
Progress In Electromagnetics Research B, Vol. 59, 219–229, 2014

Optimization of a Plasmon-Assisted Waveguide Coupler
Using FEM and MMP
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Abstract—In this paper, we focus on the problem of optimizing plasmonic structures. A plasmon-
assisted waveguide coupler is considered as a test problem, which leads to a five-dimensional optimization
problem carried out by an evolution strategy (ES). The optimization results are verified by a
comparative analysis between different solvers, i.e., the finite element package CONCEPTs and the multiple
multipole program (MMP). We also compared with results obtained using a deterministic optimization
algorithm, namely the Nedler-Mead method as implemented in the commercial software package COMSOL
Multiphysics. Some issues concerning deterministic versus evolutionary optimization, in particular, in
the field of plasmonics have been discussed.

1. INTRODUCTION AND BACKGROUND

Optical nano antennas are currently promising key elements for sensing and optical communication [1–
4]. Like traditional antennas for radio frequencies up to the low THz regime, they are mainly made
of metals; however, they exhibit considerable differences because of plasmonic resonances that occur in
the optical regime.

Traditional antennas essentially are scalable, i.e., their resonance wavelengths are proportional to
the antenna size, which allows one to derive rather simple engineering formulas for the design of such
antennas [5, 6]. Typically, the first resonances are exploited in order to keep the antennas small and
consequently, the typical antenna size is of order half a wavelength. In many applications, the bandwidth
of traditional antennas is increased by special geometries that provide several resonances over a certain
band.

In contrast, plasmonic nano antennas may resonate even when they are much smaller than the
wavelength. Their bandwidth in the optical range is often broader than required. Although the geometry
has a strong impact on resonances and on the antenna performance, the bandwidth is mostly caused
by the rather high losses in metals at optical frequencies. As a result, plasmonic nano antennas are
not scalable, their quality factor is usually not very high, and it is very hard or even impossible to find
simple design rules.

Currently, the most promising approach to designing plasmonic nano antennas for a specific
application is to benefit from appropriate combinations of numerical optimizers with simulation tools
for electromagnetics that may efficiently simulate plasmonic structures [7, 8]. In the last few years,
many numerical optimizations methods have been developed and several numerical optimizers have
been embedded in various commercial simulation tools, such as COMSOL Multiphysics [9]. The main
issues are the following: 1) In order to achieve acceptable simulation accuracy, the simulation time
of a single plasmonic structure may be rather long. 2) Working on massively parallel computers may
become extremely expensive because of high license costs of commercial software. Therefore, one might
prefer using some freely available simulation tool which is typically less user-friendly than a commercial
one. 3) The optimizer will usually design many different structures. Some of them may look rather
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astounding. Despite of this, the solver should not fail and return a reasonable result, i.e., the solver
must be completely automatic and robust without any support by the user. 4) Inaccuracies of the solver
may disturb the numerical optimizer considerably. This especially holds for deterministic optimizers
that approximate the gradient information in the parameter search space as soon as they are in the
vicinity of an optimum. As a consequence, techniques to speed up the simulation tool by reducing its
accuracy may drastically increase the overall cost of the optimization. 5) The overall computation time
can become extremely long and depends heavily on the collaboration of the simulation tool with the
optimizer. 6) Without any prior knowledge on the complexity of the optimization problem (smoothness
of the fitness landscape in the search space, number and shape of local optima, etc.), it is impossible
to select an appropriate optimizer. 7) Obtaining information on the complexity of the optimization
problem may be hard, especially when the search space is high-dimensional and because even small
parts of plasmonic structures may have a considerable impact on the solution.

