
Ny
2

−1∑
p=−Nx

2
,q=−Ny

2

Ẽαp,βqe
jαp(idx)ejβq(sdy) (1)

Identically, the current distribution J(i, s) is expressed as:

J(idx, sdy) =
1√

NxNy

Nx
2

−1,
Ny
2

−1∑
p=−Nx

2
,q=−Ny

2

J̃αp,βqe
jαp(idx)ejβq(sdy) (2)

with
αp =

2πp

Lx
(3)
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where
−Nx

2
≤ p ≤ Nx

2
− 1 (4)

and

Lx = Nxdx (5)

βq =
2πq

Ly
(6)

where
−Ny

2
≤ q ≤ Ny

2
− 1 (7)

and
Ly = Nydy (8)

Like in the 1-D case, we rewrite the IFFT as follows:

Ẽαp,βq(0) = Ẽαp,βq =
1√

NxNy

Nx
2

−1,
Ny
2

−1∑
i=−Nx

2
,s=−Ny

2

E(idx, sdy)e−jαp(idx)e−jβq(sdy) (9)

and

J̃αp,βq(0) = Ẽαp,βq =
1√

NxNy

Nx
2

−1,
Ny
2

−1∑
i=−Nx

2
,s=−Ny

2

J(idx, sdy)e−jαp(idx)e−jβq(sdy) (10)

Similar to the 1D-case, the 2-D periodic structure is a group of (Nx, Ny) identical phased cells, where
the exponential term e−jαp(idx)βq(sdy) indicates the phase term for each (i, s)th cell at each mode (αp, βq).

Following the same 1D-Fourier Transform’s vector-matrix notation, we would like to put emphasis
on a new mutual coupling relationship that follows the 2D-lattice arrays. We also need to reconstruct a
2D-Fourier matrix that identify all the same properties of the 1D-Fourier matrix to finally deduce the
main expression given below:

[Zi,s] = TF−1[z̃αp,βq ]TF (11)

We have seen that z̃αp,βq is a diagonal operator which contains all possible modal input impedances.
The consequence of this latter transformation is to deduce the mutual admittance and the scattering
parameters between periodic elements in an array environment that may be defined as:

[Yi,s] = TF−1[ỹαp,βq ]TF (12)

[Si,s] = TF−1[s̃αp,βq ]TF (13)

3. PROBLEM FORMULATION

This section presents two different formulations to analyze the theoretical development appreciably for
solving planar structure in periodic arrays:

• The modal formulation restraint to modelize the unit structure that is designed to show the
dependence on Floquet modes.

• As we know, it is important to explain, also, the old spatial formulation associated to the whole
structure.

3.1. Modal Formulation

Owing to the generalized equivalent approach, the integral equation representation can be expressed by
the unit equivalent circuit that the Kirchhoff laws are employed. The generalized test functions which
describe the electromagnetic state on the discontinuity plane are modeled by an adjustable virtual source
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not storing energy (unknown current density).
The excitation term is depicted within the GEC using a field source or a current source (located

element).
Consider that the environment of the unit structure is expressed by an impedance (or an

admittance) operator corresponding to evanescent modes.
We should bear in mind that the Ẑα,β expression following the Dirac notation is then rewritten as:

[
Ẑupper,down

pq,ht,αβ

]
=

[∑
m,n

〈gpq,αβ|fmn,αβ〉zupper,down
mn,αβ 〈fmn,αβ|ght,αβ〉

]
(14)

and the inner product is given by:

〈u|v〉 =
∫ ∫

D
uv∗ ds (15)

(* denotes the complex conjugate), |fmn,αβ〉 represent the modes |TEmn,αβ〉 and |TMmn,αβ〉.
Here we will define the known expression of |fTE,TM

mn,αβ 〉 functions that identify 2-D periodic walls as
[3]:

{ |TEmn,αβ〉
m ∈ Z∗
n ∈ N∗

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j
kyn√

k2
xm,α + k2

yn

√
1

dxdy

exp(+j(kxm,αx)) exp(+j(kyn,βy)

−j
kxm,α√

k2
xm,α + k2

yn

√
1

dxdy

exp(+j(kxm,αx)) exp(+j(kyn,βy)

(16)

{ |TMmn,αβ〉
m ∈ Z∗
n ∈ N∗

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j
kxm,α√

k2
xm,α + k2

yn

√
1

dxdy

exp(+j(kxm,αx)) exp(+j(kyn,βy)

j
kyn√

k2
xm,α + k2

yn

√
1

dxdy

exp(+j(kxm,αx)) exp(+j(kyn,βy)

(17)

{ |TEMαβ〉
m = 0
n = 0

}
=

{ |TE00,αβ〉
m = 0
n = 0

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j
β√

α2 + β2

√
1

dxdy

exp(+j(αx)) exp(+j(βy)

−j
α√

α2 + β2

√
1

dxdy

exp(+j(αx)) exp(+j(βy)

(18)

{ |TEMαβ〉
m = 0
n = 0

}
=

{ |TM00,αβ〉
m = 0
n = 0

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j
β√

α2 + β2

√
1

dxdy

exp(+j(αx)) exp(+j(βy)

j
α√

α2 + β2

√
1

dxdy

exp(+j(αx)) exp(+j(βy)

(19)
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kxm,α = 2mπ
dx

+ α and kyn,β = 2mπ
dy

+ β are wavenumbers.
For the normal incidence, there are two modes TEM (TE00 or TM00) which can be expressed as:
|TEM〉 =

√
1

dxdy

−→x or |TEM〉 =
√

1
dxdy

−→y
For a 1-D structure, we will specify a new expression of |fTE,TM

mn,α 〉 functions, combining electric-
periodic walls or magnetic-periodic walls (see Appendix A) [1].

