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Calculation of the Mutual Coupling Parameters and Their Effects
in 1-D Planar Almost Periodic Structures

Bilel Hamdi1, 2, *, Taoufik Aguili1, Nathalie Raveu2, and Henri Baudrand2

Abstract—This paper proposes a new modal analysis based on Floquet’s theorem which is needful for
the study of a 1-D periodic phased array antenna excited by arbitrary located sources. This analysis
requires an accurate estimation for calculation of the mutual coupling parameters (for example: mutual
impedances or admittances . . . ) between the array elements and their effects integrating a large planar
radiating structure. Two different formulations are suggested, in spectral and spatial domains, to solve
the problem and to calculate the coupling coefficients between the neighbouring elements in a periodic
environment. Important gain in the running time and used memory is obtained using Floquet analysis.
One numerical method is used for modeling the proposed structures: the moment method combined
with Generalized Equivalent Circuit (MoM-GEC).

1. INTRODUCTION

Actually, the modeling of periodic and almost periodic planar structures has been extensively the
subject of considerable research for a long time especially in communication systems as satellite and
radar applications, wavelength and polarization selective components in microwave, millimeter-wave
and optical wave regions [2–4, 7 11 28].

Furthermore, various numerical techniques have been proposed to study any given structure for
solving partial differential equations with periodic boundary conditions. Examples are the finite element
method (FEM), the method of moment (MoM) and finite differences in the time domain method (FDTD)
[1, 3, 28].

Therefore, we are interested in the mutual coupling for estimating the performance of an array
antenna. Several articles show that it is impossible to get rigorous result when dealing with the mutual
coupling problems: element-by-element method and infinite periodic structure method [2, 16]. To take
coupling effects into account, a new modal analysis is necessary [10].

This work proposes an efficient approach to deal with the 1-D periodic micro-strip lines excited by
located sources, when the Floquet’s theorem asserts that the impressed fields are periodic and that the
radiated fields have discrete spectra in the wavenumber space. The field components can be therefore
expressed in the generalized Fourier series expansions, and the analysis region can be reduced to only
one periodicity cell.

The field sources arrangement verifies the periodicity of the problem. Thus, as all approaches
for periodic structures do, the usual techniques based on direct application of Floquet’s theorem are
applicable. Then most of the approaches for periodic structures are based on the Floquet theorem.

This fact increases the complexity of the problem of the investigated problem and fitting the modal
analysis of the periodic structure being excited [2, 13, 15, 16].
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This study shows some fundamental properties of the impressed electromagnetic fields in arbitrary
located sources for periodic structures and introduces the periodic Fourier transform to approach the
scattering problem of periodic structures in the spectral-domain [8, 11, 14].

For many structures, the method of moments (MoM) represents a suitable technique for computing
the coupling between elements.

Our main goal here is to compute the current density lying on the strip lines considering the periodic
boundary conditions and to deduce the mutual coupling parameters between array elements.

Due to the adoption of the modal analysis based on the Floquet states, the spectral formulation
using the MoM-GEC results in a very important gain in the running time and used memory.

This paper is organized as follows. In Section 2, the background including the theoretical Floquet
modal analysis is reviewed. First, the Finite Fourier Transform (FFT) and the spectral decomposition
of the located source and the relevant 1-D and 2-D structures are given. The studied structures and the
problem formulation are recalled in Section 3. It explains the manner that extracts the equivalent circuit
which contributes to obtaining the integral equation based on the impedance operator using Generalized
Equivalent Circuit (GEC). The following section illustrates the numerical results and discussions for
the convergence of the Floquet impedance, input impedance viewed by located source, the convergence
of current density on the strip line and the mutual coupling (Si,j) data between 1-D periodic elements
which are computed using two different formulations (spectral and spatial formulations ) and compared
to Ansoft HFSS, where the scan blindness occurs. This modal procedure minimizes the computation
time and memory consumption considerably compared to the classical spatial case.

2. THEORY AND BACKROUND

2.1. Setting of the Problem

The global structure (or reference structure) under consideration is schematically shown in Figure 1
and composed of finite (or infinite) periodic phased array planar strip-lines with their own excitations
(arbitrary located voltage sources). All elements are shielded in waveguide composed of two perfect
electric boundaries along y-direction and by convenient boundary conditions along the x-direction
which can be chosen from the following options: (a) Perfect Electric boundaries, (b) Perfect Magnetic
boundaries, (c) Periodic boundaries with null phases shift, and (d) a combination of these boundary
conditions. The top and the bottom are respectively an open circuit and a ground plane. The considered
planar circuit is lossless.

Figure 1. A section of periodic phased array micro-strips line.
EEEE: waveguide with electric walls
EMEM: waveguide with two electric walls and two magnetic walls
EPEP: waveguide with two electric walls and two periodic walls

Really, any radiator element placed next to another one, which is itself a radiator, allows to change
the electromagnetic behavior and even deteriorate it.
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For this configuration, the electromagnetic interaction between these periodic elements results in
the modification of the current densities lying on each metallic part and generates a change of the
radio-electronic characteristics (radiation, input impedance, directivity, etc.).

Using the modal analysis, the periodic symmetry of the structure allows us to concentrate on one
cell of the array. It is the reason that we take only a basic structure formed by elementary planar
structure locally excited by a rectangular voltage source, bounded in convenient boundary conditions
(rectangular dielectric waveguide), similar to the global structure along y direction and two periodic
boundaries along x-direction. Also, the top and bottom are an open circuit and a ground plane.

