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Regularization Imaging Algorithm with Accurate G Matrix for

Near-Field MMW Synthetic Aperture Imaging Radiometer
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Abstract—In order to improve the reconstruction accuracy of near-field SAIR, a novel regularization
imaging algorithm based on an accurate G matrix is proposed in this paper. Due to the fact that the
regularization reconstruction is usually an underdetermined problem, inaccurate operation matrix G
will lead to great reconstruction error in the imaging results, or even the normal imaging cannot be
obtained. In this paper, we establish an accurate G matrix based on the accurate imaging model of
near-field SAIR. Compared with the traditional G matrix with some unnecessary approximations, the
proposed G matrix without approximation can improve the reconstruction accuracy effectively. For
improving the accuracy of matrix G further, the corresponding parameters are corrected according to
the RMSE between the imaging results of the regularization method and modified FFT method which is
not sensitive to the parameters’ change. The effectiveness of this calibration method has been tested by
1D simulation experiments. Moreover, the 2D simulation experiments demonstrate that the proposed
accurate G matrix can improve the imaging accuracy of regularization method effectively. Finally, the
1D imaging experiment is performed to test the effectiveness of the proposed method for the actual
synthetic aperture imaging further.

1. INTRODUCTION

Due to the fact that the millimeter wave (MMW) radiation (30 ∼ 300GHz) is harmless to humans
and is able to penetrate through most dielectric materials such as clothing, cardboard, plastics, and
wood with comparatively trifling loss, the MMW imaging is a powerful tool for the detection of objects
concealed under clothing [1, 2]. High resolution image can also be easily achieved by the MMW imaging
system with the shorter wavelength. With these abilities, MMW imaging has been used in a variety
of applications including target surveillance and precision target imaging for military purposes, safe
aircraft landing, highway traffic monitoring in fog, remote sensing for civil applications and concealed
threat object detection for security concerns [3–5].

Among the MMW imaging systems, the synthetic aperture imaging radiometer (SAIR) is one of the
most popular systems as a result of increasing demand for high resolution imaging. Different from the
traditional real-aperture imaging systems, SAIR uses a thin array composed of small aperture antennas
to achieve large antenna aperture for solving the contradiction between the antenna aperture and spatial
resolution. Then the visibility functions, which are the spatial Fourier transform of the brightness
temperature distributions [6], are measured by performing correlation operations between each antenna
pair. Obviously, the brightness temperature images can be acquired by the fast Fourier transform
(FFT) from the visibility functions directly. However, the complete visibility functions distributed in
the rectangular grid are required for FFT methods. Unfortunately, the rectangular visibility functions
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only can be measured by a few regular antenna arrays with serious baseline redundancy (such as the
“T”, “U” and “L” arrays). For utilizing the antennas more effectively, the antenna arrays used in the
actual SAIR are irregular sparse arrays with fewer redundancy baselines, such as the “Y” array, rotation
array, hexagonal and non-redundant arrays [7–9]. Generally, the visibility functions measured by these
irregular sparse arrays are non-uniform. Furthermore, the size of the brightness temperature image
is usually larger than the visibility function in actual imaging. Clearly, the FFT-based methods are
powerless for SAIR to reconstruct the images from the non-uniform visibility functions directly. For
solving this predicament of the FFT-based methods, the hexagonal FFT and the Gridding methods are
used for the SAIR. But, the hexagonal FFT is only suitable for the “Y” and triangle array with the
special hexagonal visibility distribution [6]. And for the Gridding methods, the non-uniform visibility
functions are first re-sampled from the irregular grid onto the rectangular grid by interpolations [10–12].
Then the images are reconstructed by the FFT-based methods from the re-sampled visibility functions.
But many additional errors are attached to the re-sampled visibility functions when the interpolation
and resample are applied, and these errors are difficult to be removed.