By applying the local form of Maxwell equations and verifying 〈fmn,αβ|fm′ ,n′ ,αβ〉 = δm
′
,n

′
m,n (the

Kronecker symbol), we can be sure that this new basis functions obey:
−→
rot(

−→
E ) = −jμω

−→
H and

div(
−→
E ) = −jβEz , precisely:

For |TMmn,αβ〉 the:
{

Hz = 0
Ez �= 0 ⇒ −→

rot(|TMmn,αβ〉) =
−→
0

For |TEmn,αβ〉 the:
{

Ez = 0
Hz �= 0 ⇒ div(|TEmn,αβ〉) = 0

z̃mn,αβ the total modal impedance associated with these vectors can be expressed as:

z̃TE
mn,αβ,upper =

jωμ0

γ2(kxm,α, kyn,β)
(20)

z̃TM
mn,αβ,upper =

γ2(kxm,α, kyn,β)
jωε0

(21)

γ2(kxm,α, kyn,β) = k2
xm,α + k2

yn,β − k2 (22)

And

z̃TE
mn,αβ,down =

jωμ0

γ2(kxm,α, kyn,β)
tanh(γ(kxm,α, kyn,β)h) (23)

z̃TM
mn,αβ,down =

γ2(kxm,α, kyn,β)
jωεrε0

tanh(γ(kxm,α, kyn,β)h) (24)

γ2(kxm,α, kyn,β) = k2
xm,α + k2

yn,β − εrk
2 (25)

K = 2πf
√

εrε0μ0 (26)

A particular choice of the trial functions which describe the unknown current density is defined on the
metallic parts of the unit cell.

|gpq,αβ〉 designates a trial function and Xpq,αβ the unknown coefficients of this function to be
determined.

The discontinuity plane can be composed of a metallic surface and a dielectric surface. The unknown
virtual current source J̃e,αβ is defined on the metallic surface and is null on the dielectric part. We note
Ẽαβ its dual.

Based on GEC method and using impedance’s operator representation, we can identify the
relationship between the electric field and the current density. Then, the theoretical development
as done for the unit cell leads to expressing the modal input impedance for any Floquet mode as stated
in (27).

˜Zin,αβ =
(

t[Ãαβ ]([Ẑdown
pq,ht,αβ]−1 + [Ẑupper

pq,ht,αβ]−1)[Ãαβ ]
)−1

(27)

where
[Ãαβ ] = [〈f |gpq,αβ〉] = [〈1

δ
|gpq,αβ〉] (28)

Consider the circuit example shown in Figure 2. Applying the kirchhoff’s laws (current and tension’s
laws), we can deduce the relation between virtual and real sources and its duals, as given in the following
system: {

J̃αβ = J̃e,αβ

Ẽe,αβ = −Ẽαβ + Ẑαβ J̃e,αβ
(29)
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Figure 2. Equivalent circuit for the unit cell.

Thus, we can determine the current density lying in the metal part including the source domain and its
associated field to verify the boundary conditions.

Next, the integral equation is solved on the central element by applying the MoM method using
Galerkin procedure. Taking now into account that the original periodic excitation was written as a
combination of Floquet-periodic impressed fields by means of the linear transformation cited in [1, 3, 4],
after applying the superposition principle, the current density excited by the located source on the
periodic micro-strip line can be finally computed as [3, 9, 17]:

J(x, y) =
(dxdy)
4π2

∫ π
dx

−π
dx

∫ π
dy

−π
dy

J̃αβ(x, y) dα dβ (30)

Similarly, we express the superposition theorem:

J(x, y) =
1√

NxNy

∑
p,q

J̃αp,βq(x, y) (31)

To formulate 1-D extent described in [1], we reduce the doubly periodic grid on one axis (one translation
vector) whose motifs follow the 1-D periodic arrangement and the Floquet dependence is also reduced
to a single direction that delete the second phase corresponding to β dependence.

3.2. Spatial Formulation

Another classical way permits to study the whole or the global 2-D structure separately based on the
old spatial formulation [6].

As the proposed formulation in [1], we describe the direct manner that extracts an integral equation
to compute the impedance matrix which represents also the mutual impedance. This main relation can
be compared with the given Equation (11) obtained by the Fourier Transform.

Let’s take an uniform and identical located sources will excite respectively every metallic shape
that belongs to the whole array configuration. Their generalized equivalent circuits model, which allows
to simplify the Maxwell equations and the continuity relations, is shown in Figure 3 [12, 18, 19, 25].