The interaction and mutual coupling between cells are taken into account through periodic
boundary conditions at the borders of the unit cell (Floquet’s theorem).

We should characterize this unit structure by proper states (or proper phases) which are controlled
by the Floquet’s modes which permit to reconstruct a final state or a spatial state of the whole structure
(global structure) by applying superposition theorem.

These proper states of the basic structure (unit cell) contain information about the determination
of the mutual coupling parameters established between distinct elements which belong to reference
structure (global structure).

The determination of [S] matrix is more complex by using classical spatial method (direct manner),
but it is sufficient to predict it by a simple Fourier Transform based on Floquet’s modes to identify all
mutual coupling.

The periodic walls delimiting any Nx cells (one-dimensional case) of the array are placed at the
following positions:

x(i) = id (1)

−Nx

2
≤ i ≤ Nx

2
− 1

Thus, the central cell (basic) can establish an interaction with other elements along x-direction
(respectively in the two directions on the left and right in bi-dimensional case), following a leaky-waves
which cause a change for the current appearing on the surface of each cell.

2.2. Modal Analysis and Fourier Transform’s Principle of Feeding Sources: Floquet’s
Theorem

Firstly, we will consider only the one-dimensional case of the located excitation’s modal decomposition
in the spectral domain, and generalization in two dimensions is very easy.

Provided that a one-dimensional structure (1-D) along x-axis, with N identical cells. Each cell
is excited by a located source and placed periodically according to the (ox) direction as described in
Figure 1.

This structure is taken as infinite in (±x) and periodic with a period d. E(x) represents a field
reacting with periodic surface. As mentioned before, it is useful to consider the geometric periodicity
forcing the field to be periodic.

More generally:
E(x + Nxd) = CNxE(x) (2)

C = a complex constant.
For boundedness,

| C |≤ 1 (3)

In general
C = e+jαd (4)

where kx = 2mπ
d + α is a wavenumber.

In our case, only the amplitude of these sources varies from an element to another.
The study is based on one periodic cell with ejαd phases and −π ≤ α ≤ π, that entrains a

dependence in mode α.
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Next, we propose f̃α(x) as a periodic function or solution of propagation’s equation (can be an
electric field or a current density), and the result can be written as [23]:

f̃α(x) = ejαx
∑
m

f̃m,α ej 2mπ
d

x (5)

Consequently
f̃α(x + d) = ejα(x+d)

∑
m

f̃m,α ej 2mπ
d

(x+d) = f̃α(x) (6)

where m and α correspond respectively to (1-D) Floquet’s mode and spectral domain mode.
For an infinite structure, where α belongs to Brillouin domain:

α ∈
[
−π

d
,
π

d

]
(7)

with:
dα =

2π

L
(8)

and
L = Nxd (9)

So, it is important to indicate:
1

Nx
=

d

2π
dα (10)

According to the superposition theorem, we can always note:

f(x) =
d

2π

∫ π
d

−π
d

f̃α(x) dα (11)

Based on Floquet’s theorem, any planar periodic function can be expanded as an infinite
superposition of Floquet harmonics.

In the following modal formulation, α is considered continuous, which allows to study an infinite
case, but in a practical structure we use the word ‘real finite array’ to refer to a physical finite case.
For this reason, one difference has been found, the discretization of modal state (Floquet modes), which
becomes:

αp =
2πp

Lx
(12)

with

−Nx

2
≤ p ≤ Nx

2
− 1 (13)

Lx = Nxd (14)
Similarly, we express the superposition theorem:

f(x) =
∑

p

f̃αp(x) (15)

The FFT can be applicable: let us consider Ei a group of sources in each cell, so it is clear to
assume that Ẽαp can be a group of spectral values for the central cell against the p states. Next, we
can find:

E(id) =
1√
Nx

Nx
2
−1∑

p=−Nx
2

Ẽαpe
jαp(id) (16)

In fact, the IFFT is given below:

Ẽαp(0) = Ẽαp =
1√
Nx

Nx
2
−1∑

i=−Nx
2

E(id)e−jαp(id) (17)
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While knowing this spectral distribution, we can note entirely:

J(id) =
1√
Nx

Nx
2
−1∑

p=−Nx
2

J̃αpe
jαp(id) (18)

The IFFT is written identically:

J̃αp(0) = J̃αp =
1√
Nx

Nx
2
−1∑

i=−Nx
2

J(id)e−jαp(id) (19)

Assuming that the spectral current density on metallic domain is known, the Floquet-input
impedance is rapidly obtained when the mutual coupling effects between elements are taken into account
by using periodic walls in one unit cell. However, the modal analysis makes it possible to apply the
Fourier Transform principle to periodic feeding sources problem.

Also, the Finite (Discrete) Fourier transform (FFT or DFT) can be expressed with matrix-vector
notation:

[Ẽαp ] = TF [E(id)] (20)

Respectively:
[J̃αp ] = TF [J(id)] (21)

where the Fourier matrix F has elements
TF = wip (22)

where w is a complex nth root of unity:

w = e−j 2πd
Lx = e−j 2π

Nx (23)

It turns out that F is nearly its own inverse. More precisely, FH , the complex conjugate transpose of
F , satisfies

TFHTF = NxI (24)

so
TF−1 =

1
Nx

TFH (25)

This allows us to invert the Fourier transform:

[E(id)] =
1

Nx
TFH

[
Ẽαp

]
(26)

Respectively:

[J(id)] =
1

Nx
TFH

[
J̃αp

]
(27)

The 1
Nx

scaling factor in the inverse transform is sometimes replaced with 1√
Nx

scaling factors in both
transforms.

