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Abstract—An eigenanalysis-based technique is presented for the study and design of large complicated
closed cavities and particularly Reverberation Chambers, including conductor and dielectric material
losses. Two different numerical approaches are exploited. First, a straightforward approach is adopted
where the finite walls conductivity is incorporated into the Finite Element Method (FEM) formulation
through the Leontovich Impedance boundary conditions. The resulting eigenproblem is linearized
through an eigenvalue transformation and solved using the Arnoldi algorithm. To address the excessive
computational requirements of this approach and to achieve a fine mesh ensuring convergence, a novel
approach is adopted. Within this, a linear eigenvalue problem is formulated and solved assuming all
metallic structures as perfect electric conductors (PEC). In turn, the resulting eigenfunctions are post-
processed within the Leontovich boundary condition for the calculation of the metals finite conductivity
losses. Mode stirrer design guidelines are setup based on the eigenfunction characteristics. Both
numerical eigenanalysis techniques are validated against an analytical solution for the empty cavity
and a reverberation chamber simulated by a commercial FEM simulator. A series of classical mode
stirrers are studied to verify the design guidelines, and an improved mode stirrer is developed.

1. INTRODUCTION AND MOTIVATION

The interest in the analysis and design of electrically large cavities is renewed during the last years,
since interesting applications in reverberation chambers and auto-focused microwave cavities have
been developed. However, all closed microwave cavities operate at their resonances and a small
frequency band around them, while according to International Electrotechnical Commission (IEC) [1],
a reverberation chamber should cover continuously a very wide frequency band from about 100 MHz
to several GHz. Furthermore, the field distribution inside the chamber and especially over the region
of the Equipment Under Test (EUT) should be homogeneous. Besides this, the use of reverberation
chamber for electromagnetic compatibility testing and particularly for multiple-input-multiple-output
(MIMO) antennas measurements constitute a very interesting and attractive application [2, 3].

As noted in [4] and became a common understanding, a critical aspect is the study of the mode
stirrer’s characteristics, a subject also explored in this work. To accomplish the desirable features one
or more rotating stirrers are introduced inside the shielded enclosure. The role of the mode stirrer is to
efficiently perturb-“stir” the resonant modes inside the chamber by varying the boundary conditions.
Mode stirrers have been used for many years and there is also some research directed to the optimization
of their design from Clegg et al. [5]. In the current work the stirrer’s effects on the operation of the
reverberation chamber is studied, where different mode stirrers are introduced and they are simulated
varying their shape and size seeking for the appropriate one, according to IEC conditions.
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Most of the effort in the analysis and design of reverberation chambers is directed toward the
solution of the deterministic electromagnetic problem (in the presence of specific sources). Method of
Moments (MoM) is one of the most frequently used techniques for this type of problem in its simple
form or extended by other techniques in a hybrid scheme [6–16]. Maybe the most complete work in
this area is that of Bruns’ [6, 7]. In [8–13], MoM is used with the aid of several techniques (spectral
domain techniques [8], discrete singular convolution in a two dimensional analysis [9, 10], finite element
boundary integral technique [12], MoM accelerated with Ewald and adaptive integral method [13]).
However, in all these cases, the Perfect Electric Conductor (PEC) cavity Green’s function is adopted,
which is proved to be inaccurate, since it fails to account for the walls finite conductivity losses, neither
can produce results for large objects in the cavity, and it is unable to model in detail a reverberation
chambers (cables, screws, etc.). Moreover, the analysis of the stirrers in these works is simplified and is
far from a realistic model, with the exception of [11]. Zhao introduces an integral equation accelerated
by the Multi-Level Fast Multipole Method (MLFMM) in [14], but it is proved to be inappropriate for
cavities since the specific technique is appropriate for far field, while the reverberation chamber requires
near field. Two interesting works elaborate on the stirrer modeling [15, 16]. In [15], a 3D position stirring
is shown, and a study of a simplified chamber is developed. Latter in [16], a simulation procedure is
developed to show the relationship between the efficiency of stirring and the stirrer volume.

Further work in the simulation area of the reverberation chamber is based on a Finite Difference
Time Domain (FDTD) analysis [17–20]. A full 3D simulation based on FDTD for independent positions
of the stirrers has been established in [18]. In this work the simulation accounts for a large periodic
antenna used to excite the chamber, and it presents the 3D simulation of the large reverberation chamber
to reveal the independent positions of the stirrer. However, since a FDTD analysis is used in order to
save computer resources maintaining the accuracy of the results, the introduction of unrealistically large
losses is demanded. Additionally, FDTD techniques were unable to explicitly model the metallic walls
finite conductivity, and the related losses are accounted through a controversial approximation assuming
equivalent air volume Joule losses by a conductivity of σ = 10−5 S/m. Moreover, the high quality factor
of the chamber demands a long time range to be investigated. Specifically as referred in [18] in the time
domain the simulation needs about 300, 000 times iterations, whereas in the frequency domain it needs a
frequency step less than 1MHz for the same investigation band. The eigenvalue analysis is superior from
this point of view, since all the supported frequencies can be computed at once. A quite interesting work
is [20] but only from the numerical point of view, since for the reverberation chamber analysis neither
the efficiency of the stirrer nor the antenna is studied. Besides, the above FDTD adopted “staircase
approximation” to model the stirrer paddles at its different positions-orientations, e.g., [18]. But it is
well known that poor modeling of boundaries may cause significant shifts in eigenfrequencies, or even
create pseudo modes that do not exist.

As a means to handle these problems it is herein proposed to employ a finite element based
eigenanalysis approach, where the cavity resonant frequencies and corresponding quality factors
comprise complex eigenvalues to be sought. Since eigenfunctions depend on the geometry and material
loading but are independent of source type or location, the eigenanalysis can be carried out only once
on the discretized geometry. In turn, only a small area around the specific source can be discretized,
while an eigenfunction expansion can be utilized for the solution of the remaining large domain. The
present effort constitutes the first step, namely eigenanalysis, toward this ultimate task. Our intention
is to establish the FEM based eigenanalysis as a tool for the study of large cavities and the design
and optimization of devices within that, especially mode stirrers, rather than an exhaustive analysis of
reverberation chambers. The exploitation of eigenanalysis tools for specific design and optimization is
left as a future task for any interested researcher.

Eigenanalysis of reverberation chambers has been studied in [21], and this is the most similar work
to the one proposed herein, since a Finite Element Method (FEM) approach is also adopted. However,
the work of Orjubin et al. [21] is restricted to the study of a reverberation chamber with the existence
of only one non-realistic mode stirrer. Moreover, the frequency range concerns only the first modes
of the RC, while a reverberation chamber is an overmoded cavity operating with more than 60 modes
(usually 100–200 modes simultaneously exist). Finally in [21], an eigenanalysis is established but only
for the linear case where neither metallic nor volume material losses are taken into account. In [22], the
research group of Orjubin et al. have developed a Modal Distribution Analysis based on FEM. There a
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wave chaos theory is used to study a modeled reverberation chamber, and the first 200 modes at a given
stirrer position are determined. However, the mode stirrer in this work is again non realistic, since it
consists of only two orthogonal paddles. Moreover, in [22] there is no consideration about the quality
factor and the bandwidth of the excited modes.

There are a few attempts, e.g., [23] including our previous work [24] toward the employment of
an eigenanalysis for the study and design of closed cavities, though in these works all cavity losses
have been ignored. In our next work [25], cavity losses were taken into consideration, but this work
presented only the main idea of how to treat large cavities. According to [2], the chamber amplitude
calibration may be deduced from the current density flowing on its walls. In turn, these currents
can be accurately obtained from the eigenvectors of the cavity when conductor losses are taken into
account. Quality factor depends on both the dielectric losses of any object inside the cavity and the
ohmic losses due to the finite wall’s conductivity, and both of them are taken into account herein. The
importance of the eigenanalysis for the study and design of reverberation chambers and particularly
the required mode stirring is clearly identified by Rosengren and Kildal in their trend toward MIMO
antenna measurements [4]. They explicitly stated that during their experimental work they experienced
a large inaccuracy of measurements in the sub-band of 900–910 MHz. In turn, they found that this was
due to a “hole in the mode distribution” where no mode was excited in this sub-band. Additionally,
they explain that the “relative measurement accuracy goes as 1/

√
Nm, where Nm is the number of

modes in each sub-band”. Thus they conclude that “much larger frequency stirring is needed for
uniform mode distribution with frequency” and hence uniform and acceptable measurements accuracy.
These important observations clearly justify the necessity of the eigenanalysis and more importantly
its exploitation in the mode stirrer analysis and design to achieve uniform frequency coverage. The
original contribution of the present work falls exactly within this scope. In the work presented herein,
an eigenanalysis is proposed where any losses are taken into account (finite conductivity of the metallic
parts and/or losses of any material). Moreover, accounting for the mode stirrer study, a series of
realistic models is introduced, and a full analysis of their efficiency and contribution in a wide frequency
range (150 modes are determined) is analyzed. Furthermore, each introduced mode stirrer is rotated to
observe its total functionality in the test area.