In 1990s, Lannes et al. pointed out that the regularization could be used for reconstructing
the MMW images of SAIR from the non-uniform visibility functions accurately, and the satisfying
recovery effects were achieved [13, 14]. Because regularization reconstructions of the SAIR with sparse
arrays are an underdetermined problem, the accuracy of operation matrix G is very important for the
reconstruction process. Now, the matrixes Gs are mostly established from the forward analysis of SAIR
imaging process [15–18]. For the purpose of variables separation, some unnecessary approximations
are adopted to simplify the G matrixes in different degrees. In order to improve the accuracy of
the regularization reconstruction further, we establish an accurate G matrix without non-essential
approximation based on the accurate imaging model of near-field SAIR in this paper. The corresponding
parameters are then corrected according to the root-mean square error (RMSE) between the imaging
results of the reconstruction method and modified FFT method. Because only the phase-modified
item is added to the FFT, which can be seen as the focusing operation for the MMW SAIR [17–
19], the modified FFT method (one kind of the FFT-based methods) is insensitive to the change of
those corresponding parameters. For verifying the effectiveness of the proposed accurate G matrix, the
traditional regularization with the approximate G matrix is also tested for comparison. The numerical
simulation results demonstrate that the proposed regularization method with an accurate G matrix
can improve the imaging accuracy effectively. Finally, the 1D imaging experiment is performed to
test the effectiveness of the proposed method further. Moreover, the proposed parameters calibration
method can also be utilized to estimate the system parameters by comparing the RMSEs between the
regularization methods and modified FFT method.

2. THE REGULARIZATION METHOD BASED ON AN ACCURATE G MATRIX

2.1. An Accurate G of Near-Field MMW SAIR

For establishing the matrix G accurately, the theory of near-field MMW synthetic aperture imaging is
re-derived firstly. As Fig. 1 shows, the extend radiation source S is located on oxy, and the antennas
are located on OXY. The radiation source S is dispersed into N small parts. The distances between
the n-th radiation source Sn and antennas c and l are Rc

n and Rl
n, respectively.

According to [6], the visibility sample of each antenna pair (c-l) can be expressed as

Vc,l =
〈
Ec (Rc

n, t) · E∗
l

(
Rl

n, t
)〉

τ
=

M∑

n=0

T (xn, yn) Fc (xn, yn)F ∗
l (xn, yn) rc,l exp

[
−jk

(
Rc

n −Rl
n

)]
(1)

where E#(·) is the received electromagnetic signal of antenna #, 〈·〉 the time integration operation, τ
the integration time, (xn, yn) the coordinate of the n-th radiation source Sn, T (xn, yn) the normalized
brightness temperature, F#(·) the normalized antenna pattern of antenna #, k = 2π/λ the circular wave
number, λ the center wavelength of SAIR, and rc,l the fringe-wash function. Generally, the decorrelation
effects are negligible, and rc,l = 1 · exp[−jk(Rc

n − Rl
n)] is the phase difference of two antennas, which

is the key factor for synthetic aperture imaging. According to Fig. 1, the distances Rc
n and Rl

n can be
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expressed as

Rc
n =

√
(xn −Xc)2 + (yn − Yc) + R2 (2)

Rl
n =

√
(xn −Xl)2 + (yn − Yl) + R2 (3)

For the purpose of the variables separation, the distances Rc
n and Rl

n are usually unfolded by the Taylor
expansion approximately [6, 7, 16–19]. Then the difference between Rc

n and Rl
n can be expressed as

∆Rn,c,l = Rc
n −Rl

n ≈
(

R +
(xn −Xc)

2 + (yn − Yc)2

2R

)
−

(
R +

(xn −Xl)
2 + (yn − Yl)2

2R

)

=
xn (Xl −Xc) + yn (Yl − Yc)

R
+

(
X2

c + Y 2
c

)− (
X2

l + Y 2
l

)

2R
(4)

In the far-field imaging (R À DSA, DSA is the antenna aperture of SAIR), and the second item
is similar to 0 and usually omitted. But in the near-field imaging, this is the so called phase-modified
item which is the key for the near-field imaging. Substituting Eq. (4) into Eq. (1), we can get the
approximate matrix Gap and the modified FFT imaging formula as follows [17, 19].

Gap(m,n) = Fc(xn, yn)F ∗
l (xn, yn)ejπ[2xn(Xmc−Xml)+2yn(Ymc−Yml)+X2

ml+Y 2
ml−X2

mc−Y 2
ml]/Rλ (5)

TMF (x, y) = FT2

[
ejϕ(v,h)V (v, h)

]
(6)

where (Xmc, Ymc) and (Xml, Yml) are the coordinates of antenna pairs (c-l), the corresponding visibility
sample is Vm, TMF is the reconstructed image of modified FFT method, FT 2[·] denotes the 2D
Fourier transform, V (v, h) is the visibility function and v = k(Xl − Xc)/R, h = k(Yl − Yc)/R,
ϕ(v, h) = k(X2

c + Y 2
c −X2

l − Y 2
l )/2R.