How is Z = Z(i, j) matrix calculated?
Usually, we use the spatial domain to explain interaction between neighbouring elements, but now

it is enough to use the FFT which facilitates this kind of problem by calculating spectral impedance for
each mode, then we obtain the main result rapidly by a simple transformation (32). Thus, we can set
the following relations: First, we consider this spectral representation:

[
Ẽαp

]
=

[
z̃αp

] [
J̃αp

]
(28)

Or the entire spatial expression can be obtained by:

[Eid] = [Zij ] [Jjd] (29)
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which leads to:
TF−1

[
Ẽαp

]
= [Zij ] TF−1

[
J̃αp

]
(30)

Then, we have: [
Ẽαp

]
= TF [Zij ]TF−1

[
J̃αp

]
(31)

Finally, (31) compared to (28) results in the following relation:

[Zi,j ] = TF−1
[
z̃αp

]
TF (32)

where z̃αp is a diagonal operator for input impedance of each Floquet mode. Following a similar
procedure, the mutual admittance and the scattering parameters between periodic elements in an array
environment can be obtained as:

[Yi,j ] = TF−1
[
ỹαp

]
TF (33)

[Si,j ] = TF−1
[
s̃αp

]
TF (34)

Another way of calculating the coupling data is proposed when we can refer frequently to the following
expression to compute the scattering parameters as:

[Si,j ] =
[
Zi,j

Zc
− I

] [
Zi,j

Zc
+ I

]−1

(35)

where [Zi,j ] is the mutual impedance between two different elements located at x(i) = id and at
x(j) = jd. Zc designates the reference impedance which is often chosen as 50 Ω, and I is an identity
matrix.

After studying the one-dimensional case, it is rather simple to describe a bi-dimensional case
especially for finite number of planar dipoles [3].

The structure described in [3] is a generalization of the preceding case with more complex
periodicities. The addition of the second direction makes two modes (αp, βq) in the spectral space
when each element is surrounded by suitable periodic walls along (ox) and (oy) directions in order to
tackle all elements.

3. PROBLEM FORMULATION

In this section, it is important to clearly explain the theoretical development to solve planar structure
in periodic environment.

That is why two formulations are proposed in this work: The first is called spectral formulation
which is based on studying the unit cell described in Figure 2. The second is a spatial formulation
associated to a global structure given in Figure 1.

Figure 2. A unit cell of the whole structure.
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3.1. Spectral Formulation

Whenever applied to periodic structures, the first step of this formulation is to study the elementary
cell particulary, instead of treating the whole structure at once.

The environment of this studied structure is expressed by an impedance (or an admittance) operator
corresponding to evanescent modes. It is important to note that the Ẑα expression following the Dirac
notation is rewritten as:

[
Ẑupper,down

pq,st,α

]
=

[∑
m,n

〈gpq,α|fmn,α〉zupper,down
mn,α 〈fmn,α|gst,α〉

]
(36)

and the inner product is given by:

〈u|v〉 =
∫∫

D
uv∗ ds (37)

(* denotes the complex conjugate), and |fmn,α〉 represents the modes |TEmn,α〉 and |TMmn,α〉.
Here we will define a new expression of |fTE,TM

mn,α 〉 functions, combined electric-periodic walls,
which are:

{ |TEmn,α〉
m ∈ Z
n ∈ N∗

}
=





kyn√
k2

xm,α+k2
yn

√
2

dL

exp(+j(kxm,αx)) sin(kyny)

j
kxm,α√

k2
xm,α+k2

yn

√
2

dL

exp(+j(kxm,αx)) cos(kyny)

(38)

{ |TEm0,α〉
m ∈ Z∗
n = 0

}
=

{
0

j
√

1
dL exp(+j(kxm,αx))

(39)

{ |TEMα〉
m = 0
n = 0

}
=

{ |TE00,α〉
m = 0
n = 0

}
=

{
0

j
√

1
dL exp(+j(αx))

(40)

{ |TMmn,α〉
m ∈ Z
n ∈ N∗

}
=





− kxm,α√
k2

xm,α+k2
yn

√
2

dL

exp(+j(kxm,αx)) sin(kyny)

j
kyn√

k2
xm,α+k2

yn

√
2

dL

exp(+j(kxm,αx)) cos(kyny)

(41)

The |TMm0,α〉 and |TM00,α〉 do not exist.
kxm,α = 2mπ

d + α and kyn = nπ
L are wavenumbers.

By applying the local form of Maxwell equations and verifying 〈fmn,α|fm′,n′,α〉 = δm′,n′
m,n (the

Kronecker symbol), we can be sure that the new basis functions obey to:
−→
rot( ~E) = −jµω ~H and

div( ~E) = −jβEz, precisely:

For |TMmn,α〉 the:
{

Hz = 0
Ez 6= 0 ⇒ −→

rot(|TMmn,α〉) = ~0

For |TEmn,α〉 the:
{

Ez = 0
Hz 6= 0 ⇒ div(|TEmn,α〉) = 0

z̃mn,α, the total modal impedance associated with these vectors, can be expressed as:

z̃TE
mn,α,upper =

jωµ0

γ2(kxm,α, kyn)
(42)

z̃TM
mn,α,upper =

γ2(kxm,α, kyn)
jωε0

(43)
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Figure 3. Discontinuity plane (Ω). Figure 4. Equivalent circuit for unit cell.