The finite element method (FEM) based on tetrahedral edge elements is adopted for the accurate
formulation of the cavity eigenproblem. Dielectric losses are accounted through a complex permittivity
(likewise any magnetic material losses through a complex permeability), while our first attempt to
include finite conductivity losses from metallic walls and objects (mode stirrer, antenna scatterer,
metallic supporting table) was toward a straightforward incorporation of the Leontovich impedance
boundary conditions. This approach yields a non-linear, fourth-order polynomial eigenvalue problem.
In order to solve this in principle non-linear eigenvalue problem, a linearization technique is applied.
Indeed the straightforward “Leontovich approach” is proved to offer satisfactory results provided that
a mesh size finer than about λ/7 is utilized for first-order edge elements providing a deviation of less
than 4% in the resonant frequency (with respect to the analytical reference solution) and about 6% for
the higher order modes quality factors. However, when complicated shaped mode stirrers with inclined
blades are introduced in the cavity, a finer discretization reaching at least 500, 000 elements (half a
million) is found necessary to ensure the same (or better) accuracy. In turn, the computer resources
offered by a workstation (e.g., 64 core CPU with 256 GB of memory) were not adequate, and a computer
cluster or graphics parallel processors (GPUs) should be employed [26]. But, instead of working toward
this brute force direction, a more “clever” novel approach is devised.

Explicitly, the key idea was “implement the classical analytical approach based on PEC linear
eigenproblem to estimate the finite conductivity metallic losses”. We have already published the idea
itself in [27], while herein this methodology is exploited in the study of practical electrical large closed
structures. An eigenproblem based on the solution of the electric and/or magnetic field wave equation
is formulated. Both approaches are implemented and are proved to be robust providing an accuracy
better than 4% fulfilling all practical necessities. Besides that, these PEC approaches were able to
simulate on a simple computer all chambers including the most complicated mode stirrers, supporting
tables and EUT models.

Mode stirrer design guidelines are also devised to be used as a rule of thumb. Explicitly, the field
uniformity requirements as set by IEC [1] can be reliably fulfilled by rotating mode stirrers of appropriate
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shape. According to Clegg et al. [5], although mode stirrers are used for many years, there has been
very little research on their modeling and particularly into their shape optimization. The aims setup
when mode stirrers are utilized is to transform the chamber discrete operating frequency spectrum (field
exists only within a small bandwidth around each resonance) to a “continuous” as far as possible, along
with the achievement of energy and polarization uniformity over the testing area. Working toward this
direction, a step-by-step approach is followed by which the proposed “design guidelines” are verified,
where we start from a simple shaped mode-stirrer and move toward more complicated geometries. These
discrete steps are defined so that each one verifies one of the guidelines, while finally all of them are
combined. Note that the present effort is not directed toward the exhaustive design of a particular
reverberation chamber. The scope is rather to prove how an eigenanalysis tool can serve this purpose
focusing on the mode stirrers and encourage Engineers to exploit eigenanalysis tools in the study and
design of arbitrary loaded large cavities or chambers.

2. FORMULATIONS AND EQUATIONS

The simplified topology of the problem shown in Figure 1 is considered at the first steps. It is a closed
metallic cavity containing an antenna, the EUT and a metallic mode stirrer. All the cavity’s walls, the
stirrer’s the antenna’s and the EUT’s walls are assumed to have finite conductivity.

The whole structure including the objects’ perturbing the cavity is simulated using FEM,
employing edge elements. Aiming at a general formulation, an arbitrarily shaped three-dimensional
computational domain V inhomogeneously loaded with an in general anisotropic material is assumed.
Its electromagnetic behavior can be characterized by the electric field vector wave equation, which is
described with the aid of tensor permittivity (¯̄εr) and permeability (¯̄μr) and in the absence of any
exciting source, reads:

∇̄× ¯̄μ−1
r ·∇̄×Ē − k2

0
¯̄εrĒ = 0 (1)

Applying a standard Galerkin procedure, the following weak formulation can be derived, e.g., [28]:∫∫∫
V

(∇̄ × T̄ )·¯̄μ−1
r ·(∇̄×Ē)dV − k2

0

∫∫∫
V

T̄ · (¯̄εrĒ)dV − jk0

∫∫
S

T̄ · (n̂ × H̄)dS = 0 (2)

where T̄ is the test function and is chosen according to Galerkin’s procedure to be equal to the function
that describes the electric field. Moreover, since the solution domain involves vector fields, the test
functions are vector functions, and the corresponding elements are the popular set of “edge elements”.
A full description of the form of these functions used herein can be found in any technical book of
finite elements for electromagnetics, e.g., [28, Chapter 2.5.2.1] or in [29]. V defines the integration at
the volume domain and S the integration over the surfaces of the structure. The surface integral is

Figure 1. A simplified reverberation chamber model comprised of an inhomogeneously loaded cavity
with the antenna the EUT and the metallic mode stirrer.
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defined over the surface enclosing the solution domain (cavity walls) as well as on the surface of any
object existing within the cavity. It is through this integral that general impedance boundary conditions
are enforced within the FEM formalism. Specifically this integral serves to introduce conductor losses,
according to the Leontovich boundary condition:

n̂k ×
(
n̂k × Ē

)
= ZS

(
n̂k × H̄

)
(3)

ZS is the surface impedance of the form [28]:

ZS = (1 + j)
√

ωμ0

2σ
= (1 + j)

√
k0

√
μ0c

2σ
(4)

where the metallic walls are considered non-magnetic with μ = μ0, σ their conductivity, and c the speed
of light.

Substituting condition (3) in the formulation and taking into consideration the fact that the inward
unit vector is n̂k = −n̂, Eq. (2) becomes:∫∫∫

V

(∇̄ × T̄
) ·¯̄μ−1

r · (∇̄×Ē
)
dV − k2

0

∫∫∫
V

T̄ · (¯̄εrĒ
)
dV − jk0Z0

∫∫
S

1
ZS

T̄ · [n̂ × (
n̂ × Ē

)]
dS = 0 (5)

The resulting system of equations is in turn formulated into a nonlinear generalized eigenvalue
problem by separating the terms involving the free space wavenumber k0 (or the circular frequency
ω, as k0 = ω/c). The final matrix form can be formulated as a nonlinear eigenvalue problem for the
unknown resonant wavenumber (eigenvalues k0) as:

[Sel][e] − k2
0 [Tel][e] − j

√
k0[Lel][e] = 0 (6)

[Sel] =
∫∫∫

V

(∇̄ × T̄
) · ¯̄μ−1

r · (∇̄×Ē
)
dV (7)

[Tel] =
∫∫∫

V
T̄ · (¯̄εrĒ

)
dV (8)

[Lel] = Z0

∫∫
S

1
ZS

T̄ · [n̂ × (
n̂ × Ē

)]
dS (9)

where [e] is a vector composed of the electric field values at the middle of element’s edges.
The polynomial eigenvalue problem obtained above in (6) can be solved using symmetric or

companion linearization, described next in Subsection 2.3.
From a physical point of view, the reverberation chamber is a closed electromagnetic cavity

containing a number of relatively small objects which perturb its characteristics. Specifically as a
closed cavity, electromagnetic field inside it exists only at discrete resonant frequencies and at a small
bandwidth around them which is defined by each mode quality factor. The presence of the static objects
(antenna and EUT) causes a shift of this discrete spectrum. Additionally, the purpose of a rotating
mode stirrer is to “spread these frequencies” by producing different shift for each angular orientation
so as to cover almost continuously the whole chamber operating frequency band. Simultaneously, the
variation of these resonant frequencies is accompanied by a change in their modal field (eigenfunctions)
distributions, which aims at providing a field as uniform as possible over the test area. Obviously, the
reference structure for both the resonant frequencies and their eigenfunctions is the empty rectangular
cavity. Thus it is useful to present a short review of its characteristics along with the related quality
factors. Based on this analysis, the guidelines for the mode stirrer design and an efficient way of
calculating the quality factor of a simulated practical cavity (even of arbitrary shape) will be given
next.

2.1. Modal Fields of PEC Rectangular Cavity

The modal fields of a rectangular cavity with perfect electric walls (PEC) is well known through an
analytical solution by the separation of variables. As it is well known for a homogeneously filled (or
empty) cavity, the TE and TM modes are uncoupled and constitute an orthogonal basis which is
orthonormal in the absence of mode degeneration, or when each mode has a unique resonant frequency,
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e.g., Lehman [30]. The electromagnetic field generated by any source can be expanded into a sum of
these modal fields. The modal field expressions for a uniformly filled rectangular cavity are available in
classical textbooks, e.g., [31, 32] and are also given in Appendix A in a convenient form.

The dispersion condition resulting from the separation of variables is:

k2 = k2
x + k2

y + k2
z =

(mπ

a

)2
+

(nπ

b

)2
+

(
lπ

d

)2

= ω2με (10)

where m, n, l = 0, 1, 2, . . ., but m �= 0, n �= 0 for TMmnl modes and l �= 0 for TEmnl modes. The
resonant frequency of the cavity can be easily calculated:

frmnl
=

c

2π
√

μrεr

√(mπ

a

)2
+

(nπ

b

)2
+

(
lπ

d

)2

(11)

The solution above is satisfied only in the case of the empty PEC cavity or in the case that is
homogeneously filled with an isotropic material. Even though the PEC wall analytical expressions are
very useful, ignoring losses for an empty cavity is equivalent to presume an infinite quality factor or
zero modal bandwidth, which is far from the practical situation. However, an approximate evaluation of
losses due to finite conductivity walls is classically possible and this will be recalled next in an abstract
form.