Consider |fTE,TM
mn 〉 the modes (or basis functions) of the proposed waveguide enclosing reference

structure (see Figure 4).
Lateral walls can be chosen from the following known options: (a) Perfect Electric boundaries, (b)

Perfect Magnetic boundaries, (c) Periodic boundaries with null phases shift, or (d) a combination of
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Figure 3. Equivalent circuit for the global structure.

Figure 4. Periodic cells with printed dipoles antenna.

these latter boundary conditions (see Appendix B). The top and the bottom are an open circuit and a
ground plane, respectively.

The excitation fields Ei,s,(i, s) ∈ ([−Nx
2 , Nx

2 −1], [−Ny

2 ,
Ny

2 −1]) are expressed as follows Ei,s = Vifi,s

where fi,s = 1
δ represents the fundamental excitations modes.

The impedance operator Ẑ expressed as a function of higher-order modes and their modes
impedances zTE,TM

mn . The unknown of the problem J i,s
e describes the virtual current appearing on

each metal part and represents the electromagnetic state on the discontinuity interface.
So, J i,s

e is expressed as a series of known test functions gi,s
pq weighted by unknown coefficients.

Based on its corresponding equivalent circuit model depicted in Figure 3, the generalized Ohm and
Kirchhoff laws are then rewritten as an equations system:{

J(i,s) = Je,(i,s)

Ee,(i,s) = −Ei,s + ẐJ
(32)
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with:

J =J
e,(−Nx

2
,−Ny

2
)
+J

e,(−Nx
2

+1,−Ny
2

+1)
+ . . .+J

e,(Nx
2

−1,
Ny
2

−1)
= J−Nx

2
,−Ny

2

+J−Nx
2

+1,−Ny
2

+1
+ . . .+JNx

2
−1,

Ny
2

−1

(33)
A formal relation between sources (real and virtual) and their duals is given in (34):⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J−Nx
2

,−Ny
2

.

.

JNx
2

−1,
Ny
2

−1

E
e,(−Nx

2
,−Ny

2
)

.

.

E
e,(Nx

2
−1,

Ny
2

−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . 0 1 0 . 0

0 . . 0 0 1 0 .

0 . . 0 . 0 1 0

0 . . 0 0 . 0 1

−1 0 . 0

0 −1 0 .

. 0 −1 0 ˆZpq,st

0 . 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E−Nx
2

,−Ny
2

.

.

ENx
2

−1, Nx
2

−1

J
e,(−Nx

2
,−Ny

2
)

.

.

J
e,(Nx

2
−1,

Ny
2

−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(34)

After that, we apply the Galerkin’s procedure to Equation (34). Consequently, the impedance matrix
Zi,s of the total structure (multi-port microwave circuits) is done as following:

[Zi,s] =
[
Vi,i

Is,s

]
=

(
t[A]([Ẑdown

pq,ht ]−1 + [Ẑupper
pq,ht ]−1)[A]

)−1
(35)

where: [A] = [〈fi,s|gi,s
pq,ht〉], [ ˆZpq,ht] = [〈gi,s

pq |Ẑ|gi
′
,s

′

ht 〉], (i, s) ∈ [−Nx
2 , Nx

2 − 1][−Ny

2 ,
Ny

2 − 1], (i
′
, s

′
) ∈

[−Nx
2 , Nx

2 −1][−Ny

2 ,
Ny

2 −1] and Ẑ =
∑

m,n |fTE,TM
mn 〉zupper,down

mn,TE,TM 〈fTE,TM
mn |. Therefore, the mutual coupling

effects in this case are expressed with the driving impedance matrix.
The latter Equation (35) relates these voltages Vi,i and currents Is,s in the passive impedance case,

so the matrix representation is written as:

[Z][I] = [V ] (36)

Identically, the admittance matrix, [Yi,s], is simply the inverse of the impedance matrix [Zi,j].

[Yi,s] = [Zi,s]−1 (37)

The scattering parameters corresponding to the unique impedance matrix are deduced from the well-
known form as the following [28]:

[Si,s] =
[
Zi,s

Zc
− I

] [
Zi,s

Zc
+ I

]−1

(38)

where Zc is also the desired reference impedance of each element. For the example, if the matrix is
re-normalized to 50 ohms, then (Zc) will have value of 50 Ω.

The suggested boundary conditions will be verified using the formulas (32) and (33) that produce
the current densities lying in metal parts and their associated fields including the sources domains.

This formulation is extended further to study quasi-periodic circuits which leads to the appearance
of leaky waves and their supporting role [23].

Their effects offer a precise information about mutual coupling terms. Especially, when the cental
element (excited element) engenders a weak current distributions appearing on the others elements
(no-excited elements).

In consequence, the previous modal formulation that focuses on analyzing the central cell is always
applicable to structures with aperiodic configuration [3, 9, 13].
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numbers at f = 7 GHz — The parameters which chosen to simulate the suggested unit structure are:
α0 = 0 rad m−1, β0 = 0 rad m−1, w = 1 mm, δ = 0.75 mm (w � λ0, δ � λ0), dx = 108 mm,
dy = 108 mm, L = λ0 ≈ 54 mm, h = 1.25 mm and εr = 1 (air).