γ2(kxm,α, kyn) = k2
xm,α + k2

yn − k2 (44)

And

z̃TE
mn,α,down =

jωµ0

γ2(kxm,α, kyn)
tanh(γ(kxm,α, kyn)h) (45)

z̃TM
mn,α,down =

γ2(kxm,α, kyn)
jωεrε0

tanh(γ(kxm,α, kyn)h) (46)

γ2(kxm,α, kyn) = k2
xm,α + k2

yn − εrk
2 (47)

K = 2πf
√

εrε0µ0 (48)

|gpq,α〉 designates a trial function and Ipq,α the unknown coefficients of this function to be determined.
The real source (with uniform field) Ẽα = fṼα = 1

δ Ṽα represents the excitation term associated
to feeding element location connected to the radiating surface by the strip line (see Figure 3). This
kind of source must also respect the property of the located element which should be smaller than the
wavelength (dimensions inferior than λ

10) in order to introduce a neglected phase shift.
It is possible to express the excitation source by a non-uniform field, in which Ẽα = fṼα =

Ṽα
Πδ

1√
1−( 2

δ
(y− δ

2
))2

[21, 22].

The discontinuity surface can be dissociated into a metallic surface and a dielectric surface. The
virtual current source J̃e,α is defined on the metallic surface and is null on the dielectric part. We note
Ẽα its dual.

This studied problem is modeled using the GEC method, and the circuit in Figure 4 is able to
identify the relation between the electric field and the current using the impedance operator.

The development done for the unit cell leads to the expression of the input impedance for any
spectral mode as stated in (49).

˜Zin,α =
(

t
[
Ãα

] ([
Ẑdown

pq,st,α

]−1
+

[
Ẑupper

pq,st,α

]−1
)[

Ãα

])−1

(49)

where [
Ãα

]
= [〈f |gpq,α〉] =

[〈
1
δ
|gpq,α

〉]
(50)

In fact, when we apply the laws of tension and current, we deduce the relation between virtual and
real sources and its duals [12].
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From this circuit, we can deduce the following system:

J̃α = J̃e,α (51)

Ẽe,α = Ẽα + ẐαJ̃e,α (52)

In this case, the used waveguide is the EPEP guide. We are interested in the study of the input
impedance for each mode in spectral domain, and we can deduce the current densities lying in metal
part including the source domain to verify the boundary conditions.

Next, the integral equation is solved on the central element by applying the MoM method using
Galerkin procedure. Taking into account that the original periodic excitation is written as a combination
of Floquet-periodic impressed fields by means of the linear transformation in (11), (15), after applying
the superposition principle, the current density excited by the located source on the periodic micro-strip
line can be finally computed as [3, 9, 17]:

J(x, y) =
d

2π

∫ π
d

−π
d

J̃α(x, y) dα (53)

Similarly, we express the superposition theorem:

J(x, y) =
1√
Nx

∑
p

J̃αp(x, y) (54)

3.2. Spatial Formulation

Secondly, this case will be studied separately and corresponds to global structure (reference structure).
Generally, using this direct manner, which employs a spatial formulation to calculate an integral-
equation (IE), permits to deduce the mutual relationships that can be computed by an impedance
matrix [6] and compared with others obtained by simple transformation (FFT) explained in relation
(32).

Next, Nx uniform and identical sources will excite respectively every strip-line that belongs to the
whole array configuration (also non-uniform with distinct amplitude of these sources can be treated).

These sources are called located elements which have neglected dimensions compared with the
guide’s wavelength λg. The MoM-GEC approach consists of Maxwell equations and the continuity
relations with generalized equivalent circuit model [5, 18–20, 26]. Their generalized equivalent circuits
are shown in Figure 5.

Figure 5. Equivalent circuit for global structure.

Let |fTE,TM
mn 〉 be the modes (or basis functions) of the proposed waveguide enclosing the studied

structure (see Figure 1).
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The excitation fields Ei, i ∈ [0, N − 1] are expressed as follows Ei = Vifi where fi = 1
δ represents

the fundamental excitations modes.
The impedance operator Ẑ is expressed as the function of higher-order modes and their modes

impedances zTE,TM
mn . The unknown of the problem J i

e describes the virtual current appearing on each
metal part and represents the electromagnetic state on the discontinuity interface.

So J i
e is expressed as a series of known test functions gi

pq weighted by unknown coefficients.
Based on its corresponding equivalent circuit model depicted in Figure 5, the generalized Ohm and

Kirchhoff laws are then rewritten as equations system:
{

Ji = Je,i

Ee,i = Ei + ẐJ
(55)

with:
J = Je,0 + Je,1 + . . . + Je,N−1 = J0 + J1 + . . . + JN−1 (56)

A formal relation between sources (real and virtual) and their duals is given in (57):



J0

.

.

JN−1

Ee,0

.

.

Ee,N−1




=




0 . . 0 1 0 . 0

0 . . 0 0 1 0 .

0 . . 0 . 0 1 0

0 . . 0 0 . 0 1

1 0 . 0

0 1 0 .

. 0 1 0 ˆZpq,st

0 . 0 1







E0

.

.

EN−1

Je,0

.

.