2.2. Definition of Quality Factor

For a theoretical cavity of perfect electric conductive walls, the spectral response of each mode is just an
impulse (delta function). In contrary, for a real cavity of finite conductivity, each mode resonance spreads
in a frequency band ΔfQ inversely proportional to the the quality factor of the cavity ΔfQ = f0/Q.
As it occurs the quality factor estimation is of significant importance, since a high value describes a
chamber of low losses at the specific frequency and the ability to store high levels of energy, but at the
expense of smaller operating bandwidth around each resonance.

In general, the quality factor is calculated from the field distribution inside the cavity using the
equation:

Q = ω · average energy stored
Power losses

= ω · Wm + We

Pl
(12)

where Wm and We are the magnetic and electric stored energy respectively, e.g., [33, Page 390]. The
power dissipated in any good conductor is classically known as the Joule losses (proportional to J̄ · Ē),
hence the same principle applies to the finite conductivity cavity walls as well as for any metallic object
inserted in the cavity. The material losses (objects in the cavity) are accounted through the imaginary
parts of the permittivity (ε = ε′ − jε′′) and the permeability (μ = μ′ − jμ′′). The totally dissipated
power, due to material losses, reads:

Pl =
1
2

∫∫
©

S
J̄ · Ē∗dS +

ω

2

∫∫∫
V

(
ε′′Ē2 + μ′′H̄2

)
dV (13)

Equation (13) is general and can be used whenever the electric and magnetic fields within the cavity
are available either from an analytical or a numerical solution. However, even for an empty cavity the
boundary conditions on a finite conductivity wall are complicated, depend on frequency (dispersion)
and are known as impedance conditions. A good approximation usually adopted is that of Leontovich
given in Equation (3). But, the main difficulty with (3) is that it introduces a coupling across the walls
between the electric and the magnetic field. Hence, even for an empty or homogeneously filled cavity
the electric and the magnetic field wave equations cannot be exactly solved separately. Correspondingly,
there are not pure TE and TM modes any more but those become hybrid. An exact analytical solution
is in turn very difficult and requires sophisticated techniques or a numerical approach. However, this
coupling effect is proved to be a local phenomenon restricted around the finite conductivity conductors,
while away from them the TE and TM mode eigenfunctions are retained. A very rough approximation
calculates the finite conductivity losses considering this local phenomenon as a plane wave incident on the
metallic walls. This yields a simplified expression often used in practice [6], which does not discriminate
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between different modes. An approach providing each mode quality factor with a sufficient accuracy is
based on the modal field evaluated analytically considering PEC walls (ignoring metallic losses). This
approach was recently proved to perform impressively well for arbitrarily shaped cavities by utilizing
numerical eigenfunctions which are calculated assuming PEC metallic surfaces [27]. Besides these
approximations, including the conductor losses within the formulation requires a numerical solution
of the resulting non-linear eigenvalue problem, but it yields the true eigenfunctions and the related
accurate quality factors.

2.2.1. Practical Estimation of the Quality Factor

The IEC proposed quality factor approximation for rectangular reverberation chambers in [1] is:

QIEC =
3V

2μrδsA

1

1 +
3λ
16

(
1
a

+
1
b

+
1
d

) (14)

where V is the structure’s volume, a, b, d the cavity’s dimensions, A the area of the reverberation
chamber’s inner surface while δs is the skin depth:

δs =
1√

πfμσ
(15)

Formula (14) has a little practical use, since the resulting Q values are proved to be inconsistently too
high by a factor of 10–500, compared with measurements according to [6].

2.2.2. PEC versus Exact Non-Linear Eigenproblems

The finite wall conductivity can be considered as a perturbation of the corresponding PEC situation,
and the respective eigenfunctions can be utilized as fair approximations. But again to evaluate losses
from (13) we need both the electric and the magnetic fields tangential to the wall, where (3) should
apply. Recall now that the required tangential electric field was enforced to vanish across the PEC
wall, hence it is not available. Explicitly, the PEC and PMC (Perfect Magnetic Conductor) boundary
conditions read:

n̂ × Ē = 0 & n̂ · H̄ = 0 → PEC (16)
n̂ × H̄ = 0 & n̂ · Ē = 0 → PMC (17)

It seems that we are at a dead-end, but a new approximation is again proved valid. Explicitly,
the normal magnetic field at the surface of a PEC is zero as in (16), but the tangential magnetic
field becomes maximum, as also denoted by the cosine dependencies in (A4), (A6), (A10) and (A12).
Hence the relatively small change in the tangential magnetic field caused by substituting PEC with a
finite conductivity wall will be negligible. The same is also true for the current density flowing on the
finite conductivity wall which can be assumed approximately equal to the corresponding surface current
density flowing on the PEC wall and is defined by H̄tan as:

J̄ = J̄S = n̂ × H̄tan (18)

Actually, a current sheet with a homogeneous density is assumed to flow up to a thickness equal to
a skin depth. In contrary, a similar change in the zero for PEC tangential electric and normal magnetic
field would be very significant (Figure 2). Now, with the availability of a good approximation for H̄tan

(Figure 2(b)) the desired Ētan can be calculated through (3) which can be also written as:

Ētan = ZS

(
n̂ × H̄tan

)
(19)

Substituting (18) and (19) into the first term of (13), the conductor losses (PLC) can be estimated
solely through the tangential magnetic field from the eigensolution with PEC walls obtained either
analytically or numerically as:

PLC =
Rs

2

∫∫
©

S

∣∣H̄tan

∣∣2 dS (20)
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(a) (b)

Figure 2. Electric and magnetic boundary conditions over a metallic wall with (a) infinite and (b) finite
conductivity.

where H̄tan = H̄PEC
tan = H̄PEC since H̄PEC

norm = 0 across the PEC wall. Regarding the second term of (13),
the involved electric and magnetic fields are basically defined at an adequate distance away from the
metallic objects, hence they can be approximated by the fields of the eigensolution with PEC walls
(Ē = ĒPEC , H̄ = H̄PEC ). Thus the total cavity losses are approximately given by:

Pl =
Rs

2

∫∫
©

S

∣∣H̄PEC
∣∣2 dS +

ω

2

∫∫∫
V

(
ε′′

∣∣ĒPEC
∣∣ 2 + μ′′ ∣∣H̄PEC

∣∣ 2
)
dV (21)

The analysis presented above yields very important conclusions:

• The modal eigenfunction of a practical loaded cavity are approximately the same with those
obtained from the eigenproblem with PEC walls and PEC metallic objects. These can be exploited
for the evaluation of:

- The magnetic Wm and electric We stored energy.
- Both the conductor and material losses through (21).
- The modal quality factors substituting these quantities into (12) or recalling that at resonance

ω = ω0 the energy oscillates (one maximized the other vanishes and vice-versa) in time between
its electric and magnetic form as We(ω0) = Wm(ω0), then (12) reads:

Q0 =
2ω0We(ω0)

PL
=

2ω0Wm(ω0)
PL

(22)

Even though classical knowledge is utilized in the above reasoning, a very important conclusion is
extracted as: “There is no practical need to solve the eigenproblem including the non-linear metallic
conductor losses, but all necessary quantities can be approximately extracted from the PEC eigenmode
solution”. This is a great simplification since the PEC eigenproblem is linear, while when conductor
losses are included through Leontovich impedance conditions it becomes non-linear of fourth order
involving

√
k0 and k2

0. Solving a linear eigenproblem directly yields the whole eigenspectrum, while
the non-linear one requires sophisticated techniques usually based on initial values of a related linear
configuration which are iteratively updated. If a non-linear eigenproblem is inevitable, it is preferable to
adopt linearization techniques applicable to polynomial forms, and this approach is followed next. Such
an inevitable practical case can be any heavily loaded cavities with large metallic objects or relatively
electrically small cavities.

2.3. Numerical Solution of the Non-Linear-Eigenproblem

In order to solve numerically the Polynomial Eigenproblem (PEP), a transformation into a linear
Generalized Eigenproblem (GEP) of larger size (mxn) is applied herein. In general, there are two
main linearization techniques, the companion and the symmetric, but they are not unique for the given
problem. The companion linearization is the mostly used in practice, even though it leads into a non-
positive definite matrix constituting a serious problem for the solution procedure. For the case of the
symmetric linearization, there is a lack of GEP techniques that can be applied directly. The standard
direct solver fails to manipulate this problem not only due to its size but also due to its ill-conditioning.
The main difficulty in the direct solver is the inversion of the right-hand side matrix since its determinant
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vanishes. Thus, the only alternative is the use of iterative solvers, which are in general most efficient
especially for large sparse systems of this order, for instance Arnoldi or Jacobi-Davidson technique. The
problem herein is the type of factorization deflation. Most iterative solvers use a Cholesky factorization,
for complex eigenvalue systems, in order to bring the system in an appropriate form before applying
the iterative technique and solve it. Because in “Leontovich problem” the linearized matrices are not
positive definite, the Cholesky factorization cannot be constructed. This obstacle can only be overcome
using an iterative algorithm with a different kind of factorization. The solution procedure we use is an
initial QR factorization and in turn an Arnoldi algorithm with a specific sigma shift, which exploits the
sparsity of the matrix system [34].

Examining the form of (6), the polynomial eigenvalue problem can be transformed into an equivalent
fourth-order linear problem using a linearization technique defined as eigenvalue transformation.