In this paper, we study a relatively simple, two-dimensional plasmonic waveguide coupler for
exciting a guided wave in a dielectric slab in order to illustrate the various difficulties mentioned above.
The coupler consists of only two circular metallic particles, which leads to five natural optimization
parameters, namely the radii of the particles, their distances from the surface of the waveguide and
the distance between the particles. In Sections 2–4, we outline the available numerical optimizers and
electromagnetic field solvers. Then in Section 5, we apply the evolution strategy using two fundamentally
different solvers, one is MMP based on a boundary discretization method [10], and another is CONCEPTs
based on a domain discretization method [11, 12]. We perform the statistical analysis of the optimizer
using different solvers. Then we show how the requirements of automatic and robust performance of
the field solver may be obtained and how the results of a stochastic optimizer may be analyzed in
order to obtain information on the complexity of the optimization problem. The optimization results
are shown in Section 6. From the results, we find that even a simpler direct optimizer should perform
well, at least when a start point near the global optimum of interest is set. Because of this finding, at
the end of Section 6, we take advantage of the Nelder-Mead method [13], which is available in COMSOL
Multiphysics, and compare the results.

2. NUMERICAL OPTIMIZERS

In the design of geometric structures, one often faces high-dimensional optimization problems that may
only be tackled numerically. Usually, a real-valued fitness function or cost function is defined and the
optimizer has to locate local or global maxima of the fitness function or minima of the cost function.
Whether one prefers working with fitness or cost functions is not relevant. In all demanding cases, the
optimization problem is non-linear and an iterative search has to be performed. This search may be
subject to additional constraints.

For a long time, mathematicians focused on various deterministic algorithms for non-linear
optimization in high-dimensional parameter search spaces [14]. These algorithms are very mature
and efficient when either the starting point of the search is close to the desired optimum or when
the optimization problem is simple enough. Many of these algorithms require gradient information or
even second order derivatives of the fitness function, which is usually not available when the fitness is
calculated from a numerical solver as in our example. Therefore, only deterministic optimizers without
gradient information are useful for most of the engineering applications. A prominent example is the
Nelder-Mead algorithm that is also known as downhill simplex method [13]. This algorithm is efficient
when the number of dimensions of the parameter search space is rather low, and when there are not
many local optima within the search space. In our 5-dimensional test example, Nelder-Mead could be
applied, if we knew that there is only one optimum in the search space, or if we could approximately
guess its location.

If one is unsure about the problem complexity, one may benefit from an optimization strategy
that is not purely deterministic and includes some randomness. Such optimizers have been studied
intensively in the second half of the 20th century. Many of them are inspired by optimization processes
that seem to be ongoing in physics and nature. An excellent overview may be found in [15].

Currently, the most widely applied nature-inspired algorithms in engineering are probably genetic
algorithms (GAs) [15, 16]. These algorithms mimic the evolution of animals (and plants), where the
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genotype (genetic material in the chromosomes, the genetic code) is separated from the phenotype (the
visible properties of the animal). The genotype of a GA is typically a bit string, but the binary basis
can be replaced easily by some other basis. The phenotype in the case of an N -dimensional parameter
optimization problem is simply a point in the search space, i.e., an N -dimensional vector containing the
N optimization parameters. In order to map the genotype, e.g., the bit string, on the phenotype, some
decoding routine must be provided by the user of the GA. Since it is not unique at all, a good choice of
the decoding is highly important for the GA performance and is often not simple. As a result, standard
GAs are usually outperformed by Evolution Strategies (ESs) [15, 17], which are closely related to GAs
without using the genotype-phenotype scheme with its requirement for coding-decoding. In an ES, the
individual is directly characterized by its N -dimensional parameter vector (the phenotype) and usually,
by a variation vector that is also N -dimensional in typical ES implementations. The variation vector
indicates how much mutation may modify the individual. Beside these differences both GAs and ESs
work with populations of some individuals. They select the best ones as parents for children of the next
generation, create the children by crossover of typically two parents followed by mutation with some
probability, and discard the most unfit individuals.