However, we find that the approximations of ∆R (such as Eq. (4)) are unnecessary for the
regularization method without the variables separation in near-field SAIR. Thus, an accurate matrix
Gac can be acquired according to Eq. (2) and Eq. (3) directly.

Gac(m,n) = Fc(xn, yn)F ∗
l (xn, yn)ejπ

(√
(xn−Xml)2+(yn−Yml)+R2−

√
(xn−Xmc)2+(yn−Ymc)+R2

)
/λ (7)

Then the visibility integral of Eq. (1) can be rewritten into the following linear matrix equation.

VM×1 = GM×NTN×1 (8)

where VM×1 is the measured near-field visibilities, TN×1 the original brightness image, and GM×N the
coefficient matrix, which characterizes the system configuration and objects spatial distribution (such
as Eq. (5) and Eq. (7)).
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Figure 1. Interference measurement schematic.



196 Chen et al.

2.2. Regularization Reconstructions for the Near-Field SAIR

A straightforward solution to the inverse problem of Eq. (8) is given by the Moore-Penrose pseudo-
inverse.

T = GH
(
GGH

)−1
V (9)

However, because sparse arrays are usually utilized in the actual millimeter wave SAIR, the
dimensions of visibility functions (V ) are significantly less than the ones of brightness temperature
matrix (T ). So the matrix equation Eq. (8) is an underdetermined equation with underdetermined
G matrix, and we cannot acquire a unique and stable solution by the straightforward method of
Eq. (9). Besides, the dominant noises in SAIR images are usually the Gaussian white noises. Under
this circumstance, the regularization is one of the most effectual methods to estimate the unique and
stable TR, and the satisfying recovery effects are achieved in near-field imaging [18, 19]. In this paper,
we estimate TR by minimizing the following function.{

TR = min
T

E(T )

E(T ) = ||V −GT ||2F + αP (T )
(10)

where ‖V − GT‖2
F is the fidelity term, which guarantees that the difference between actual visibility

function and the observation visibility function is small enough. P (T ) is the penalty function or the
constraint condition item and α the regularization parameter, which is used to balance the fidelity term
and regularization term. Usually α is set small enough for maintaining the superior spatial resolution
of MMW images. The penalty term P (T ) can be written as [20]

P (T ) =
N∑

n=1

1
2

∑

k∈Kn

wknϕ(Tn − Tk) (11)

where Kn is a neighborhood of pixels near pixel n, ϕ(T ) a symmetric convex function, and wnk = wkn.
To be simple, the quadratic penalty function (ϕ(T ) = T 2/2) is adopted in this paper. Numerous
optimization methods can be used to solve the problem of Eq. (10) [21–24]. In this paper, we use the
fast proximal-gradient projection algorithm (FGP) [23] with the accelerated convergence rate O(k−2)
to solve Eq. (10).

2.3. Parameters Calibration for the G Matrix

The main parameters of the matrix G (such as Gac and Gap) are R and λ. Compared to the accurate λ
determined by the MMW SAIR system, the parameter R with some errors is usually estimated by the
experimenters in actual imaging applications. Clearly, the inaccuracy of parameter R is unacceptable
in the regularized reconstruction and needs to be corrected. Due to the fact that the modified FFT is
actually the 2D FFT after the phase compensation of visibility function (Eq. (6)), its imaging results
are not sensitive to the change of those parameters. For evaluating the accuracies of the reconstructed
images T s, we define the RMSE as

RMSE(X, Xo) =

√∑

i

[X(i)−Xo(i)]2

√∑

i

Xo(i)2
(12)

where Xo is the original reference image, and X is the reconstructed image needs to be evaluated.
However, the accurate original images (TA) are unable to be got in the actual MMW imaging. So
the reconstructed images (TMF ) of modified FFT method are utilized to replace the original MMW
images for evaluating the reconstruction accuracy of the regularization method and then correcting the
parameter R or λ. The rationality of this method bas been verified by the experiments demonstrated
in Section 3.