4. NUMERICAL RESULTS: APPLICATIONS

For the verification and validation of simulation results, we propose the global structure under
consideration, shown in Figure 4 and formed of finite (or infinite) periodic phased array planar
conducting dipoles with their own excitations (arbitrary located voltage sources). All elements are
bounded in a waveguide that the lateral walls are chosen among: (a) Perfect Electric boundaries, (b)
Perfect Magnetic boundaries, (c) Periodic boundaries with null phases shift, or (d) a combination of
these latter boundary conditions. The top and the bottom are respectively an open circuit and a ground
plane. The unit structure is composed by an elementary planar dipole (conducting narrow), shielded
in convenient periodic boundary conditions (rectangular dielectric waveguide). Also the top and the
bottom are an open circuit and a ground plane. The considered planar circuits are lossless.

Initially, a good numerical convergence study is achieved, which is based on calculating the input
impedance for each modal state using the Galerkin’s procedure: Figures 6 and 5 prove how the
convergence’s peaks are reached when the test functions describing the metal part attain 40 test functions
and when the levelled off modes appear from (300 × 300) basis functions.

This convergence study remains extended to other modal cases when (αp �= 0, βq �= 0).
Figure 7 represents the impedance Zin viewed by the excitation source calculated for the frequencies

between [0–20] GHz to justify the electromagnetic quantity in (27). The behavior of Zin as a function
of frequency allows determining the resonance frequency of the studied structure. These frequencies
are in good agreement with the known electromagnetic response corresponding to classical thin wire
dipoles. A good comparison with the ansoft HFSS is assured to validate our results. According to
Figure 7, we can show the accuracy of our method compared to the Ansoft HFSS through the resonance
frequency. For example, at the first resonance frequency f = 5.1 GHz, we find an accuracy value about
1.9%. However, it becomes less than 1% in the rest of frequencies (outside the resonance frequencies).
We think that the observed difference between the curves evaluated by the MoM-method and those
simulated by the Ansoft HFSS tools is due to the badly matched the punctual excitation source defined
by HFSS, in contrast to the planar source adopted by our method. Also, we have another manner
given to verify the boundary conditions focused on representing the current density of the proposed
structures.

Let’s start by looking to the unit structure, as a consequence of which, we consider
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method against the frequency at the convergence and compared by those obtained by HFSS (unit
cell): α0 = 0 rad m−1, β0 = 0 rad m−1, w = 1 mm, δ = 0.75 mm (w � λ0, δ � λ0), dx = 108 mm,
dy = 108 mm, L = λ0 ≈ 54 mm, h = 1.25 mm and εr = 1 (air).

Figures B1, B2, B3 and B4 to illustrate the current density evaluated by the MoM and obtained at the
convergence conforming to the theory with consideration of the boundary conditions.

Further, we can add that it is considerably possible to identify the whole structure with the same
manner that the current distributions in Figures B5, B6, B7, B8, B9, B10, B11, B12, B13 and B14
verify the boundary conditions where walls are periodic PPPP (with null phases shift) in the reference
structure.
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δ � λ0), dx = 108 mm, dy = 108 mm, L = λ0 ≈ 54 mm, h = 1.25 mm and εr = 1 (air).

For any proposed configuration (structure), we remark that the current distributions provided
respectively by the trial functions and the basis functions (guide’s modes) are identical and have the
same waves behaviour.

It is clear that the current distributions associated with the basis functions (guide’s modes), as
illustrated in Figures B1, B2, B5, B6, B7, B8, B9 and B10, prove that the Gibbs effects are practically
suppressed when the convergence level is assured. These oscillations resulting from truncation are due
to the Gibbs phenomenon. Because of this effect, we cannot write the boundary conditions in the
immediate neighbourhood of the metal-dielectric plane [24, 25].

Figure 8 represents the magnitude part’s numerical value of the input impedance behavior against
the frequency for different discrete spectral values corresponding to a finite case composed of (2 × 2)
elements in periodic array. It shows that the Floquet-input impedance considers the symmetry property
especially in our case when Tables 1 and 2 prove that Zin,αp,βq and Zin,α−p,β−q (or Zin,αp,βq and Zin,α−p,βq)
are conformed to [7]. Then the edge effects are neglected.

Figure 8 shows that the mutual couplings are strong between elements only at the resonances which
contain distinct values of modal impedances, whereas the rest of the frequencies are considered weak
coupling. The identical cells are not coupled when the spatial period (d ≥ λ0) and the values of Zin,α,β

are practically constant and independent of (α, β) because the source is not sensitive to the boundary
of each cell. Consequently, it appears that the [z̃αp , βq] matrix is diagonal with identical terms. But, in
our case to take into account mutual parameters in strong coupling, we should have a spatial periods
(dx ≤ λ0 and dy ≤ λ0) which permit the modal input impedances that depend on the modal states
(Floquet’s modes) to appear obvious with a remarkable values.

Following this study we now define Tables 1 and 2 that contain possible spectral values (e.g., Finite
structure) of the input impedance at f = 5.4 GHz

Tables 1 and 2 permit us to deduce the mutual coupling parameters by using spectral representation:
To validate this work, a good agreement with the spatial method is presented to calculate the scattering
coupling parameters. Practically the [S] matrix has the same values when elements are strongly or
weakly coupled as shown respectively in Tables 3, 4, 5 and 6.