For our 5-dimensional optimization (see Section 3) problem, we apply a standard (µ+λ) ES with the
number of parents µ = 5 and the number of children λ = 7µ. The factor 7 is known to be a reasonable
choice for standard ES. This algorithm can be downloaded from [18]. A GA or another nature-inspired
or stochastic parameter optimizer might be applied as well, possibly with some additional computational
costs.

3. TEST PROBLEM

Our goal is to optimize the performance of a 2D plasmon-assisted waveguide coupler, having the
maximum power coupled into the waveguide. With the help of plasmonic structures, the power can feed
into the waveguide [3, 4].

Our test problem is shown in Figure 1, where a dielectric waveguide with permittivity 4.0 is
mounted on a glass substrate with permittivity 2.25, and the region above is the free space. An
Hz polarized planewave with 600 nm wavelength is impinging from top-left at an angle of 45 degrees.
Two silver cylinders are embedded in the waveguide. Under this frequency, the permittivity of silver
is −15.855 + 0.432i [19] and therefore the cylinders behave as a plasmonic coupler. The thickness of
the waveguide is 200 nm, and for the left cylinder, the distances between the upper and lower interface
of the waveguide are v1 and v2, and for the right cylinder v4 and v5. The distance between the two
cylinders is v3.

In order to optimize the power coupled into the waveguide, we place an observer interface
L = 1300 nm away from the center of the left cylinder. One can choose the power flux through L
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Figure 1. The geometrical configuration of the test problem. The dielectric waveguide with
permittivity 4.0 is placed in between the glass and air. Two silver cylinders are embedded in the
waveguide. The structure is excited by an Hz polarized plane wave with 600 nm wavelength. The
location of the cylinders is characterized by V̄ = {v1, v2, v3, v4, v5}, which are the parameters of the
optimization problem.
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as the fitness function F .
F =

∫

L
PAV dl.

In our experiments, in order to compare the results among different methods, we apply the
normalized fitness function F̂ . We determine the best parameters among all methods, and compute
the best fitness Fmax using these parameters. Then we normalize the fitness function with Fmax. The
normalized fitness function F̂ reads

F̂ =

∫
L PAV dl

Fmax
.

The way of selecting the geometrical parameters may seem a bit un-natural at the first glance;
however, it works very well with the optimizer. The greatest advantage is that all the five parameters
do not interfere with each other. Otherwise, if one selects the radii of the cylinders as the parameters,
some additional constrains have to be applied in order to avoid the cylinders to touch the substrates or
to collide. Secondly, it is rather simple to map the data into range [0, 1], which fits the standard data
interface for our optimizer.

In our experiments, V̄ = {v1, v2, v3, v4, v5} represents the data set with v1, v2, v4, v5 ∈ [20, 90] nm,
and v3 ∈ [20, 600] nm. For the numerical optimizer, we normalize these parameters by linear mapping
on P̄ = {p1, p2, p3, p4, p5}, with p1, p2, p3, p4, p5 ∈ [0, 1]. Hence, the mapping between the two sets is

vi = 20 + 70pi nm, i = 1, 2, 4, 5
v3 = 20 + 580p3 nm,

which represents a 5-dimensional optimization problem with standard parameter set P̄ .

4. SOLVERS FOR PLASMONIC STRUCTURES

In computational electromagnetics one may characterize the available numerical methods by the way
they handle time and space. This leads to the two categories of time-domain and frequency-domain
solvers. Time-domain solves such as FDTD attracted much interest and were also used for plasmonics.
However, FDTD requires an extremely fine discretization in space (0.5 nm grids) and time (because of
the stability criterion) [20] and suffers from undesired stair-casing effects. Another problem is caused by
the fact that metals are strongly dispersive, i.e., their permittivity is strongly frequency-dependent at
optical frequencies. To handle this problem, simplified Drude and Lorentz models are usually applied,
which introduce additional errors, especially in the area of interest, where the real part of the relative
permittivity of the metal is changing its sign. Since we want to avoid errors of the field solvers that
might disturb the optimizer, and since we intend to optimize the plasmonic waveguide coupler for a
certain frequency, we do not consider time-domain solvers in the following.