Since the error of R is usually larger than the other G parameters, we mainly correct the parameter
R in this paper. It is easy to be extended to the correction of other parameters (such as λ). The specific
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correction method is as follows: We first calculate the RMSE (T R, TMF ) with the different R from
0.5R0 to 1.5R0 (R0 is the initial estimate value of R), then plot the change curve of RMSE (T R, TMF )
with parameter R. We find that the change curve of RMSE (T R, TMF ) with R are very similar
to RMSE (T R, TA), and the minimum values of them are almost appeared at the same Ra mostly.
The corresponding Ra is the correct value of the parameter R, which meets the matching relation
between the matrix Gac and the actual imaging. Then the accurate images can be reconstructed by the
regularization based on accurate Gac with the correctional parameters. This method takes advantage
of the characteristics of FFT-based methods and regularization methods, and these characteristics are
their lacks formerly.

Compared with the conventional regularization algorithm, the superiorities of the proposed method
are the employment of an accurate Gac and the parameter calibration method. The main trade-off of
the proposed method is the additional step of parameters calibration, which does not belong to the
conventional regularization. For correcting the parameters quickly, the parameters calibration is usually
performed in the 1D experiments with less data. Thus, the calculated amount of parameter calibration
is less than the one of 2D regularization imaging (the solution of Eq. (10)), and this trade-off can be
ignored in actual imaging applications.

3. THE EXPERIMENTS AND RESULTS

3.1. 1D Simulation Experiments

For evaluating the effectiveness of the parameter correction method mentioned in Section 2.3, the 1D
simulation experiments with two different extended sources are performed here. Compared with the 2D
experiments, 1D simulation experiments with less data are more suitable for finding an accurate Ra.
The main simulation parameters of the 1D experiments are listed in Table 1.

Table 1. The main simulation parameters.

Parameters
Center

wavelength λ

Antenna
array size

Antenna
spacing ∆d

Imaging
distance R

Value 8mm 50 0.01 m 5 m

The 50 antennas are placed into a straight line such as the X-axis of Fig. 1, and the step is 0.01 cm.
The 1D target scenes are parallel to the X-axis such as x-axis of Fig. 1, and the spacing between
radiation sources is set as the half of spatial resolution.

∆L = 0.5ρ = 0.5
λ

DSA
R = 4 cm (13)

where ρ is the spatial resolution of SAIR, DSA = P · ∆d = 0.5m. Thus for a target scene with the
size of 100, the corresponding dimension is 4 m which is equal to the size of no-aliasing FOV of this
given SAIR. Due to the fewer visibility samples, the size of the results (TMF ) of modified FFT method
is 50, which is only half of the regularization method. We need to extend it to 100 by the linear
interpolation for comparing with the results of the regularization methods. This problem is not listed
in the regularization methods. Under the same condition, the regularization with the matrix Gac and
Gap are both tested for comparison, and their imaging results are TR

ac and TR
ap respectively. In these

simulations, the parameter R is changing from 0.5R0 to 1.5R0 (R0 = 5 m), and the step is 0.05 m. The
simulation results are shown in Figs. 2–3.

As the two group simulation results show, with the change of parameter R, the RMSE (TMF , TA)
of the modified FFT results (red dotted lines in Figs. 2–3(a)) are mostly invariable. However, due
to the underdetermined matrixes (Gac and Gap), the RMSEs of the regularization methods change
strongly with the change of R such as the magenta and blue dotted lines show. Moreover, the minimum
RMSE (TRac, TA) are less than the RMSE (TRap, TA), which means that an accurate Gac can improve
the accuracy of the regularization method effectively. However, these RMSEs (the dotted lines) between
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Figure 2. The reconstructed results of the three methods (Scene I). (a) The RMESs between the
TMF , TR

ap, TR
ac and TA (the target). (b) The reconstructed results of the three methods with the

accurate Ra = 5m.
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Figure 3. The reconstructed results of the three methods (Scene II). (a) The RMESs between the
TMF , TR

ap, TR
ac and TA (the target). (b) The reconstructed results of the three methods with the

accurate Ra = 5m.