2.3.1. Eigenvalue Transformation

The form of (6) can be easily characterized as a fourth-order eigenvalue problem, by simply setting√
k0 = λ. Thus it can be written in a more general form as:

Ψ(λ) = λ4 · C4 + 0 · C3 + 0 · C2 + λ · C1 + C0 = 0 (23)

where C4 = −Tel, C1 = jLel and C0 = Sel. After the companion linearization the form obtained
becomes:

A[e] = λB[e] (24)

where:

A =

⎡
⎢⎣

0 I 0 0
0 0 I 0
0 0 0 I

−Sel −jLel 0 0

⎤
⎥⎦ and B =

⎡
⎢⎣

I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 −Tel

⎤
⎥⎦ (25)

The solution procedure of this kind of problem produces two pairs of complex conjugate eigenvalues of
the form:

λi = ±λ′
i ± jλ′′

i = |λ| ejθ (26)

Only positive eigenvalue with both real and imaginary positive values can be accepted as
representing physical resonant modes. An eigenvalue with negative real part (negative resonant
frequency) has no physical meaning and can only be defined as an image of the corresponding positive
in frequency domain. The desired complex wavenumber is then calculated as:

k0 = λ2 = |k0|ejθ0 → |k0| = |λ|2, θ0 = 2θ (27)

3. MODE STIRRER DESIGN-GUIDELINES

Electromagnetic field in closed cavities exists only at specific resonant conditions-modes, at which
constructive (in-phase) interference of the multiply reflected waves from its walls and any enclosed
objects (perturbations) occurs. These set up standing waves in each direction and thus resulting in
field-energy maxima and minima at different locations for each mode. Besides that according to [4]
each mode can be described as a superposition of eight plane waves (four when one mode indice is
zero) incident on the EUT from a different angle. Thus ensuring the excitation of multiple modes and
placing the EUT at a location where they exhibit significant field intensity may ensure the fulfilling
of amplitude and polarization requirements. The utilization of the mode stirrer aims exactly at the
excitation of multiple resonating modes so that at each point of the area, where the EUT will be
located, field components at all possible polarizations (directions) exist, while the related energy should
be almost equal (within 1 dB deviation) when averaged in time. Attaching metallic scatterers on the
rotating axis of the mode stirrer the maxima and minima of the field-energy can be appropriately
exploited, producing a homogeneous field inside the reverberation chamber. In the course toward the
establishment of some design principles, the interaction of a metallic scatterer with a field incident on
that should be recalled, as follows: i) For a scatterer to interact it should be located in an area where
the field is not minimum, and the phenomenon becomes more intense as the scatterer passes-moves
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through region of field maximum. ii) From basic boundary conditions the field interaction-reflection is
maximized when the electric field is parallel to the metallic scatterer and is minimized when it becomes
perpendicular. iii) The presence of the metallic scatterer changes the resonant conditions regarding both
the resonant frequency and the corresponding quality factor (and the related bandwidth) as well as the
modal field distribution (eigenfunctions). Keeping the above in mind and exploiting the knowledge of
the canonically shaped analytically available modal fields (eigenfunctions) some design guidelines for
the mode-stirrer design are extracted and verified herein.

The location of the whole mode stirrer is presumed by the practical measurement configuration
as shown for the example in Figure 1. Thus, the chamber base (floor) should be freely accessed by

(c)

(b)

(a)

Figure 3. (a) Possible modes stirrer locations on the horizontal cross-section, (b) sinusoidal eigenmode
field distributions for electric components parallel to PEC walls, (c) cosinusoidal eigenmode field
distribution for electric components normal to PEC walls. Note that modes are depicted with different
amplitudes only for viewing convenience.
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the personnel, and the location of the source (transmitting antenna) and the testing area (location of
Equipment Under Test, EUT) should be defined across it. Hence, the mode stirrer should be hanged
from the ceiling, and due to its required large size it is more appropriate to be located at the midpoint
(A location in Figure 3(a)), but other locations are also utilized. Additionally, the one quarter locations
marked as B1–B4 in Figure 3(a) can be good candidates for smaller possibly multiple scatterers or
“distributed” scatterers. Another question concerns the height of the mode stirrer (or its distance from
the top wall-roof). For the appropriate selection, the electromagnetic point of view should be adopted.

The modes excited in the empty cavity are classified as TE z
mnl (with Ez = 0) and TM z

mnl (with
Hz = 0), where the subscripts (m,n, l = 0, 1, 2, . . . , ∞) correspond to the number of half wavelengths
contained in the cavity dimensions (a, b, d) respectively. Focusing on the electric field components since
perfect electric (metallic) scatterers are considered, the Ey component retains sinus dependence in the
z-direction and cosinus dependence in the y-direction as shown in Figures 3(b), (c). The Ez dependence
is exactly vice-versa. Both Ez, Ey are parallel to the x = 0, a walls, and thus they present sinus behavior
along the height a. Conversely, the Ez component appearing only in the TM z modes behaves as sinus
in the x- and y-directions and cosinus in the z-direction.

Keeping the above in mind and particularly the form of distributions in Figures 3(b) and 3(c), one
may observe that placing a scatterer parallel to the (yz) plane at points around B1–B4 (Figure 3(a))
with length at least d/8 (assume d > b) can effectively disturb Ez, Ey components, provided that these
scatterers are appropriately located across the height a-dimension. Note that placing thin scatterers
at all four B1–B4 positions is wrong, since these will act like an effective wall restricting the chamber
height and increasing all the resonant frequencies. Assuming for example a chamber with dimensions
a = 0.2 m, b = 0.4 m, d = 0.5 m and placing the four plane scatterers at a height a′ = 3a/4, the well-
known resonance Formula (11) yields for the indicative TE z-modes (m,n, l) = (1, 0, 1), (0, 1, 1), (1, 1, 1)
an increase in resonant frequencies from (480, 808, 891) MHz to (548, 850, 929) MHz or an upward shift
by (14, 5, 4.3)% respectively. This will be a very undesired effect since a significant part of the low
operating frequencies band will disappear. On the contrary, by placing only one scatterer and rotating
it around, the same field disturbance will be achieved, but both the original resonating heights a and
disturbed a′ will be preserved, and thus resonant modes around both the unperturbed and perturbed
sets will be sustained. Actually, the presence of the metallic axis holding the scatterer (as well as the
scatterer itself) will cause a decrease in resonant frequencies from those of the empty cavity, similar to
that observed going from an empty cylindrical to a coaxial cavity. Returning to Ez, Ey distribution
along-a is similar to Figure 3(b) thus presenting minima at distances a/3, a/4, a/5 from the roof wall,
at which the placement of thin scatterers should be avoided. Instead again of multiple scatterers, it
seems preferable to introduce a slant scatterer forming an angle (e.g., 60◦) with the vertical axis (e.g.,
Figures 10, 13). In this manner, field disturbance along a range of heights can be caused, but this
scatterer can also perturb the Ex component.

Summarizing the above discussion a single slant oriented with respect to x-axis (or multiple as in
Figure 10) thin metallic scatterer effectively disturbs all E-field components and thus changing the field
distribution and the resonant frequencies. Additionally, a large metallic structure should be avoided as
it effectively “short circuits” a large volume. At the same time, it is very important to cause a large
perturbation in the low order resonant modes which are more sparse than the high order modes. Thus,
to adopt multiple horizontal or slant scatterers at different appropriate heights with significant angular
distance between them, but with relatively small width in order to retain the full height resonating
lengths.

4. NUMERICAL STUDY OF MODE STIRRERS

A reverberation chamber with dimensions 2 m, 4 m, 5 m and metallic walls of finite conductivity
(σ = 58 · 106 S/m) is examined. The scope of the simulation procedure refers to the stirrer’s effects on
the resonant frequency spectrum, which is the only changing-rotating perturbation inside the chamber,
thus the relative permittivity and permeability of air is considered. As noted in [4] and discussed in
the introduction, the examination of the modal eigenspectrum to ensure that there are no holes-gaps
is of critical importance for the accuracy of antenna measurements. A simulation set of five mode
stirrers is introduced presenting its shape effects on the resonances. Both the geometry design capture
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and the mesh initialization are achieved using the free open source program SALOME [35], while the
presented numerical technique has been developed and incorporated in the collection of the free software
FEniCS [36]. In order to repeat the presented results, for the interested reader, a brief description is
given below for the simulation procedure.

The free open source program SALOME is used for both the design and mesh initialization of
the studied geometry. In the Computer Aided Design (CAD) environment, the structure is designed,
and each region is characterized according to its material features. Moreover, the surfaces are defined
as either perfect electric conductors or conductors of finite conductivity according to the problem’s
demands. In turn, the Mesh environment is activated where the designed structure is discretized.
Since edge vector elements are used for the problem formulation [29], the structure is discretized by
tetrahedrals and triangles in the inner and surface domain, respectively. After the mesh initialization
a file of “.med” type ([35]) is exported, which is organized in “.hdf5” format [37]. A parsing module
has been developed to interpret the “.hdf5” file into “.xml” format [38]. This “.xml” file contains all
the necessary information of the mesh file. After that, using our in-house developed code through
FEniCS, the problem is formulated according to Eq. (2). To solve the problem, a shift and invert
Arnoldi algorithm is used, where the following parameters are set: The problem type which is of non-
hermitian type, the spectral shift which is according to the desired eigenvalues (here the spectral shift
is the normalized resonant wavenumber which belongs into the region kr ∈ (1.0, 5.0)), the number of
desired eigenvalues and the corresponding eigenvectors to compute (here is set to 200) and finally the
error tolerance (here is set ≈ 10−8). To replicate the stirrers, the geometrical characteristics of each one
are given in detail in Figures 4, 7, 10, 13, and 16.