Since most of the configurations of interest consist of materials separated by interfaces or
boundaries, one may have two categories of space discretization, domain discretization, where the entire
space is discretized by some elements of finite size (Finite Element Method FEM) or where only the
interfaces or boundaries are discretized. When the boundaries are discretized by elements of finite size,
the term Boundary Element Method (BEM) is used.

FEM and similar domain discretization methods suffer from the fact that many structures of
interest are not finite and need an appropriate truncation, typically by introducing absorbing boundary
conditions (ABCs) [21] or perfectly matched layers (PMLs) [22]. ABCs and PMLs require additional
implementation effort and may introduce additional errors, which must be carefully checked when
numerical optimizations are being performed. However, since FEM is most widely used, we want to
apply it also in the following.

In order to get information on the FEM accuracy, we need an accurate simulation tool, preferably
one that is based on a boundary discretization technique. Since the boundary discretization by means
of boundary elements may introduce sharp wedges and corners — which may cause numerical problems
in plasmonics — we use the multiple multipole program (MMP) [10], which is an element-free boundary
discretization technique that is very close to analytic solutions and therefore may be used as a reference.
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It is important to note that something similar to domain truncation by means of ABCs and PMLs
is often not required in boundary discretization methods because the boundaries are usually finite. A
typical example is an antenna surrounded by free space. The boundary of such an antenna, i.e., its
interface to free space is indeed finite. In our example of an antenna inside a waveguide (for coupling
a plane wave into the waveguide), the boundaries of the antenna are finite, but the boundaries of
the waveguide are assumed to be infinite since the waveguide is much longer than the wavelength.
Consequently, we need some appropriate procedure to discretize such a structure. This will be outlined
in Section 5. As a result, we also introduce some error in the MMP model and it is difficult to figure out
whether the MMP or the FEM error is higher. Since the two methods are fundamentally different, we
can assume that the numerical error is of order of the differences between the MMP and FEM results.
Thus, we can at least estimate the error of our simulations.

5. SIMULATION METHODS

5.1. Boundary Discretization — MMP

As a reference solution for the numerical optimization problem described in Section 3, we used MMP
together with a genetic optimization algorithm. In order to solve the scattering problem in the
given layered medium and calculate the corresponding fitness values for the optimization routine, we
use the open source numerical implementation of MMP and layered media Green’s functions called
OpenMaXwell [23]. By using the automatic expansion distribution routines of OpenMaXwell for the
MMP solution, we obtain the results in an efficient and robust way for all the different optimization
parameter combinations (the boundary condition mismatch error measured on the scatterers is less than
0.1 percent for the numerical results presented in Section 6). For a detailed description of MMP analysis
for layered media, refer to [24–26].

5.2. Domain Discretization — FEM/CONCEPTs

We choose the C++ library CONCEPTs as our FEM solver, which features high polynomial basis functions
and quadrilateral curvilinear elements. Our previous research shows that CONCEPTs with its PML
implementation provides high accuracy and efficiency for the problems of plasmonic waveguides, the
details can be found in [27].

The ES from [18] is rewritten into MATLAB scripts to control the optimization process. For each
generation, according to the current fitness distribution, the ES scripts generate a new generation, and
then pass the parameters to the mesh generator to generate parametric meshes. The mesh generator is
part of COMSOL Multiphysics. In order to make it parametrically controllable, we link COMSOL with a
MATLAB routine with the help of COMSOL LiveLink for MATLAB. Then the CONCEPTs routine is called
to read the parametric meshes and solve the electromagnetic field. Finally, the fitness distribution of
the new generation is computed from the CONCEPTs results. The process is repeated until the maximum
number of iterations is reached. Figure 2 shows the control flow of the optimization.