The values of S11(db) are considered always poor due to the nature of the chosen motif which is
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Table 1. Spectral input impedance at f = 5.4 GHz (finite case): w = 1 mm, δ = 0.75 mm (w � λ0,
δ � λ0), dx = dy ≈ 2λ0 ≈ 108 mm, L = λ0 ≈ 54 mm, (Nx × Ny) = (2 × 2) elements, h = 1.25 mm and
εr = 1 (air).

(p, q) (−1,−1) (0,−1) (−1,0) (0,0)

(αp, βq)(radm−1, radm−1) (
−2π

Nxdx
,
−2π

Nydy
) (

−2π

Nxdx
, 0) (0,

−2π

Nydy
) (0, 0)

Zin(αp, βq)(Ω) 1588.4056–170.6839i 2520.3030–2859.3878i 1175.9366–590.0394i 609.3503–1737.1932i

Table 2. Spectral input impedance at f = 5.4 GHz (finite case): w = 1mm, δ = 0.75 mm (w � λ0,
δ � λ0), dx = dy ≈ 2λ0 ≈ 108 mm, L = λ0 ≈ 54 mm, (Nx × Ny) = (3 × 3) elements, h = 1.25 mm and
εr = 1 (air).

(p, q) (−1,−1) (−1, 0) (−1, +1) (0,−1)

(αp, βq)(radm−1, radm−1) (
−2π

Nxdx
,
−2π

Nydy
) (

−2π

Nxdx
, 0) (

−2π

Nxdx
,

+2π

Nydy
) (0,

−2π

Nydy
)

Zin(αp, βq)(Ω) 1356.2119–491.7912i 433.3115–758.7562i 1356.2119–491.7912i 1316.3299–2393.7796i

↪→ (0, 0) (0,+1) (+1,−1) (+1,0) (+1,+1)

↪→ (0, 0) (0,
+2π

Nydy
) (

+2π

Nxdx
,
−2π

Nydy
) (

+2π

Nxdx
, 0) (

+2π

Nxdx
,

+2π

Nydy
)

609.3503–1737.1932i 1316.3299–2393.7796i 1356.2119–491.7912i 433.3115–758.7562i 1356.2119–491.7912i

Table 3. Mutual coupling parameters Sis(db) between the array elements obtained using spectral
formulation (or modal representation based on Floquet’s modes) at f = 5.4 GHz: w = 1 mm,
δ = 0.75 mm (w � λ0, δ � λ0), dx = dy ≈ 2λ0 ≈ 108 mm, L = λ0 ≈ 54 mm, (Nx × Ny) = (2 × 2)
elements, h = 1.25 mm, Zc = 50 Ω and εr = 1 (air).

−0.3581 −32.4441 −36.9144 −55.3990

−32.4441 −0.3581 −55.3990 −36.9144

−36.9144 −55.3990 −0.3581 −32.4441

−55.3990 −36.9144 −32.4441 −0.3581

Table 4. Mutual coupling parameters Sis(db) between the array elements obtained using spatial
formulation at f = 5.4 GHz and (α0 = 0 rad m−1, β0 = 0 rad m−1): w = 1mm, δ = 0.75 mm (w � λ0,
δ � λ0), dx = dy ≈ 2λ0 ≈ 108 mm, a = 216 mm, b = 216 mm, L = λ0 ≈ 54 mm, (Nx × Ny) = (2 × 2)
elements, h = 1.25 mm, Zc = 50 Ω and εr = 1 (air).

−0.2832 −36.1374 −50.9319 −55.8204

−36.1374 −0.2832 −55.8204 −50.9319

−50.9319 −55.8204 −0.2832 −36.1374

−55.8204 −50.9319 −36.1374 −0.2832

attached to (or placed near) the ground plane that permits to emit a maximum of radiating power when
the transfer power between elements is assured.

Following Tables 1 and 2, considering the (α, β) values, Floquet harmonics may appear as an
evanescent or propagating waves [22] which engender a scan blindness phenomena. This explains why
we need to draw the Floquet modes and surface wave mode circles [7].
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Table 5. Mutual coupling parameters Sis(db) between the center element and other elements obtained
using spectral formulation (or modal representation based on Floquet’s modes) at f = 5.4 GHz:
w = 1 mm, δ = 0.75 mm (w � λ0, δ � λ0), dx = dy ≈ 2λ0 ≈ 108 mm, L = λ0 ≈ 54 mm,
(Nx × Ny) = (3 × 3) elements, h = 1.25 mm, Zc = 50 Ω and εr = 1 (air).