4.1. Numerical Validation Test

For the first attempt, the reverberation chamber is modeled using 450 elements as an empty cavity in
the absence of any structure inside. The eigenvalues are presented in Table 1 along with the PEC walls
analytic solution for the ten first resonant modes. It is well understood that the number of calculated
eigenvalues depends on the rank of the matrix which is defined by the spatial sampling. Herein, a
discretization resolution better than λmin/3 is always ensured, resulting in more than 150 calculated
complex eigenfrequencies. But it was observed that studying the 10 first modes, one can have a very
good idea of the structure behavior. Thus, the first 10 modes are depicted in the following tables for
convenience, although the whole eigen-spectrum is stored for later processing. The percent deviation
is always less than 2.5%. In this case, the quality factor is infinite, since PEC walls are assumed.
The first computation of the quality factor is achieved by accounting for the empty cavity copper walls
losses with the aid of the FEM algorithm which incorporates the Leontovich boundary conditions within
the formulation, denoted from now on as “Leontovich-FEM”. The discretization resolution Δl should

Table 1. Computed resonant frequencies (both ours and HFSS) of an empty cavity with PEC walls
versus their analytical values.

Mode
Analytical

MHz

FEM

MHz

HFSS

MHz

Relative

Error %

1 TE011 48.0 47.8 47.8 0.417

2 TE012 70.8 69.8 70.2 1.412

3 TE021 80.8 79.2 80.5 1.980

4 TE101 80.8 80.7 80.5 0.124

5 TM 110 83.9 83.5 83.5 0.477

6 TM 111 89.1 88.3 88.5 0.899

7 TE111 89.1 89.6 88.5 −0.561

8 TE022 96.0 93.7 94.0 2.396

9 TE102 96.0 94.2 94.0 1.875

10 TE013 97.5 96.0 97.0 1.538
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Table 2. Quality factor of the empty cavity with copper walls calculated by “Leontovich-FEM”,
“PEC-FEM” and HFSS versus their analytical values, Eq. (12).

“Leontovich-FEM” “PEC-FEM” 2733 el. HFSS rel. err. %

Mode Anal. 24173 el. E-field 350 high. ord. el.
leont/

analytical

E-field/

analytical

1 TE011 109096 108738 108916 109062 0.328 0.165

2 TE012 137114 136055 136736 136942 0.772 0.276

3 TE021 116487 116423 116780 116341 0.055 −0.252

4 TE101 137870 136771 137369 137673 0.797 0.363

5 TM 110 125939 125779 126049 125776 0.127 −0.087

6 TM 111 109821 109823 111600 104738 0.002 −1.620

7 TE111 98920 98073 97319 103151 0.856 1.618

8 TE022 145950 145189 146297 145618 0.521 −0.238

9 TE102 154285 152093 153389 153550 1.421 0.581

10 TE013 163295 160960 162503 162648 1.430 0.485

always be higher than Nyquist spatial sampling criterion (Δl < λmin/2) for the highest expected resonant
frequency. Besides that the experience from electromagnetic simulators undermines that a resolution
finer than λmin/7 is required. However, as depicted in Table 2 even for a relatively coarse discretization
with Δl ≈ λmin/3, the agreement in the quality factor values among the analytical, “Leontovich-FEM”,
“PEC-FEM” as well as the HFSS simulation was better than 4%. Note that HFSS simulation utilizes
350 high-order elements instead of 2733 first-order elements (λmin/3). Even though acceptable results
are obtained with such a coarse mesh, this is misleading, since the introduction of irregularly shaped
objects or slanted scatterers asks for very fine meshes of the order of λmin/7 up to λmin/32 (as usually
observed in electromagnetic simulations) in order to accurately capture their geometry. Recall at this
point that eigenanalysis is always very sensitive to the inaccuracies in the description of boundary
surfaces (e.g., the well-known stair-case effects in finite different methodologies). Explicitly, the quality
factor calculated from the PEC numerical eigenfunctions according to Section 2.2.2 (also depicted
in Table 2), solving the electric (E-field) wave equation offered an acceptable deviation of less than
1.7% even for a mesh resolution of λ/3. The substantially lower computational requirements of the
“PEC-FEM” formulations led us to utilize them for all the following numerical studies. However, the
“Leontovich-FEM” can be adopted whenever the necessary computer resources are available or a more
straightforward and convenient approach is desired.

4.2. Establishment of Mode Stirrer’s Design Guidelines

Inside the reverberation chamber, the mode stirrer is actually the most important object. After the
introduction of the mode stirrer two main effects are studied: the resonant frequency and quality factor
shift due to the presence of the mode stirrer and the frequency variation during its rotation. As noted in
Section 1, the mode stirrer scatters the field aiming at a time averaged homogeneous field-distribution
in the testing region. This phenomenon can be explained using eigenanalysis; the eigenvalues (resonant
frequencies) are dispersed in a wide frequency band exciting the same mode at different frequencies
— for each position of the mode stirrer at a different time instant — causing in this way a physical
frequency sweep.

In order to get an insight into possible spectrum holes-gaps a low and mid frequency bands are
zoomed. It is shown from the figures given below that the low frequency band exhibits a lot of gaps
while there are few in the mid-band and vanish at higher frequencies. These gaps occur as step-abrupt
changes in the spectrum. The low frequency gaps are almost impossible to be eliminated, hence there
will be a Lower Usable Frequency (LUF) fLUF for the chamber. The gaps at frequencies higher than
fLUF should be covered/eliminated by appropriate location and design of a single or multiple stirrers.
Herein we focus on the appropriate shape of a single stirrer, since the scope of the work is toward the
establishment of the eigenanalysis as a design tool. The lowest usable frequency is computed according
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to the definitions given by the IEC [1]: i) the LUF equals three times the cutoff frequency fc of the
fundamental mode of a cavity with the same dimensions; ii) fLUF is defined as the frequency at which
60 . . . 100 modes within an ideal cavity of the same size as the reverberation chamber are above the
cutoff, and at least ϑN/ϑf = 1.5 modes/MHz are present. The mode density ϑN/ϑf can be calculated
as [6, Page 11]:

ϑN

ϑf
= 8πabd

f2

c3
− (a + b + d)

1
c

(28)

where a, b, d are the reverberation chamber’s dimensions, f the resonant frequency, and c the speed
of light. For the empty cavity-chamber studied above (Table 1) its LUF 1 = 3.48MHz = 144 MHz
according to the first definition, while it is LUF 2 = 202 MHz according to the second definition of
Eq. (28). By simulating a set of five different mode stirrers and exploiting their features this procedure
aims at the establishment of the proposed design guidelines. The choice of each mode stirrer is not
arbitrary, but it is inspired by the Ph.D. thesis of Dr. Bruns [6, Page 101]. The investigation starts with
two mode stirrers formed by scatterers parallel and vertical to the horizontal cross-section respectively
and continues with a type of slant oriented which is also studied by Bruns [6]. Finally, two mode stirrers
are devised comprised of inclined attached scatterers, aiming at the disturbance of all field components.

4.2.1. First Mode Stirrer

The first-mode stirrer is a typical cylindrical metallic stirrer consisting of four metallic paddles, as shown
in Figure 4. The cylindrical axle height is h = 1.0 m and has a radius of r = 0.25 m meters. Each planar
scatterer has dimensions l = 0.85 m and w = 0.65 m, while its thickness is d = 0.05 m. The whole
structure is metallic and modeled assuming finite copper conductivity (σCu = 58 · 106 S/m).

To accurately model the fine details of the mode stirrer and specifically the extremely thin
paddles compared with the reverberation chamber’s dimensions, a mesh of 292056 tetrahedrals was
initialized. Taking into consideration the mesh density, the sampling step can be computed for each
mode (150 modes have been totally calculated). Subtracting from the total number of the tetrahedrals
that coincide with the metallic surfaces of the structure, since the mesh is adaptively increased in
these areas, the number of inner tetrahedrals can be calculated. Using the remaining number of
tetrahedrals, the sampling step can be approximately estimated, assuming that the tetrahedrals are
normally distributed in the chamber’s volume and accepting that a sample (this is actually a cubic
element in three dimensions) corresponds to 12 tetrahedrals in the worst case. A more optimistic
approach is to assume that 5 tetrahedrals correspond to a cubic sample. In Table 8, the sampling step
is tabulated for the first and last modes, respectively. Only the linear PEC formalism was utilized to
compute both the resonant frequency and the quality factor of the structure, while the “Leontovich-
FEM” was not further used since as it is proved in the empty cavity simulation (Table 2), a mesh 6 times
denser is demanded to describe the same problem with the same accuracy, which is of course inefficient.