In practice, a number of issues require attention when using meshes as generated by COMSOL. Firstly,
CONCEPTs only works with quadrilateral meshes; however, in some circumstances, COMSOL will generate
meshes with mixed quadrilateral and triangular elements, as shown in Figure 3. Secondly, when utilizing
quadrilateral curvilinear elements, if there is an element with two adjacent curved edges, as shown in
Figure 4, the simulation will fail. As the plasmonic particles have circular shape, the incidence angle at
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FinishMesh file Fitness

No
Parameters
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Figure 2. The control flow of the optimization. The framework of parametric mesh generation links
CONCEPTs with COMSOL.
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Figure 3. COMSOL mesh with mixed quadrilateral and triangular elements, which causes problems when
solving with CONCEPTs. The red circle points out the problematic triangular elements. This problem
can be solved by increasing the overall refinement level.

Figure 4. COMSOL elements with neighboring curved edges, which causes problems when solving with
CONCEPTs. The red circle points out one of the problematic elements. This problem can be solved by
a further refinement of the circular interface. Note that in the illustration, straight-sided elements are
displayed as generated by COMSOL. Problems occur only when the elements are subsequently curved
leading to coordinate degeneration at the node indicated by the arrow.

the grid node located between the two curved edges is 180 degrees. This leads to a degeneration of the
local element coordinates at the node indicated by the arrow.

To overcome the above problems, we need to introduce control parameters in the MATLAB COMSOL
scripts. For the first problem, in order to control the overall refinement level, we introduce parameter
γ1, which has the meaning that the minimal size of elements is 20/γ1 nm. When a triangular element
is detected, the script will send requirement to increase γ1. The best empirical values for our problem
would be 1.05 as the starting value and 0.15 as the increment, respectively. For the second problem, we
introduce parameter γ2 to control the refinement level of the circular interface. It’s defined in the way
that the minimal size of the element on the circle is R/2γ2, where R is the radius of the corresponding
cylinder. When an element with two curved edges is detected, the algorithm will send requirement to
increase γ2. The best empirical values for our problem would be 1.2 as the starting value and 0.15 as
the increment step, respectively.

In the CONCEPTs simulation, basis functions of polynomial degree up to 7 are used. The polynomial
order 7 is a good choice for the fast simulation and high accuracy. The computational time varies
according to the refinement level of the meshing step. A typical number of degrees of freedom (DOFs)
is some thousands, and a single simulation takes around 6 to 20 seconds, depending on the complexity
of the mesh.

6. OPTIMIZATION RESULTS

6.1. ES Optimization

6.1.1. MMP as Solver

For the genetic optimization routine, we use the parameters number of parents µ = 5, number of
children λ = 35, the strength of mutation σ = 0.1, and the strategy of keeping the best five individuals
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of the current generation, with a maximum number of solver calls of 1000. As a result, we obtained
the parameters V̄MMP = {20.00, 65.91, 434.64, 20.00, 77.34} nm that gives the best fitness value. The
distribution of the optimization parameters in the search space and the convergence of the fitness value
are plotted in Figures 5(a) and 5(b), respectively. Figure 5(a) shows that the ES converges first to
a local optimum. After 300 iterations, it increases the variability and then converges to the global
optimum in the search space. Figure 5(b) shows the distribution of the five normalized parameters
{p1, p2, p3, p4, p5} during the ES search. This plot gives a rough impression of the fitness landscape,
especially near the optimum found. As one can see, all p1 and p4 values at high fitness levels are close
to 0. This indicates that one might find better solutions by allowing smaller values for the corresponding

0 200 400 600 800 1000

(a)

0 0.2 0.4 0.6 0.8 1

p
p
p
p
p

(b)

0 200 400 600 800 1000

(c)

0 0.2 0.4 0.6 0.8 1

(d)

0 200 400 600 800 1000 0 0.2 0.4 0.6 0.8 1

(e) (f)