Je,N−1




(57)

After that, we apply the Galerkin procedure to Equation (57). Consequently, the impedance matrix
Zi,j of the total structure (multiport microwave circuits) is as following:

[Zi,j ] =
[
Vi

Ij

]
=

(
t[A]

([
Ẑdown

pq,st

]−1
+

[
Ẑupper

pq,st

]−1
)

[A]
)−1

(58)

where: [A] = [〈fi|gi
pq,st〉], [ ˆZpq,st] = [〈gi

pq|Ẑ|gj
st〉], (i, j) ∈ [0, N − 1][0, N − 1] and Ẑ =∑

m,n |fTE,TM
mn 〉zupper,down

mn,TE,TM 〈fTE,TM
mn |. Therefore, the mutual coupling effects in this case are expressed

with the driving impedance matrix.
As Equation (58) relates these voltages Vi and currents Ij in the passive impedance case, the matrix

representation is written as:
[Z][I] = [V ] (59)

Identically, the admittance matrix, [Yi,j ], is simply the inverse of the impedance matrix [Zi,j ].

[Yi,j ] = [Zi,j ]−1 (60)

From (59) we see that Zi,j can be found as:

Zi,j =
Vi

Ij

∣∣∣∣
Ik=0(for k 6=j)

(61)

Briefly, (59) states that Zi,j can be found by driving port j with the current Ij , open-circuiting all other
excitations Ik = 0 (for k 6= j), and measuring the open circuit voltage at port i. In addition, Zi,i is the
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input impedance looking into source i when all other sources are open-circuited, and Zi,j is the transfer
impedance between excitation sources i and j when all other excitations are open circuited.

The same from Yi,j can be found as:

Yi,j =
Ii

Vj

∣∣∣∣
Vk=0(for k 6=j)

(62)

which states that Yi,j can be found by driving port j with the current Vj , short-circuiting all other
excitations Vk = 0 (for k 6= j), and measuring the open circuit voltage at port i. In addition, Yi,i is the
input impedance looking into port i when all other ports are short-circuited.

The scattering parameter corresponding to the unique impedance matrix is written in the following
form:

[Si,j ] =
[
Zi,j

Zc
− I

] [
Zi,j

Zc
+ I

]−1

(63)

where Zc is also the desired reference impedance of each element. For example, if the matrix is re-
normalized to 50 ohms, then (Zc) will have values of 50 Ω.

Relations (55) and (56) allow us to calculate the current densities lying in metal parts and their
associated fields including the sources domains to verify the suggested boundary conditions.

Following this formulation, it is possible to study the edge effects along the x direction where
walls can be modified or displaced and to show the surface waves [24] and their supporting role by
changing the separation distance between elements especially in strong coupling cases (or in aperiodic
representation where only central element can be excited and the others no-excited elements).

4. NUMERICAL RESULTS

Let us consider the structure given in Figure 2 to calculate the input impedance for each mode
(spectral input impedance) using the Galerkin’s procedure: After studying the convergence for this input
impedance against the basis functions number, when the sinusoidal test functions number describing
the metal part is fixed to 40, the following result is obtained as shown in Figure 6.

It is noted that the method of moments converges quickly towards the solution, since the
convergence level appears beyond 90000 (300 × 300) basis functions.

A good convergence study is elaborated to investigate the theoretical input impedance Zin evaluated
by the MoM-GEC for one unit cell in 1-D-periodic micro strip array.
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Figure 6. Variation of ‖Zin,α0‖ in function of the guide’s modes number for different test functions
number at f = 5.4 GHz and α0 = 0 rad m−1. The parameters which chosen to simulate the suggested
unit structure are: w = 1 mm, δ = 0.75mm (w ¿ λ0, δ ¿ λ0), d ≈ λ0 ≈ 54mm, L = λ0 ≈ 54mm,
h = 1.25mm and εr = ε0 = 1 (air).
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We observe in Figure 6 that convergence criteria of the employed method (modal method) based
on moment’s method should be achieved in 90000 (300× 300) basis functions.

Figures 7 and 8 depict the real and the imaginary parts of Zin against frequency for different test
functions.
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Figure 7. Numerical convergence of the input impedance’s real part evaluated by the MoM method
as a function of frequency for different test functions number: α0 = 0 rad m−1, w = 1 mm, δ = 0.75mm
(w ¿ λ0, δ ¿ λ0), d ≈ λ0 ≈ 54mm, L = λ0 ≈ 54mm, h = 1.25mm and εr = ε0 = 1 (air).
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Figure 8. Numerical convergence of the input impedance’s imaginary part evaluated by the MoM
method as a function of frequency for different test functions number: α0 = 0 rad m−1, w = 1 mm,
δ = 0.75mm (w ¿ λ0, δ ¿ λ0), d ≈ λ0 ≈ 54mm, L = λ0 ≈ 54mm, h = 1.25 mm and εr = ε0 = 1 (air).

Impedance Zin observed by the excitation source is calculated for the frequencies between 0–12 GHz
to justify the electromagnetic quantity in (49) (taking the particular case α0 = 0). The same study can
be extended for αp 6= 0.

The behavior of Zin as a function of frequency allows determining the resonance frequency of the
studied structure. These frequencies are in good agreement with electromagnetic theory that between
two distinct resonances, we should assure a difference equal to λ0

2 ≈ 27mm.
Figure 9 indicates that the impedance will be allowed imaginary regardless the line length. The

impedance Zin varies between −j∞ and +j∞. At y = 0, the input impedance is Zin = 0, whereas
at y = λ0

4 , Zin = ∞. The strip line transforms the short-circuit in an open circuit in which reflexion
coefficient at the load is ΓL = −1. The input impedance is capacitive and inductive every quarter wave
length.
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Figure 10. Numerical convergence of current distribution’s magnitude ( A
m) evaluated by the MoM

method as a function of basis functions number at f = 5.4GHz and α0 = 0 rad m−1 (Rectangular pulse
trial functions) (case of an EPEP waveguide): w = 1mm, δ = 0.75mm (w ¿ λ0, δ ¿ λ0), d ≈ λ0 ≈
54mm, L = λ0 ≈ 54mm, h = 1.25mm and εr = ε0 = 1 (air).