Figure 4. Metallic (σCu = 58 · 106 S/m) mode stirrer #1 with cylindrical axis and four parallelepiped
paddles transverse to each other. Typical dimensions are assumed as: l = 0.85 m, w = 0.65 m,
d = 0.05 m, r = 0.25 m, h = 1.0 m, h1 = 0.175 m, h2 = 0.175 m.
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The introduction of the mode stirrer shifts the resonant frequencies. Table 3 depicts the frequency
shift of the first ten resonances with respect to the empty cavity and shows the corresponding quality
factor shift. The decrease of the resonant frequencies can also be explained by the example of any ridged
waveguide [39]. The introduction of a ridge in a region of maximum electric field decreases the cutoff
frequency or the cutoff wavenumber kc and in turn the resonant frequency, since it is k2

r = ω2
rμε = k2

c +β2.
The decrease of the quality factor (Table 3) was something expected, since the introduction of the
finite conductivity metallic scatterers increases the ohmic losses. However, a reduction about 50%
corresponding to doubling the losses is not justified by the size of the mode stirrer or its total surface
(∼6.85 m2) with respect to the chamber internal surface (∼76 m2), which is only 11.1%. This reduction
is in contrary justified by the placement of these scatterers in the area of maximum field intensity for
most of the modes. The variation of the frequency during the rotation of the mode stirrer is explored
in the Subsection 4.2.

The rotation of the mode stirrer by a 5-degree step yields the first 150 modes spectrum. In
Figure 5(a), the variation of the first mode is shown. A 57.3 kHz band coverage is calculated, while for
a Q∼= 69000 at f0

∼=43 MHz, its bandwidth is B3 dB = f0/Q ∼= 0.62 kHz. In Figure 5(b), the stirrer’s
effect on mode #34 at the LUF 1 given from the first definition of IEC (f = 3fc) is shown. A larger
frequency sweep of the order of 550 kHz is calculated, while in this case the frequency variation versus
stirrer’s rotation is faster. This behavior was actually expected, since the mode stirrer is more efficient
beyond the lowest usable frequency. In Figure 6(a), the frequency spectrum of the first 150 modes is

Table 3. Shift in resonant frequencies and in the quality factor of the reverberation chamber when
loaded with the mode stirrer #1 of Figure 4.

frequency MHz quality factor

Mode
empty-RC

analytical

loaded-RC

292056 el.

Freq.

shift %

empty-RC

analytical

292056 el.

E-field

qual. fact.

change %

1 TE011 47.8 43.4 −9.21 109096 69531 −36.27

2 TE012 69.8 54.1 −22.49 137114 73786 −46.19

3 TE021 79.2 55.1 −30.43 116487 72918 −37.40

4 TE101 80.7 68.9 −14.62 137870 73395 −46.76

5 TM 110 83.5 71.2 −14.73 125939 67237 −46.61

6 TM 111 88.3 80.9 −8.32 109821 78739 −28.30

7 TE111 89.6 85.2 −4.91 98920 33183 −66.45

8 TE022 93.7 92.2 −1.60 145950 101501 −30.45

9 TE102 94.2 93.4 −0.85 154285 91576 −40.64

10 TE013 96.0 94.0 −33.33 163295 59322 −63.67

(a) (b)

Figure 5. Mode variation during the mode stirrer #1 rotation: (a) variation of the 1st resonant mode
and (b) variation of the mode #34 estimated at the LUF 1 (f = 3fc).
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(a)

(b)

(c)

Figure 6. Frequency spectrum during the rotation of the mode stirrer #1 of Figure 4: (a) frequency
spectrum of the first 150 modes, (b) zoom around LUF 2 where ϑN/ϑf = 1.5 modes/MHz, and (c) zoom
at an observed mode gap.

shown. The purpose of Figure 6 and the corresponding figure for each mode stirrer is to observe whether
the frequency spectrum and particularly close to LUF is continuously covered and more importantly
to reveal any spectrum holes-gaps which are catastrophic for measurements accuracy. Recall that the
resonant frequencies are discrete, but they are shifted as the mode stirrer is rotated. The question is how
efficiently the mode stirrer shifts the resonant frequency in order to provide a “continuous” frequency
coverage with gaps smaller than the modes bandwidth. Figure 6 shows that below LUF 1 = 144 MHz
there are so many possible gaps-holes that this band is useless. However, for this #1 stirrer gaps continue
to exist above LUF 1 at 152 and 164 MHz and up to LUF 2 = 202 MHz. Two of these suspicious areas
are then zoomed in Figures 6(b), 6(c) where it is observed that there are not any obvious gaps but
very low mode density at 164 or 200 MHz (only one or two modes). As shown in Table 3, the mode
3-dB bandwidth is about 1 kHz, thus there are indeed frequencies with poor mode density (gaps indeed)
which may yield unacceptable measurement accuracy. These problematic sub-bands (“gaps”) could be
filled with modes by a more appropriate stirrer design. Besides these observations, Figure 6 shows that
above LUF 2 a high mode density is achieved.

One point that should be noted is that both the symmetry of the reverberation chamber and the
mode stirrer permit the simulation for only a rotation of 90 degrees. This is too important since time
and computational cost are saved. Each simulation demands 55.6 minutes from the initialization of
an almost 290000 tetrahedrals mesh up to the complete eigenvalues spectrum computation. For each
eigenvalue and the corresponding eigenvector computation, 5 seconds are demanded. The modes stirrer
of Figure 4 affects the Ex component when it is introduced; however, during its rotation its blades
change their relative orientation from (parallel to Ey, normal to Ez) to vice versa, hence the variation
in Ey, Ez distribution is higher. The next trial refers to scatterers parallel to yz horizontal base plane.

4.2.2. Second Mode Stirrer

The second mode stirrer shown in Figure 7 consists again of a cylindrical axle of height h = 1.0 m
and radius r = 0.25 m, and two square paddles of length l = 1.2 m and thickness d = 0.02 m. To
accurately model the fine details of the mode stirrer, a mesh of 290227 tetrahedrals was initialized. The
introduction of the mode stirrer lowers both the resonant frequencies and the quality factor as shown in
Table 4. Comparing Tables 4 and 3 it is observed that mode stirrer #2 produces similar frequency shift
to #1 for the first mode but much less for the higher order modes. Also the quality factor of TM 111 and
TE 111 modes, remains almost unaffected, especially for the higher modes, with respect to the empty
cavity. This can be justified by a minimum of the tangential magnetic field over the scatterers.
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Table 4. Reverberation chamber’s resonant frequencies and quality factor, loaded with the mode
stirrer #2 of Figure 7.

frequency MHz quality factor

Mode
empty-RC

analytical

loaded-RC

290227 el.

Freq.

shift %

empty-RC

analytical

290227 el.

E-field

qual. fact.

change %

1 TE011 47.8 39.08 −18.24 109096 74050 −32.12

2 TE012 69.8 67.85 −2.79 137114 92819 −32.31

3 TE021 79.2 69.58 −12.15 116487 95165 −18.30

4 TE101 80.7 71.61 −11.26 137870 107807 −21.81

5 TM 110 83.5 71.97 −13.81 125939 55376 −56.03

6 TM 111 88.3 81.78 −7.38 109821 106473 −3.05

7 TE111 89.6 87.69 −2.13 98920 102762 3.88

8 TE022 93.7 88.12 −5.96 145950 106381 −27.11

9 TE102 94.2 94.05 −0.16 154285 94645 −38.66

10 TE013 96.0 95.95 −0.05 163295 137325 −15.90

Figure 7. Mode stirrer #2 with a cylindrical axis and two (2) square scatterers rotated by an
angle of 45◦ degrees to each other. The mode stirrer is totally metallic with copper conductivity
σCu = 58 · 106 S/m. Its dimensions are: l = 1.2 m, d = 0.02 m, r = 0.25 m, h = 1.0 m, h1 = 0.32 m,
h2 = 0.64 m [6].

(a) (b)

Figure 8. Mode variation during the mode stirrer #2 rotation: (a) variation of the 1st resonant mode
and (b) variation of the mode #37 estimated at the LUF 1 (f = 3fc).

The rotation of the mode stirrer by a 5 degree step yields the first 150-mode spectrum. In
Figure 8(a), the variation of the first mode is shown, where a 80 kHz band coverage can be calculated.
Reasonable frequency stirring occurs only within two small angular sectors around 10◦ and 50◦. In
Figure 8(b), the mode #37 at LUF 1 is shown, where a coverage of 1.61 MHz occurs during the stirrer’s
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rotation. Efficient mode stirring occurs over the whole angular sector for this high order mode. In
Figure 9(a), the frequency spectrum of the first 150 modes is shown. A mode gap occurs above
LUF 1 = 144 MHz which is around 170 MHz and has been chosen for a detailed study. The frequency
jump is now more clear in Figure 9(c) compared with the corresponding gap of Figure 9(c). Moreover,
in Figure 9(b) the efficiency of the stirrer at and above LUF 2 = 202 MHz can be clearly observed, since
the whole area is covered by the excited modes. Figure 9(c) shows a clear gap in the modes spectrum at
174 MHz. Besides that, Figures 6 and 9 depict a lot of small steps in the frequency spectrum between
LUF 1 and LUF 2, which present at least low mode density.