the reconstructed images and accurate original MMW image TA are unable to be calculated, because
we do not know the accurate MMW image TA in practice. Thus we use the reconstructed images TMF

of modified FFT to instead of TA to find the best Rac . From Figs. 2–3(a), we can see that the change
curve of RMSE (TRac, TMF ) and RMSE (TRap, TMF ) are very similar to that of RMSE (TRac, TA) and
RMSE (TRap, TA), respectively. Moreover, the minimum values of them almost appear at the same
Ra equal to actual imaging distance R0 = 5 m. This means that we can use RMSE (TRac, TMF ) or
RMSE (TRap, TMF ) to find an accurate Ra for improving the accuracy of G matrixes (Gac and Gap).
Figs. 2–3(b) show the reconstructed images of the three methods with an accurate Ra. Clearly, the
reconstructed images of the regularization methods are more accurate than that of modified FFT. The
images reconstructed by the regularization method with Gac are the best ones among the three methods,
especially for the recovery of the targets located in the scene edge (such as the rectangular shows in
Fig. 3(b)). In addition, due to the more accurate matrix Gac used in the proposed method, the changes
of RMSE (TRac, TA) are more severe than those of RMSE (TRap, TA) near Ra. This means that the
proposed method is more sensitive to the parameters’ change than the regularization methods with Gap .
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3.2. 2D Simulation Experiments

According to the 1D simulation experiments, we know that an accurate Gac can improve the accuracy of
the regularization method effectively. For evaluating this effectiveness in the image domain further, the
2D simulation experiments with three different scenes are performed here, and the structural similarity
(SSIM) and peak signal-to-noise ratio (PSNR) are also used to evaluate the reconstructed images. The
main simulation parameters are also set as Table 1.

For validating universality of the proposed method, a random sparse antenna array is used in the
2D simulation experiments. We first arrange 75 antennas to form the standard “T” antenna array with
the size of 50×50, and then add the random perturbations to each selected antenna coordinates to build
the sparse antenna array. The maximum perturbation is 1 cm equal to the average antenna spacing.
Fig. 4 shows that the distribution of the visibility function generated by the designed array has superior
non-redundancy. The red points are antennas, and blue points are visibility samples.

Figure 4. The distribution of the visibility functions measured by the random antenna array.

(a) (b) (c) (d) 

Figure 5. (b) The images reconstructed by modified FFT method. (c) The regularization method with
Gap and (d) the regularization method with Gac. (a) The original image is tank&car.

(a) (b) (c) (d) 

Figure 6. (b) The images reconstructed by modified FFT method. (c) The regularization method with
Gap and (d) the method regularization with Gac. (a) The original image is boats.
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(a) (b) (c) (d) 

Figure 7. (b) The images reconstructed by modified FFT method. (c) The regularization method with
Gap and (d) the regularization method with Gac. (a) The original image is airplane.

In order to simulate the SAIR imaging accurately, the received signals are gained by integral
operation of the radiation waves generated by all discrete sources. The radiation intensities are set as the
grey values according to the original images (Figs. 5–7(a)). The sizes of the target scenes are 100× 100,
and the spacing between radiation sources is also set as 4 cm. The visibility samples are then calculated
by cross-correlated calculation between each antenna pair. Clearly, the modified FFT method is unable
to be utilized for these non-uniform visibility functions directly. So the Convolution Interpolation [10]
is applied to resample the non-uniform visibility samples from the irregular grid onto the rectangular
grid before using the modified FFT. But this problem is not listed in regularization methods, the MMW
images can be reconstructed by the regularization methods directly. The simulation results are shown
in Figs. 5–7.

From the above 2D simulation results, we can see that the modified FFT method is the worst one
for reconstructing the MMW images from the non-uniform visibility functions. Even if the images can
be reconstructed by using the interpolation algorithms, a lot of noise pollutions exist in its reconstructed
images as shown in Figs. 5–7(b). And because the images are directly reconstructed from the original
visibility samples by the regularization methods without interpolation, the noise pollutions of the
reconstructed images (Figs. 5–7(c), (d)) are less than the results of modified FFT. Since many non-
redundant samples measured by the random array (Fig. 4) are effectively used by the regularization
methods, the images outlines of regularization methods seem to be clearer. Moreover, the accuracies of
the images reconstructed by the regularization method with Gac are better than those of regularization
method with Gap . For example, the tail of upper wing and the lightspot at upper-left shown in Fig. 7(d)
are clearer than the ones in Fig. 7(c). For evaluating the accuracies of the three methods objectively,
the PSNR and SSIM are calculated by the following formulas.