−0.4142 −34.8885 −34.8885 −36.5630 −44.5990 −44.5990 −36.5630 −44.5990 −44.5990

−34.8885 −0.4142 −34.8885 −44.5990 −36.5630 −44.5990 −44.5990 −36.5630 −44.5990

−34.8885 −34.8885 −0.4142 −44.5990 −44.5990 −36.5630 −44.5990 −44.5990 −36.5630

−36.5630 −44.5990 −44.5990 −0.4142 −34.8885 −34.8885 −36.5630 −44.5990 −44.5990

−44.5990 −36.5630 −44.5990 −34.8885
�

�

�

�
−0.4142 −34.8885 −44.5990 −36.5630 −44.5990

−44.5990 −44.5990 −36.5630 −34.8885 −34.8885 −0.4142 −44.5990 −44.5990 −36.5630

−36.5630 −44.5990 −44.5990 −36.5630 −44.5990 −44.5990 −0.4142 −34.8885 −34.8885

−44.5990 −36.5630 −44.5990 −44.5990 −36.5630 −44.5990 −34.8885 −0.4142 −34.8885

−44.5990 −44.5990 −36.5630 −44.5990 −44.5990 −36.5630 −34.8885 −34.8885 −0.4142

Table 6. Mutual coupling parameters Sis(db) between the center element and other elements obtained
using spatial formulation at f = 5.4 GHz and (α0 = 0 rad m−1, β0 = 0 rad m−1): w = 1 mm,
δ = 0.75 mm (w � λ0, δ � λ0), dx = dy ≈ 2λ0 ≈ 108 mm, a = 324 mm, b = 324 mm, L = λ0 ≈ 54 mm,
(Nx × Ny) = (3 × 3) elements, h = 1.25 mm, Zc = 50 Ω and εr = 1 (air).

−0.3081 −41.3058 −41.3058 −40.6364 −43.1792 −43.1792 −40.6364 −43.1792 −43.1792

−41.3058 −0.3081 −41.3058 −43.1792 −40.6364 −43.1792 −43.1792 −40.6364 −43.1792

−41.3058 −41.3058 −0.3081 −43.1792 −43.1792 −40.6364 −43.1792 −43.1792 −40.6364

−40.6364 −43.1792 −43.1792 −0.3081 −41.3058 −41.3058 −40.6364 −43.1792 −43.1792

−43.1792 −40.6364 −43.1792 −41.3058
�

�

�

�
−0.3081 −41.3058 −43.1792 −40.6364 −43.1792

−43.1792 −43.1792 −40.6364 −41.3058 −41.3058 −0.3081 −43.1792 −43.1792 −40.6364

−40.6364 −43.1792 −43.1792 −40.6364 −43.1792 −43.1792 −0.3081 −41.3058 −41.3058

−43.1792 −40.6364 −43.1792 −43.1792 −40.6364 −43.1792 −41.3058 −0.3081 −41.3058

−43.1792 −43.1792 −40.6364 −43.1792 −43.1792 −40.6364 −41.3058 −41.3058 −0.3081

5. STORAGE MEMORY AND TIME CONSUMING

In this section, we evaluate the Floquet modal formulation compared to the old spatial formulation
in requirement memory cost and reducing computational time. To compute the mutual coupling
parameters, as we know the used MoM-method necessitates a (P×P ) matrix inversion, with P being the
number of the test functions (descretization functions). In fact, the storage memory and the operation
number of the conventional MoM depend on P as:

Storage ≈ O(P 2) (39)
Noperation ≈ O(P 3)

As we have always explained in our past work [1], we show how Floquet analysis is more important
in terms of consuming time and memory resources. Moreover, the reduction of the unknowns’s number
results in minimizing the demanded computational resources. Furthermore, we denote TMoM as the
total time required by the spatial formulation to calculate the impedance matrix (mutual impedance).

TMoM = M((NxNy)P )2(Ts + Top) +
2
3
((NxNy)P )3Top + δ (40)

The term M((NxNy)P )2(Ts + Top) represents the needed time for matrix filling.
The term 2

3((NxNy)P )3 is associated with the impedance matrix inversion.
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To compute the mutual coupling using the Fourier transformations and the Floquet analysis, we
can write the total needed time by using the modal formulation as:

TMoM = M(NxNy)(P )2(Ts + Top) +
2
3
(NxNy)(P )3Top + δ (41)

where M is the total guide’s modes number, (NxNy) the number of printed dipoles, Ts the mean required
time to compute a scalar product, Top the mean needed time for an elementary operation (multiplication
or addition), and δ a term which expresses the neglected residue including, for example, the time for
filling matrix.
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Figure 9. Computational cost versus the number of unknowns (2D-structure).

According to this study, the proposed formulations are applied to a (2 × 2) elements array: From
Figure 9, we can see that the increase of the unknowns number will produce a great increase of the
operation number by using the spatial formulation. So, the manipulated matrix requires a huge memory
resources when unknowns grow. Whereas, in modal formulation these memory resources and operation
number can be minimized significantly. As a result, the Floquet analysis with the modal representation
is more adequate to study the large finite array which can be extended to an infinite array [1, 12, 26].

6. CONCLUSION

In this paper we present a new modal approach for the fast and efficient calculation of mutual coupling in
planar periodic structures. It is important to show that the modal decomposition to study and analyze
finite and infinite periodic structures successfully removes the complexity of the proposed problem.
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For example, the employed formalism based on Floquet analysis reduces the electromagnetic
calculation on one unit cell, in contrast to old methods to study the wave behavior of the whole
structure. This allows an easier computation of the scattering matrix, by using a simple elegant Fourier
Transformation.

The essential advantage of this new modal analysis is reducing computing time and memory
requirement which are roughly proportional to the square or cube of the number of array elements.

Moreover, this original way permits to study different periodic and aperiodic configurations with
distinct sources amplitudes.

In conclusion, we would like to highlight that Floquet analysis is needed to study many novel
applications that open various areas of research.