4.2.3. Third Mode Stirrer

The third mode stirrer consists of the same cylindrical body (h = 1.0 m height, r = 0.25 m radius), but
with three quite different scatterers hinged from this body with an angle of 25◦ degrees between each
other as shown in Figure 10. The slanted scatterers of the stirrer form the letter Z, thus this kind of
mode stirrer is usually called Z-type [6]. The scatterers at the top and bottom of the cylinder have a

(a)

(b)

(c)

Figure 9. Frequency spectrum during the rotation of the mode stirrer #2 of Figure 7: (a) frequency
spectrum of the first 150 modes, (b) zoom around LUF 2 where ϑN/ϑf = 1.5 modes/MHz, and (c) zoom
around an observed mode gap.

Figure 10. Z metallic mode stirrer #3, [6] of copper conductivity σCu = 58 · 106 S/m. Its dimensions
are: l = 2.0 m, w = 0.6 m, d = 0.01 m, r = 0.25 m, l1 = l/2, l2 = l, h = 1.0 m, h1 = 0.1 m, h2 = 0.17 m,
h3 = 0.35 m, h4 = 0.34 m.
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surface of 2.0 × 0.6 m2 and thickness of 0.01 m, while the middle scatterer has a surface of 3.0× 0.6 m2.
The structure is totally metallic with copper conductivity σCu = 58 · 106 S/m. To accurately model
the fine details of the mode stirrer, a mesh of 305150 tetrahedrals was initialized. The frequency and
quality factor shift are shown in Table 5. Compared to the first stirrer (Table 3), it presents similar
behavior to a more homogeneous shift caused in the higher order modes. The presence of the slanted
scatterers disturbs all the field components, and this is depicted by the smoother resonant frequency
variation in Table 5 than Tables 3 and 4.

In Figure 11(a), the variation of the first mode is shown, where a 2.0 MHz band coverage is
calculated, but the stirring is completely ineffective in the angular sector from 50◦ to 90◦. In
Figure 11(b), the mode #35 at the LUF 1 is shown, where its band coverage decreases to 1.11 MHz, but
the frequency stirring is efficient over the whole angular sector. Although there is a clear mode hole-gap
at 168 MHz (Figure 12(c)), stirrer #3 appears more efficient than #2 and #1, since its mode spectrum
in Figure 12 is more continuous, with smaller steps (possible low mode density) than those in Figures 9
and 6. This observation is clearly valid in the band between LUF 1 and LUF 2, while stirrer #3 has a
more homogeneous mode spectrum even below LUF 1. Note that above LUF 2 all stirrers behave quite
well with homogeneous mode density.

An overview of the previous investigations reveals that:

Table 5. Reverberation chamber’s resonant frequencies and quality factor, loaded with the mode stirrer
#3 of Figure 10.

frequencyMHz quality factor

Mode
empty-RC

analytical

loaded-RC

305150 el.

Freq.

shift %

empty-RC

analytical

305150 el.

E-field

qual. fact.

change %

1 TE011 47.8 37.91 −20.69 109096 77874 −28.62

2 TE012 69.8 55.48 −20.52 137114 84682 −38.24

3 TE021 79.2 71.17 −10.14 116487 65484 −43.78

4 TE101 80.7 71.75 −11.09 137870 106798 −22.54

5 TM 110 83.5 71.76 −14.06 125939 66160 −47.47

6 TM 111 88.3 78.92 −10.62 109821 116559 6.14

7 TE111 89.6 82.76 −7.63 98920 102040 3.15

8 TE022 93.7 86.96 −7.19 145950 100978 −30.81

9 TE102 94.2 89.39 −5.11 154285 98996 −35.84

10 TE013 96.0 95.01 −1.03 163295 103557 −36.58

(a) (b)

Figure 11. Mode variation during the mode stirrer #3 rotation: (a) variation of the 1st resonant mode
and (b) variation of the mode #35 estimated at the LUF 1 (f = 3fc).
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i The horizontal plane scatterers (Figure 7) cause a severe reduction in the resonant frequencies of
modes 1st to 8th (Table 4), mainly perturbing simultaneously the horizontal components.

ii The vertical plane scatterers of Figure 4 perturb Ey, Ez but at different locations and cause
reduction on the first three TE modes and TM 111 (Table 3). What is important is that this stirrer
retains the chamber’s full height at angles between the scatterers, thus efficiently covering the low
frequency spectrum.

iii The slanted scatterers of Figure 10 disturb all electric field components (including the vertical Ex),
but their projections are overlapping and exclude any field access to full height.

The question is then how to combine the three types of scatterers, avoiding their projection overlapping,

(a)

(b)

(c)

Figure 12. Frequency spectrum during the rotation of the mode stirrer #3 of Figure 10: (a) frequency
spectrum of the first 150 modes, (b) zoom around LUF 2 where ϑN/ϑf = 1.5 modes/MHz, and (c) zoom
around an observed mode gap.

(a) (b)

Figure 13. (a) Mode stirrer #4 with a cylindrical axis and three arbitrarily hinged scatterers. The
mode stirrer is totally metallic with copper conductivity σCu = 58 · 106 S/m. Its dimensions are:
l = 1.0 m, w = 0.8 m, d = 0.01 m, r = 0.25 m, h = 1.0 m, h1 = 0.1 m, h2 = 0.5 m, h3 = 0.3 m,
h4 = 0.5 m, h5 = 0.14 m, h6 = 0.21 m, h7 = 0.79 m, h8 = 0.1 m, h9 = 0.3 m, l1 = 1.0 m, l2 = 0.42 m,
l3 = 0.58 m, l4 = 1.0 m, l5 = 1.0 m. (b) Plan view of the mode stirrer.
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which is answered by the next 4th-mode stirrer (first proposed herein) which also slants some of them
side wards, besides slanting the scatterers downwards. Also, as noted in the guidelines (Section 3) it
retains scatterers at different heights, as shown in Figure 13.

4.2.4. Fourth Mode Stirrer

For the fourth-mode stirrer, a cylindrical axis is introduced with height h = 1.0 m and radius r = 0.25 m,
as the main body, where three paddles of arbitrary angle are hinged over as shown in Figure 13(a). Each
paddle is d = 0.01 m thick and has a surface of 0.8 × 1.0 m2, while the whole structure is metallic and
made of copper. To check if there is any overlap between the paddles, a plan view of their projection
is given in Figure 13(b). As shown, there is a large non-overlapping angular sector which permits the
resonance of the lower modes. To accurately model the fine details of the mode stirrer, a mesh of
335250 tetrahedrals was initialized. The resonant frequency and quality factor shift are tabulated in
Table 6. Comparing the two last mode stirrers, one observes that going from #3 to #4 the quality
factor reduction becomes more uniform while resonant frequency shift is increased and becomes more
uniform up to the 8th mode. In Figure 14(a), the variation of the first mode is shown, where a 40 kHz
band coverage is calculated, but it is important to observe that this novel #4 stirrer efficiently varies
the frequency over the whole angular sector even for the first mode (just compare Figure 14(a) with
Figures 11(a), 8(a) and 5(a)). In Figure 14(b), the mode #37 at the LUF 1 (f = 3fc) is shown, where the
band coverage is 2.26 MHz. Figure 15 reveals that this novel #4 stirrer performs efficiently starting from
LUF 1 = 44 MHz and above, without any gaps in the band from LUF 1 to LUF 2. Furthermore, besides a

Table 6. Reverberation chamber’s resonant frequencies and quality factor, loaded with the mode stirrer
#4 of Figure 13.

frequency MHz quality factor

Mode
empty-RC

analytical

loaded-RC

335250 el.

Freq.

shift %

empty-RC

analytical

335250 el.

E-field

qual. fact.

change %

1 TE011 47.8 41.00 −14.23 109096 82549 −24.33

2 TE012 69.8 55.98 −19.80 137114 78243 −42.94

3 TE021 79.2 63.59 −20.01 116487 76883 −34.00

4 TE101 80.7 71.53 −11.36 137870 105161 −23.72

5 TM 110 83.5 72.11 −13.64 125939 58350 −53.67

6 TM 111 88.3 80.44 −8.90 109821 76093 −30.71

7 TE111 89.6 81.92 −8.57 98920 95121 −3.84

8 TE022 93.7 87.04 −7.11 145950 86350 −40.84

9 TE102 94.2 88.61 −5.93 154285 102660 −33.46

10 TE013 96.0 90.91 −5.30 163295 97909 −40.04

(a) (b)

Figure 14. Mode variation during the mode stirrer #1 rotation: (a) variation of the 1st resonant mode
and (b) variation of the mode #34 estimated at the LUF 1 (f = 3fc).
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clear mode gap at 130 MHz, it also provides efficient frequency stirring down to 90 MHz (≈ 2fc). Hence,
it is clearly superior to stirrers #1, 2, 3.

4.2.5. Fifth Mode Stirrer

For the final mode stirrer, an evolution of the last one is introduced. As shown in Figure 16(a), this kind
of mode stirrer has three more paddles than the previous one. This careful placement of the scatterers
disturbs the field in any direction and for any angle, producing the desirable field homogeneity. The
geometrical features of these additional scatterers are the same as that for the fourth-mode stirrer
(Figure 13(a)). To check if there is any overlap between the paddles, a projections plan view is given in
Figure 16(b). It is then verified that there is a large non-overlapping angular sector offering field access

(a)

(b)

(c)

Figure 15. Frequency spectrum during the rotation of the mode stirrer #4 of Figure 13: (a) frequency
spectrum of the first 150 modes, (b) zoom around LUF 2 where ϑN/ϑf = 1.5 modes/MHz, and (c) zoom
around an observed mode gap.