The strip line behaves as inductance for little shape circuits, with low inductance values. We may
use a line ending by short-circuit.

Thus, for better understanding these results, we propose to study this convergence with another
manner based on the current density in function of the basis functions number.

Figures 10 and 11 represent the current behavior as a function of the basis functions number using
two different suggested trial functions: Rectangular pulse function and U trial function (Rectangular

pulse function weighted by (
√

1− ( 2
w (x− d−w

2 ))2) along the x direction dependence. It is shown that
the current convergence is obtained for 300 basis functions in which the Gibbs effects are practically
suppressed, and these oscillations resulting from truncation are due to the Gibbs phenomenon. Because
of this effect, we cannot write the boundary conditions in the immediate neighbourhood of the metal-
dielectric plane [25].

Figures 16 and 17 illustrate that the current evaluated by the MoM and obtained at convergence
conforms to the theory with consideration to the boundary conditions.

Based on this current representation in the unit cell, it is observed that it is considerably possible
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Figure 11. Numerical convergence of current distribution’s magnitude ( A
m) evaluated by the MoM

method as a function of basis functions number at f = 5.4 GHz and α0 = 0 rad m−1 (U trial functions)
(case of an EPEP waveguide): w = 1 mm, δ = 0.75mm (w ¿ λ0, δ ¿ λ0), d ≈ λ0 ≈ 54mm,
L = λ0 ≈ 54mm, h = 1.25mm and εr = ε0 = 1 (air).
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Figure 12. The real and imaginary parts of the input impedance evaluated by the MoM method
against the frequency at the convergence using two different test functions (dependence in x direction):
α0 = 0 rad m−1, w = 1 mm, δ = 0.75mm (w ¿ λ0, δ ¿ λ0), d ≈ λ0 ≈ 54mm, L = λ0 ≈ 54mm,
h = 1.25mm and εr = ε0 = 1 (air).

to identify spatial case with the same manner that the current distributions in Figures 18 and 19 verify
the boundary conditions where walls are EPEP (with null phases shift) in the reference structure.

All results obtained in Figure 10 and Figure 6 prove that the convergence level corresponding to
spectral input impedance and current density is identically associated to (300) basis functions (otherwise
for 90000 (300× 300) basis functions number).

According to Figure 12, the variation of the test function’s dependence in x direction by using pulse
functions or weighted pulse functions (U trial functions) keeps the same response.

Figure 13 draws the magnitude of the input impedance evaluated by the MoM method against
the frequency at the convergence using two different source fields, which proves the identical behavior
but not the same values because of the expression of the located element’s fundamental excitation field
which take effects on the excitation vector’s components. We have to note that the source is badly
matched in our case because it is not independent of these applied fields.

Figure 14 represents the magnitude’s numerical value of the input impedance behavior against the
frequency for different discrete spectral values in finite case composed of 4 elements in periodic array.
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Figure 13. The magnitude of the input impedance evaluated by the MoM method against the
frequency at the convergence using two different source fields: α0 = 0 rad m−1, w = 1 mm, δ = 0.75mm
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Figure 14. The magnitude part’s numerical value of the input impedance evaluated by the MoM
method as a function of frequency for different discret Floquet modes: w = 1mm, δ = 0.75mm
(w ¿ λ0, δ ¿ λ0), d ≈ λ0 ≈ 54mm, L = λ0 ≈ 54mm, h = 1.25mm and εr = ε0 = 1 (air).

The Floquet-input impedance shows the symmetry property especially in our case when the curves
corresponding to Zin,α−1 and Zin,α+1 are conformed [7]. Then the edge effects are neglected.

Also the obtained result in Figure 14 shows that the mutual couplings are strong between elements
only at the resonances which contain distinct values of the modal impedances, whereas along the rest
of frequencies there is a weak coupling.

If the identical cells are not coupled especially when the spatial period (d ≥ λ0), the values of
Zin,α are practically constant and independent of α because the source is not sensitive to the boundary
of each cell. Consequently, it appears that the [z̃αp ] matrix is diagonal with identical terms. But, in
our case to take into account mutual parameters in strong coupling, we should have a spatial period
(d ¿ λ0) for example (d ≈ λ0

4 ) which permits modal input impedance to depend on appreciably modal
states (Floquet’s modes).

According to the following study we define Table 1 which contains the possible spectral values
(Finite structure) of input impedance at f = 5.4GHz.