0

0.2

0.4

0.6

0.8

1

F
itn

es
s

0

0.2

0.4

0.6

0.8

1

F
itn

es
s

1
2

3
4
5

0

0.2

0.4

0.6

0.8

1

F
itn

es
s

0

0.2

0.4

0.6

0.8

1

F
itn

es
s

p
p
p
p
p

1
2

3
4
5

0

0.2

0.4

0.6

0.8

1

F
itn

es
s

0

0.2

0.4

0.6

0.8

1

F
itn

es
s

p
p
p
p
p

1
2

3
4
5

Number of iterations Normalized parameters

Number of iterations Normalized parameters

Number of iterations Normalized parameters

Figure 5. The results of the 5-dimensional optimization. The maximum number of individual
simulations is 1000, with the number of parents µ = 5, number of children λ = 35, and strength of
mutation σ = 0.1. p1 to p5 are the normalized geometrical parameters, which are mentioned in Section 3.
The strategy keeps the best 5 parent individuals in each generation. (a) Shows the convergence with
respect to the number of iterations using MMP, and (b) shows the distribution of the normalized
parameters versus the fitness function using MMP. (c), (d) are the corresponding results from the
first run of CONCEPTs simulation, and (e), (f) are from the second run of CONCEPTs simulation. The
optimizations look different each time, only due to the randomness of the optimizer.
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parameters v1 and v4, which are the distances of the cylinders from the top interface. the shape of the
envelopes of p2 and p5 are rather broad near the optimum. This indicates that fabrication inaccuracies
of the corresponding v2 and v5 are not affecting the results very strongly. Note that v2 and v5 indirectly
define the diameters of the cylinders. The sharpest peak can be observed for p3, which indicates that
the fabrication tolerance for the distance between the cylinders will be rather small.

6.1.2. CONCEPTs as Solver

We take the same configuration as of MMP, i.e., µ = 5, and λ = 35, σ = 0.1, and keep the best
five individuals of the current generation. The optimizations are performed twice, with maximum
number of solver calls of 1000 each time. Figures 5(c), 5(e) show the convergence results, and
Figures 5(d), 5(f) show the distributions of the parameters. As one can see, the ES convergence
depends as much on the random initialization of the ES as on the selection of the field solver. The
shapes of the envelopes of {p1, p2, p3, p4, p5} near the optimum are very similar in all cases, indicating
that the interpretation in Section 6.1 is also valid here. The optimization reaches best fitness with
V̄CONCEPTs = {20.00, 62.89, 437.63, 20.00, 75.86}nm, which are close to the MMP values. Note that the
differences of the maximum fitness values found with the two CONCEPTs runs are around 0.1% and similar
differences between the MMP and CONCEPTs solutions may be observed as well. The optimal values of
v1 and v4 are always 20 nm, i.e., the minimum allowed distances from the top layer. The variations in
the optimal v2 and v5 values are around 5%, which supports the finding of the rather high fabrication
tolerances for v2 and v5. The more critical parameter v3 has a variation of less that 1%, which is also
in agreement with the interpretation of Figures 5(b), 5(d), 5(f).

Due to the randomness of the ES, the convergences look some what different, even though the
optimization parameters are exactly the same. The first one is more ‘lucky’ that its convergence is
faster and the distribution is denser compare to the second one. The optimization progress with FEM
are also different from the one with MMP, this is also because of the randomness. The fact shows that
the procedure of the ES optimization is uncontrollable, even with very good empirical optimization
parameters.