APPENDIX A.

Matlab’s code to express the drawn 1-D Fourier Matrix and 2-D Fourier Matrix according to the matrix-
vector notation (with respect to their fundamental properties and the used indices):

(i) 1-D Fourier Matrix:

(ii) 2-D Fourier Matrix (see the next page):

APPENDIX B.

New basis functions (guide’s modes) combine periodic walls with magnetic and electric walls to study
1-D periodic planar structure:

(i) Electric-Periodic boundary conditions (EPEP): (see [1])

{ |TEmn,α〉
m ∈ Z
n ∈ N∗

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kyn√
k2

xm,α + k2
yn

√
2

dL

exp(+j(kxm,αx)) sin(kyny)

j
kxm,α√

k2
xm,α + k2

yn

√
2

dL

exp(+j(kxm,αx)) cos(kyny)

(B1)

{ |TEm0,α〉
m ∈ Z∗
n = 0

}
=

⎧⎨
⎩

0

j

√
1

dL
exp(+j(kxm,αx))

(B2)
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{ |TEMα〉
m = 0
n = 0

}
=

{ |TE00,α〉
m = 0
n = 0

}
=

⎧⎨
⎩

0

j

√
1

dL
exp(+j(αx))

(B3)

{ |TMmn,α〉
m ∈ Z
n ∈ N∗

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−kxm,α√
k2

xm,α + k2
yn

√
2

dL

exp(+j(kxm,αx)) sin(kyny)

j
kyn√

k2
xm,α + k2

yn

√
2

dL

exp(+j(kxm,αx)) cos(kyny)

(B4)

|TMm0,α〉 and |TM00,α〉 do not exist.
kxm,α = 2mπ

d + α and kyn = nπ
L are wavenumbers.

(ii) Magnetic-Periodic boundary conditions (MPMP): (see [23])

{ |TEmn,α〉
m ∈ Z
n ∈ N∗

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kyn√
k2

xm,α + k2
yn

√
2

dL

exp(+j(kxm,αx)) cos(kyny)

−j
kxm,α√

k2
xm,α + k2

yn

√
2

dL

exp(+j(kxm,αx)) sin(kyny)

(B5)
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Figure B1. 2-D representation of the current density ( A
m) for the unit full-wavelength planar dipole

described with the basis functions (guide’s modes) at f = 5.4 GHz and (α0 = 0 rad m−1, β0 = 0 rad
m−1): w = 1mm, δ = 0.75 mm (w � λ0, δ � λ0), dx = dy ≈ 2λ0 ≈ 108 mm, L = λ0 ≈ 54 mm,
h = 1.25 mm and εr = 1 (air).

Figure B2. 2-D representation of the current density ( A
m) for the unit half-wavelength planar dipole

described with the basis functions (guide’s modes) at f = 5.4 GHz and (α0 = 0 rad m−1, β0 = 0 rad
m−1): w = 1 mm, δ = 0.75 mm (w � λ0, δ � λ0), dx = dy ≈ 2λ0 ≈ 108 mm, L = λ0

2 ≈ 27 mm,
h = 1.25 mm and εr = 1 (air).

{ |TMmn,α〉
m ∈ Z
n ∈ N∗

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−kxm,α√
k2

xm,α + k2
yn

√
2

dL

exp(+j(kxm,αx)) cos(kyny)

−j
kyn√

k2
xm,α + k2

yn

√
2

dL

exp(+j(kxm,αx)) sin(kyny)

(B6)

{ |TMm0,α〉
m ∈ Z∗
n = 0

}
=

⎧⎨
⎩ −

√
1

dL
exp(+j(kxm,αx))

0
(B7)
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Figure B3. 2-D representation of the current density ( A
m) for the unit full-wavelength planar dipole

described with the trial functions at f = 5.4 GHz and (α0 = 0 rad m−1, β0 = 0 rad m−1): w = 1 mm,
δ = 0.75 mm (w � λ0, δ � λ0), dx = dy ≈ 2λ0 ≈ 108 mm, L = λ0 ≈ 54 mm, h = 1.25 mm and εr = 1
(air).

Figure B4. 2-D representation of the current density ( A
m) for the unit half-wavelength planar dipole

described with the trial functions at f = 5.4 GHz and (α0 = 0 rad m−1, β0 = 0 rad m−1): w = 1 mm,
δ = 0.75 mm (w � λ0, δ � λ0), dx = dy ≈ 2λ0 ≈ 108 mm, L = λ0

2 ≈ 27 mm, h = 1.25 mm and εr = 1
(air).

Figure B5. 2-D representation of the current density ( A
m) for (2 × 2) phased half-wavelength planar

dipoles described with the basis functions (guide’s modes) at f = 5.4 GHz, α0 = 0 rad m−1, β0 = 0 rad
m−1, w = 1 mm, δ = 0.75 mm (w � λ0, δ � λ0), dx = 108 mm, dy = 108 mm, L = λ0

2 ≈ 27 mm,
h = 1.25 mm and εr = 1 (air).
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Figure B6. 2-D representation of the current density ( A
m) for (2 × 2) phased full-wavelength planar

dipoles described with the basis functions (guide’s modes) at f = 5.4 GHz, α0 = 0 rad m−1, β0 = 0 rad
m−1, w = 1mm, δ = 0.75 mm (w � λ0, δ � λ0), dx = 108 mm, dy = 108 mm, L = λ0 ≈ 54 mm,
h = 1.25 mm and εr = 1 (air).