Table 1 permits to deduce the mutual coupling parameters by using spectral representation: To
validate this work, a good agreement with spatial method is shown in the scattering coupling parameters,
and practically the [S] matrix has the same values when elements are strongly or weakly coupled, as
shown in Tables 2 and 3. Then, the maximum residual error between scattering coupling parameters
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Figure 16. 2-D representation of the current density ( A
m) described with trial functions (Rectangular

pulse trial functions) at f = 5.4GHz and α0 = 0 rad m−1: w = 1mm, δ = 0.75mm (w ¿ λ0, δ ¿
λ0), d ≈ λ0 ≈ 54 mm, L = λ0 ≈ 54mm, h = 1.25mm and εr = ε0 = 1 (air).

can be attained, in this case 3.2364%.
To confirm our result, we try to choose another operating frequency, for example at the resonance

where f ' 4GHz. Also a good correspondence between spatial and spectral (modal) formulation is
obtained, and the maximum residual value is about 9.2364%. By using HFSS simulation tools, we have
also generated the [S] matrix of the global structure that practically reinforces our results given by
both the formulations, as illustrated in Tables 6, 7, and 8 (same in Tables 2, 3, and 4). Concerning the
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Figure 17. 2-D representation of the current density ( A
m) described with guide’s modes at f = 5.4 GHz

and α0 = 0 rad m−1: w = 1mm, δ = 0.75mm (w ¿ λ0, δ ¿ λ0), d ≈ λ0 ≈ 54mm, L = λ0 ≈ 54mm,
h = 1.25mm and εr = ε0 = 1 (air).

Figure 18. 2-D representation of the current density ( A
m) for 5 phased micro-strip array described

with basis functions (guide’s modes) at f = 5.4GHz and α0 = 0 rad m−1: w = 1mm, δ = 0.75mm
(w ¿ λ0, δ ¿ λ0), d ≈ λ0 ≈ 54mm, L = λ0 ≈ 54mm, a = 270 mm, h = 1.25 mm and εr = ε0 = 1 (air).

Figure 19. 2-D representation of the current density ( A
m) for 5 phased micro-strip array described

with trial functions (Rectangular pulse trial functions) at f = 5.4GHz and α0 = 0 rad m−1: w = 1 mm,
δ = 0.75 mm (w ¿ λ0, δ ¿ λ0), d ≈ λ0 ≈ 54mm, L = λ0 ≈ 54mm, a = 270 mm, h = 1.25mm and
εr = ε0 = 1 (air).
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Table 1. Spectral input impedance at f = 5.4GHz (finite case): w = 1 mm, δ = 0.75mm
(w ¿ λ0, δ ¿ λ0), d ≈ λ0

4 ≈ 4mm, L = λ0 ≈ 54mm, Nx = 5 elements, h = 1.25mm and εr = ε0 = 1
(air).

p −2 −1 0 +1 +2
αp (rad m−1) −4pi

Nxd
−2pi
Nxd 0 +2pi

Nxd
+4pi
Nxd

Zin,αp (Ω) 0–23.9556i 0–27.2179i 0.9651–38.7581i 0–27.2179i 0–23.9556i

Table 2. Mutual coupling parameters Sij (dB) between the center element and other elements obtained
using spectral formulation (or modal representation based on Floquet’s modes) at f = 5.4 GHz:
w = 1 mm, δ = 0.75mm, (w ¿ λ0, δ ¿ λ0), d ≈ λ0

4 ≈ 4mm, L = λ0 ≈ 54mm, Nx = 5 elements,
h = 1.25mm, Zc = 50 Ω and εr = ε0 = 1 (air).

−0.1465 −20.3464 −25.7783 −25.7783 −20.3464
−20.3464 −0.1465 −20.3464 −25.7783 −25.7783
−25.7783 −20.3464

¨
§

¥
¦−0.1465 −20.3464 −25.7783

−25.7783 −25.7783 −20.3464 −0.1465 −20.3464
−20.3464 −25.7783 −25.7783 −20.3464 −0.1465

Table 3. Mutual coupling parameters Sij (dB) between the center element and other elements
obtained using spatial formulation at f = 5.4GHz and α0 = 0 rad m−1: w = 1 mm, δ = 0.75mm,
(w ¿ λ0, δ ¿ λ0), d ≈ λ0

4 ≈ 4mm, a = 20 mm, L = λ0 ≈ 54mm, Nx = 5 elements, h = 1.25mm,
Zc = 50Ω and εr = ε0 = 1 (air).

−0.1514 −20.0143 −26.1074 −26.1074 −20.0143
−20.0143 −0.1514 −20.0143 −26.1074 −26.1074
−26.1074 −20.0143

¨
§

¥
¦−0.1514 −20.0143 −26.1074

−26.1074 −26.1074 −20.0143 −0.1514 −20.0143
−20.0143 −26.1074 −26.1074 −20.0143 −0.1514

Table 4. Mutual coupling parameters Sij (dB) between the center element and other elements obtained
using HFSS (reference structure) at f = 5.4 GHz.

−0.1467 −24.1908 −29.8150 −29.8150 −24.1908
−24.1908 −0.1467 −24.1908 −29.8150 −29.8150
−29.8150 −24.1908

¨
§

¥
¦−0.1467 −24.1908 −29.8150

−29.8150 −29.8150 −24.1908 −0.1467 −24.1908
−24.1908 −29.8150 −29.8150 −24.1908 −0.1467

Table 5. Spectral input impedance at f = 4GHz (finite case): w = 1mm, δ = 0.75mm
(w ¿ λ0, δ ¿ λ0), d ≈ λ0

4 ≈ 4mm, L = λ0 ≈ 54mm, Nx = 5 elements, h = 1.25mm and εr = ε0 = 1
(air).

p −2 −1 0 +1 +2
αp (rad m−1) −4pi

Nxd
−2pi
Nxd 0 +2pi

Nxd
+4pi
Nxd

Zin,αp (Ω) 0 + 762i 0 + 1515.2i 1181.5− 457.2i 0 + 1515.2i 0 + 762i

values of S11(db), they are always poor due to the nature of the chosen motif which is short-circuited
and attached to the ground plane that permits to emit a maximum of radiating power when the transfer
power between elements is assured.
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Table 6. Mutual coupling parameters Sij (dB) between the center element and other elements
obtained using spectral formulation (or modal representation based on Floquet’s modes) at f = 4GHz:
w = 1 mm, δ = 0.75 mm (w ¿ λ0, δ ¿ λ0), d ≈ λ0

4 ≈ 4mm, L = λ0 ≈ 54mm, Nx = 5 elements,
h = 1.25mm, Zc = 50 Ω and εr = ε0 = 1 (air).