(a) (b)

Figure 16. (a) Mode stirrer #5 with a cylindrical axis and six arbitrarily hinged scatterers. The mode
stirrer is totally metallic with copper conductivity σCu = 58 · 106 S/m. Its dimensions are: l = 1.0 m,
w = 0.8 m, d = 0.01 m, r = 0.25 m, h = 1.0 m, h1 = 0.26 m, h2 = 0.14 m, h3 = 0.21 m, h4 = 0.5 m,
h5 = 0.2 m, h6 = 0.15 m, h7 = 0.26 m. (b) Plan view of the mode stirrer.
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Table 7. Reverberation chamber’s resonant frequencies and quality factor, loaded with the mode
stirrer #5 of Figure 16.

frequency MHz quality factor

Mode
empty-RC

analytical

loaded-RC

690825 el.

Freq.

shift %

empty-RC

analytical

690825 el.

E-field

qual. fact.

change %

1 TE011 47.8 39.39 −17.59 109096 69532 −36.27

2 TE012 69.8 58.76 −15.82 137114 73786 −46.19

3 TE021 79.2 59.80 −24.49 116487 72918 −37.40

4 TE101 80.7 71.01 −12.01 137870 73395 −46.77

5 TM 110 83.5 72.08 −13.68 125939 67237 −46.61

6 TM 111 88.3 78.61 −10.97 109821 33183 −69.78

7 TE111 89.6 79.73 −11.02 98920 78740 −20.40

8 TE022 93.7 81.89 −12.60 145950 101501 −30.45

9 TE102 94.2 89.61 −4.87 154285 91576 −40.64

10 TE013 96.0 90.90 −5.31 163295 59322 −63.67

(a) (b)

Figure 17. Mode variation during the mode stirrer #5 rotation: (a) variation of the 1st resonant mode
and (b) variation of the #38 mode estimated at the LUF 1 (f = 3fc).

to full height, which permits the resonance of the lower modes. To accurately model the fine details of
the mode stirrer, a mesh of 690825 tetrahedrals was initialized. Table 7 shows both the frequency and
the quality factor shift.

Figure 17(a) as compared to Figure 14(a) shows that #5 stirrer offers equally fast first-mode
frequency variation as #4 but more evenly distributed, or #5 stirrer is equally efficient at all rotation
angles. Similarly, #5 offers more homogeneous variations for higher order modes as observed comparing
Figure 17(b) with 14(b) at LUF 2. The mode spectrum of Figure 18 shows that #5 stirrer can also
efficiently stir frequencies from 90 MHz (≈ 2fc) and above as #4 stirrer. Again there is a mode gap,
but it is moved higher than LUF 1 = 144 MHz and occurs around 152 MHz. It is thus observed that the
newly proposed stirrers #4 and #5 can operate even below the lowest frequency (LUF 1 = 3fc) down
to a frequency about 2fc, but their only drawback is a spectrum hole around LUF 1. This gap can be
eliminated either by further elaborating on the stirrer design or even by incorporating a second stirrer
into the chamber specifically designed to operate around this mode-gap.

4.2.6. Mode Stirrers Comparison

The simulation of each mode stirrer type proves its importance in this structure. Its shape has a
significant role, since the simulations show how the field and especially the resonant frequencies vary
as the stirrer is rotated. Comparing the stirrers, it can be proved that the two stirrers #4 and #5
proposed herein are the most effective according to the features analyzed in Section 3.
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(a)

(b)

(c)

Figure 18. Frequency spectrum during the rotation of the mode stirrer #5 of Figure 16: (a) frequency
spectrum of the first 150 modes, (b) zoom around LUF 2 where ϑN/ϑf = 1.5 modes/MHz, and (c) zoom
around an observed mode gap.

Table 8. Aggregate table of the proposed mode stirrers, with the results referring to the first 150 modes,
simulated using the PEC eigenanalysis tool.

Feature
1st mode

stirrer Figure 4

2nd mode

stirrer Figure 7

3rd mode

stirrer Figure 10

4th mode

stirrer Figure 13

5th mode

stirrer Figure 16

symmetry
along its

axis 90◦
along its

axis 45◦
along its

axis 180◦ none none

fmax

150th mode
232.62 MHz 231.83 MHz 230.40 MHz 229.36 MHz 228.77 MHz

fmin

1st mode
43.41 MHz 39.08 MHz 37.91 MHz 41.00 MHz 39.39 MHz

BW

fmax-fmin

189.21 MHz 192.75 MHz 192.49 MHz 188.36 MHz 189.38 MHz

BW of the

1st mode

60 kHz

43.44–43.38 MHz

80 kHz

39.08–39.00 MHz

2020 kHz

39.87–37.85 MHz

70 kHz

41.03–40.96 MHz

20 kHz

39.41–39.39 MHz

number of

tetrahedrals
292056 290227 305150 335250 690825

1st mode

sampling

step

λ/21 λ/22 λ/23 λ/23 λ/29

150th mode

sampling

step

λ/12 λ/12 λ/12 λ/13 λ/26

simulation

time
15.85 min 15.87 min 14.96 min 15.00 min 105.55 min

number

of edges

(degrees of

freedom)

314016 312922 300533 335516 748876
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In Table 8, an aggregation of the most important characteristics of all the stirrers is tabulated. So,
the first one (Figure 4) has four scatterers perpendicular to each other and parallel to the main body,
disturbing the field only in xy and xz planes. The second one (Figure 7) consists of the same cylindrical
body and two scatterers imposed parallel to the yz plane with an angle of 45◦ degrees to each other,
changing the field in yz plane. An evolution of this one is the third type (Figure 10), z-shaped mode
stirrer, which has the same body, but it consists of three scatterers hinged with an angle of 25◦ degrees
to each other along the yz plane. In this way, it achieves a variation in the supplementary planes. The
fourth-mode stirrer (Figure 13) combines scatterers from all three previous mode stirrers to yield a field
variation in any direction since the scatterers are arbitrarily hinged to its main body. Adding three more
scatterers the fifth-mode stirrer (Figure 16) is produced, introducing even more uniform disturbance in
the test region almost uniformly perturbing all modes.

4.2.7. Guidelines Verification

Studying all the stirrers together and comparing their corresponding diagrams of frequency spectrum
variation along the stirrer’s rotation some very interesting results are deduced. All five studied mode
stirrers perform well above the second lowest usable frequency (LUF 2 = 202 MHz) defined by IEC as
in Eq. (28). The Z-type stirrer mostly used in measurements offers more homogeneous mode spectrum
than #1 and #2. Inspired from Z-type stirrer and also combining some of the best features for stirrers
#1 and #2, two novel stirrers are constructed herein which indeed provide uniform mode density down
to 2fc (lower than the 3fc defined by IEC). Their only drawback is a single spectrum gap which requires
further elaboration to fill it.

It is important to note here that in general at higher operating frequencies and when reverberation
chambers are well stirred, there are indications that losses are increased. Hence, there can be loss of
modes orthogonality, and thus modes can be correlated and start exchanging energy. In that case, modal
expansion techniques are not rigorously justified, thus modal analysis should be carefully adopted for
high frequencies. On the contrary, at low operating frequencies, the modes correlation is highly unlikely
to occur. Simultaneously problems of continuous modal coverage exist mainly at the low operating
frequency regime, and this is actually consistently addressed within this work.

5. CONCLUSION

A finite element eigenanalysis technique including both finite conductivity and dielectric material losses
is formulated and tested in the study of electrically large closed cavities. The straightforward FEM
formulation where conductivity losses are accounted by directly incorporating the Leontovich boundary
condition is proved computationally inefficient requiring parallel processing or computer clusters. In
contrast, the novel formulation established herein where the eigenfunctions are acquired from a PEC
eigenanalysis, and Leontovich boundary condition is exploited in a post processing procedure and is
proved robust and efficient utilizing even personal computers. A set of mode stirrer design guidelines are
setup based on the empty cavity electric field eigenfunctions. These are verified through the eigenanalysis
of an increasing complexity of the series of mode stirrers, and three are already used in practice and
two novel stirrers proposed herein. This process revealed a drawback of the most complex #4 mode
stirrer which was overcome by introducing three additional scatterers in accordance with the proposed
guidelines. In order for the proposed eigenanalysis to become an efficient design tool for electrically large
structures, it is necessary to invent some technique to speed up the solution process, mainly through the
reduction of the number of unknowns. Toward this direction we are currently working to adapt a domain
decomposition approach to eigenanalysis FEM formulation. Regarding the reverberation chamber and
particularly the mode stirrer design and optimization, it is proved herein that the finite element based
eigenanalysis constitutes a very efficient numerical tool. It is already exploited herein to devise two
novel mode stirrers and study their behavior. These are proved more efficient from the most used in
measurements Z-type stirrer. However, an extensive research is still required toward the exploitation
of the eigenanalysis for the design of reverberation chambers to include multiple stirrers, as well as the
presence of antennas and supporting tables or tripods.
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APPENDIX A. EIGENFUNCTIONS OF A UNIFORMLY FILLED RECTANGULAR
CAVITY

The analytical eigenfunctions of a uniformly filled rectangular cavity a×b×c with PEC walls read [31, 32]:
For TMmnl modes:
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For TEmnl modes:

Ez = 0 (A7)
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where k2
c = k2

x + k2
y = (mπ

a )2 + (nπ
b )2.
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