Figure B7. 2-D representation of the current density ( A
m) for (3 × 2) phased half-wavelength planar

dipoles described with the basis functions (guide’s modes) at f = 5.4 GHz, α0 = 0 rad m−1, β0 = 0 rad
m−1, w = 1 mm, δ = 0.75 mm (w � λ0, δ � λ0), dx = 108 mm, dy = 108 mm, L = λ0

2 ≈ 27 mm,
h = 1.25 mm and εr = 1 (air).

Figure B8. 2-D representation of the current density ( A
m) for (3 × 2) phased full-wavelength planar

dipoles described with the basis functions (guide’s modes) at f = 5.4 GHz, α0 = 0 rad m−1, β0 = 0 rad
m−1, w = 1mm, δ = 0.75 mm (w � λ0, δ � λ0), dx = 108 mm, dy = 108 mm, L = λ0 ≈ 54 mm,
h = 1.25 mm and εr = 1 (air).
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Figure B9. 2-D representation of the current density ( A
m) for (5 × 1) phased full-wavelength planar

dipoles described with the basis functions (guide’s modes) at f = 5.4 GHz, α0 = 0 rad m−1, β0 = 0 rad
m−1, w = 1mm, δ = 0.75 mm (w � λ0, δ � λ0), dx = 108 mm, dy = 108 mm, L = λ0 ≈ 54 mm,
h = 1.25 mm and εr = 1 (air).

Figure B10. 2-D representation of the current density ( A
m) for (5 × 1) phased half-wavelength planar

dipoles described with the basis functions (guide’s modes) at f = 5.4 GHz, α0 = 0 rad m−1, β0 = 0 rad
m−1, w = 1 mm, δ = 0.75 mm (w � λ0, δ � λ0), dx = 108 mm, dy = 108 mm, L = λ0

2 ≈ 27 mm,
h = 1.25 mm and εr = 1 (air).

Figure B11. 2-D representation of the current density ( A
m) for (2 × 2) phased half-wavelength planar

dipoles described with the trial functions at f = 5.4 GHz, α0 = 0 rad m−1, β0 = 0 rad m−1, w = 1 mm,
δ = 0.75 mm (w � λ0, δ � λ0), dx = 108 mm, dy = 108 mm, L = λ0

2 ≈ 27 mm, h = 1.25 mm and εr = 1
(air).
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Figure B12. 2-D representation of the current density ( A
m) for (3 × 2) phased half-wavelength planar

dipoles described with the trial functions at f = 5.4 GHz, α0 = 0 rad m−1, β0 = 0 rad m−1, w = 1 mm,
δ = 0.75 mm (w � λ0, δ � λ0), dx = 108 mm, dy = 108 mm, L = λ0

2 ≈ 27 mm, h = 1.25 mm and εr = 1
(air).

Figure B13. 2-D representation of the current density ( A
m) for (3 × 2) phased full-wavelength planar

dipoles described with the trial functions at f = 5.4 GHz, α0 = 0 rad m−1, β0 = 0 rad m−1, w = 1 mm,
δ = 0.75 mm (w � λ0, δ � λ0), dx = 108 mm, dy = 108 mm, L = λ0 ≈ 54 mm, h = 1.25 mm and εr = 1
(air).

Figure B14. 2-D representation of the current density ( A
m) for (5 × 1) phased half-wavelength planar

dipoles described with the trial functions at f = 5.4 GHz, α0 = 0 rad m−1, β0 = 0 rad m−1, w = 1 mm,
δ = 0.75 mm (w � λ0, δ � λ0), dx = 108 mm, dy = 108 mm, L = λ0

2 ≈ 27 mm, h = 1.25 mm and εr = 1
(air).
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{ |TEMα〉
m = 0
n = 0

}
=

{ |TM00,α〉
m = 0
n = 0

}
=

⎧⎨
⎩ −

√
1

dL
exp(+j(αx))

0
(B8)

The |TEm0,α〉 and |TE00,α〉 do not exist.
With kxm,α = 2mπ

d + α and kyn = nπ
L are wavenumbers.

(iii) Electric-Periodic-Magnetic-Periodic boundary conditions (EPMP):

{ |TEmn,α〉
m ∈ Z
n ∈ N

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kyn√
k2

xm,α + k2
yn

√
2

dL

exp(+j(kxm,αx)) cos(kyny)

−j
kxm,α√

k2
xm,α + k2

yn

√
2

dL

exp(+j(kxm,αx)) sin(kyny)

(B9)

{ |TMmn,α〉
m ∈ Z
n ∈ N

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−kxm,α√
k2

xm,α + k2
yn

√
2

dL

exp(+j(kxm,αx)) cos(kyny)

−j
kyn√

k2
xm,α + k2

yn

√
2

dL

exp(+j(kxm,αx)) sin(kyny)

(B10)

With kxm,α = 2mπ
d + α and kyn = ( 2n+1

2
)π

L are wavenumbers.
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