−0.1387 −27.7113 −34.8966 −34.8983 −27.7113
−27.7113 −0.1387 −27.7113 −34.8966 −34.8966
−34.8966 −27.7113

¨
§

¥
¦−0.1387 −27.7113 −34.8966

−34.8966 −34.8966 −27.7113 −0.1387 −27.7113
−27.7113 −34.8966 −34.8966 −27.7113 −0.1387

Table 7. Mutual coupling parameters Sij (dB) between the center element and other elements
obtained using spatial formulation at f = 4GHz and α0 = 0 rad m−1: w = 1 mm, δ = 0.75mm
(w ¿ λ0, δ ¿ λ0), d ≈ λ0

4 ≈ 4mm, a = 20 mm, L = λ0 ≈ 54mm, Nx = 5 elements, h = 1.25mm,
Zc = 50Ω and εr = ε0 = 1 (air).

−0.1424 −27.5240 −31.7869 −31.7869 −27.5240
−27.5240 −0.1424 −27.5240 −31.7869 −31.7869
−31.7869 −27.5240

¨
§

¥
¦−0.1424 −27.5240 −31.7869

−31.7869 −31.7869 −27.5240 −0.1424 −27.5240
−27.5240 −26.1074 −31.7869 −27.5240 −0.1424

Table 8. Mutual coupling parameters Sij (dB) between the center element and other elements obtained
using HFSS (reference structure) at f = 4 GHz.

−0.1031 −28.8177 −36.5132 −36.5132 −28.8177
−228.8177 −0.1031 −28.8177 −34.8966 −36.5132
−36.5132 −28.8177

¨
§

¥
¦−0.1031 −28.8177 −36.5132

−36.5132 −36.5132 −28.8177 −0.1031 −28.8177
−28.8177 −36.5132 −36.5132 −28.8177 −0.1031

Following Tables 1 and 5 concerning the α value, Floquet harmonics may appear as an evanescent or
propagating waves [23] which engender a scan blindness phenomena. This explains why for α = 0, Zin

is a complex value, and for others α values Zin is pure imaginary.

5. STORAGE MEMORY AND TIME COMPUTATION

In this section, we explain the main advantage to favor using spectral formulation other than spatial
formulation in storage memory cost and reducing computational time.

In general, in order to seek for coupling parameters, the MoM-method requires (M ×M) matrix
inversion. We denote M as number of used trial functions (discretization functions). Hence, the memory
requirement and operation number of conventional MoM depend on M as:

Storage ≈ O
(
M2

)
(64)

N operation ≈ O
(
M3

)

In consequence, the use of the direct method resting on that moment’s method needs (NxM)2 memory
size with Nx the number of the array elements. In modal formulation, the token [z̃αp ] has a Nx(M)2

memory size with Nx the number of the possible phases shift αp (finite case).
However, the numerical complexity of the proposed method is restraint to spectral formulation

(global matrix [z̃αp ] calculation). In fact, the second operation (see Equations (32), (33) and (34))
permits to transform modal domain to spatial one by a simple matrix multiplication.
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Finally, by reducing [Z] matrix, not only its computational time will be reduced, but also the
computational time of the inverse matrix will be reduced [12, 27].

According to this study, the application of the proposed procedure was applied to a 5-element array.
In Figure 15, when the unknowns number increases, the operation number will increase exponentially
using the spatial formulation. In addition, the manipulated matrix requires a huge memory resources
when unknowns grow up. But, in spectral formulation these memory resources and operation number
can be minimized greatly. That is why we prefer rather to choose Floquet analysis with spectral
representation to treat large finite array or infinite array which themselves contain a large number of
unknowns that must be reduced.

6. CONCLUSION

This work contains an efficient original modal analysis by introducing a new method to decompose
excitation source in spectral domain according a finite and infinite periodic structures that remove
the complexity of the problem under consideration to model and analyze the periodic problem when
elements are strongly or weakly coupled.

Several advantages are shown for modeling periodic circuits, for example:

• The reduction of electromagnetic calculation: Instead of studying the whole array structure, the
modeling of unit cell makes it possible to reduce all wave phenomena associated with the periodic
structure on one unit cell (central cell).

• The reduction of computational time and storage memory for a large finite structure.
• This new modal analysis uses the direct application of Floquet’s theorem by varying all spectral

modes to facilitate the attack of the whole structure by a simple transformation (theorem of
superposition) (in other cases named Fourier Transformation).

This study remains successfully valid for several geometries of radiating planar dipoles in various
periodic or quasi-periodic configurations: That is why we propose another paper to study the mutual
coupling parameters between elements in aperiodic configuration and their effects by using all this
spectral formulation.

After studying the one-dimensional case, it is rather easy to study a high-dimensional case especially
for finite number of planar dipoles.
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