6.2. Deterministic Optimization with COMSOL

We also used a deterministic optimizer to solve the same 5-dimensional optimization problem, in
comparison with the optimization results of ES from Section 6.1. We used the Nelder-Mead method,
which is embedded in the commercial FEM solver COMSOL Multiphysics version 4.3b. In the COMSOL
simulation, we used the default values of the solver (second order shape functions with the largest mesh
size set to be less than 1/10 of the incident wavelength in the corresponding domain) and the built-in
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Figure 6. Five-dimensional optimization using Nelder-Mead method in COMSOL. There are 172 instances
of simulations, with optimality tolerance of 0.01 and the initial values of the optimization set to be the
mid-point of the corresponding parameter bounds. p1 to p5 are the normalized geometrical parameters,
which are mentioned in Section 3. The figure shows the distribution of the parameters versus the fitness
function.
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Figure 7. The fitness function of two-dimensional scanning using OpenMaXwell. The scanning
parameters are the distance between the two cylinders v3, and the lower distance from the substrate v0,
respectively.

Nelder-Mead optimization routine (optimality tolerance of 0.01 and the initial values of the optimization
set to be the mid-point of the corresponding parameter bounds). The distribution of the optimization
parameters in the search space are plotted in Figure 6.

As a deterministic algorithm, Nelder-Mead method requires only 172 instances to converge in this
example. However, it works with more strict conditions than ES: the dimension of the optimization
should not be very high, and there should not be many local optima within the search space. In order to
check the above criteria, we approximated the local optima distribution by a reduced two-dimensional
optimization problem. We reduced v2, v5 into one parameter, by fixing v2 = v5, which is noted as v0.
The other two parameter from the original problem are eliminated by fixing v1 = v4 = 20 nm. And the
last parameter is v3, which is the distance between the two cylinders. Then the optimization problem
reduces to a two-dimensional optimization problem with parameters v0 and v3. With OpenMaXwell
as solver, we scan v0 from 20 nm to 150 nm, and v3 from 20 nm to 600 nm. Figure 7 shows the fitness
function with respect to the two parameters. From the figure, one can observe the distribution of the
local optima for the reduced 2D optimization problem. From this information, one can approximate the
distribution of the local optima for the original 5D problem. Our starting point is close to the global
optima, therefore the optimization results is the global one.

However, different choices of the starting points can lead to a globally non-optimal solution. It
is very important to make good initial guess for the Nelder-Mead method and most of the other
deterministic optimization methods. Unfortunately, most of the plasmonic optimizations are high
dimensional, and it’s hard to make good initial guesses. Therefore, even though the computational
cost can be very high, it is recommended to use the ES optimization for plasmonic problems because
of the higher probability to find the global optimum.

7. CONCLUSIONS

A plasmon-assisted waveguide coupler was optimized using various methods. We considered five
geometry parameters leading to a five-dimensional optimization, which was addressed by means of
nature-inspired and deterministic algorithms.

We employed a robust optimizer based on a evolution strategy (ES), representing the category of
nature-inspired optimization algorithms. CONCEPTs and the multiple multipole program (MMP) were
used as different field solvers. CONCEPTs is a high-order FEM library. In order to link CONCEPTs with
the optimizer and the mesh generator, a framework of parametric mesh generation was implemented.
MMP is an element-free boundary discretization technique, and it can provide very accurate solutions
close to the analytic ones. We performed a statistical analysis of the optimizer, and showed that the
results using different solvers converged to very similar optimal parameters. The optimizer behaves
robust for our problem. However, due to the randomness, the optimization convergence looked different
each time, even with the same solver using exactly the same parameters.

We also used the Nelder-Mead method, a deterministic optimization algorithm, in COMSOL
Multiphysics. The Nelder-Mead method is very efficient but with the following requirements: the
number of dimensions of the optimization is low, and there are not many local optima within the search
space. Our test problem is five-dimensional, which fulfills the first requirement. In order to check the
second requirement, we scanned the reduced problem with only two parameters, and the approximated
local optima distribution proved that Nelder-Mead can be applicable for our problem within the given
range of the parameters.
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However, for more general problems of plasmonic optimization, they are usually high dimensional,
and more importantly, it is very difficult to make a good initial guess, which is likely to lead the
deterministic optimizer into a local optimum. Therefore, although the computational cost of performing
an ES optimization can be very high, it is outweighed by its much higher probability to find the global
optima.
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