PSNR(T, To) = 10 log10

max(To)2∑
0<i<M,0<j<N

[T (i, j)− To(i, j)]2/M ×N
(14)

SSIM(T, To) =
(2µT µTo + C1)(σTTo + C2)

(µ2
T + µ2

To
+ C1)(σ2

T + σ2
To

+ C2)
(15)

where T is the reconstructed image and To the original one. µT and µTo are the means of images T
and To, respectively. σT and σTo are the standard deviations of images T and To, respectively. σTTo is
the covariance of images T and To. C1 and C2 are the smallest positive constants. max(To) denotes the
max value of the original image To.

The RMSEs, PSNRs and SSIM of the aforementioned three methods are calculated as shown in
Table 2. Clearly, the RMSEs, PSNRs and SSIM of the regularization methods are all much better than
those of modified FFT. Among the three methods, the RMSEs of regularization method with Gac are the
minimum ones, and its PSNRs and SSIM are the maximal ones. This means that an accurate Gac can
improve the reconstruction accuracy of regularization method effectively. Moreover, the improvement
effects are clearer for the scenes with more targets located in the edge, just like the different values
between the last two columns of Table 2 which are increasing with the change of scene from tank&car
to airplane.
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Table 2. Comparison of objective data among the three methods.

Evaluation criterion and Scene Modified FFT
Regularization

with Gap

Regularization
with Gac

RMSEs Tank&car (Fig. 5) 0.0349 0.0341 0.0334
Boats (Fig. 6) 0.0543 0.0539 0.0529

Airplane (Fig. 7) 0.0506 0.0497 0.0458

PSNRs
Tank&car (Fig. 5) 17.0918 17.4571 17.4751

Boats (Fig. 6) 16.8831 16.9457 16.9930
Airplane (Fig. 7) 15.8246 16.2019 16.4666

SSIM
Tank&car (Fig. 5) 0.8819 0.9087 0.9101

Boats (Fig. 6) 0.8904 0.8946 0.8991
Airplane (Fig. 7) 0.5286 0.5876 0.6028

(a) (b) 

Figure 8. The scenarios of the 1D imaging experiment. (a) The binary interferometer. (b) The target
scene with the 380◦ blackbody.
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Figure 9. The 1D imaging experiment results. (a) The RMESs between the TMF , TRap and TRac.
(b) The reconstructed results of the three methods with the accurate Ra = 4.71m.

3.3. 1D Imaging Experiment

Finally, we used the actual data measured by a simple binary interferometer to further test the proposed
method. The experiment scenarios are shown in Fig. 8. The main parameters are as follows: center
wavelength is 8.3mm, antenna array is 20× 1, antenna spacing is 2.5 cm, and imaging distance is about
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5m.
As the above simulation experiments, we first find the optimum imaging distance Ra according

to the RMSE (TRac, TMF ) and RMSE (TRap, TMF ).The corresponding calculated results are shown in
Fig. 9(a). Clearly, the optimum distance is Ra = 4.71m, which means that the estimated distance is
inaccurate in this experiment. Then the 1D images are reconstructed by the three methods with the
corrected Ra. Fig. 9(b) shows that the imaging results of the three methods are in agreement with each
other as expected, and the correctness of the calibration method is also proved by this consistency. But
due to the limit of the simple experimental equipment, only the rough images can be reconstructed from
this few visibility samples which also have some errors. From the rough images, we can only find the
blackbody in the right coarsely. Anyhow, the effectiveness of the proposed method is proved by this
imaging experiment. The imaging prototype is being developed, and the 2D experiments may be done
in the future.

4. CONCLUSION

In this paper, we show a regularization imaging method with an accurate G matrix for near-field MMW
SAIR. Since regularization reconstruction is usually an underdetermined problem and very sensitive to
the accuracy of the G matrix, we establish an accurate G matrix based on an accurate imaging model
of near-field SAIR. Compared to the traditional G matrix, the proposed G matrix without unnecessary
approximation can improve the reconstruction accuracy effectively. In order to improve the accuracy
of the reconstructed MMW images further, the corresponding parameters of matrix G are corrected
according to the RMSEs between the imaging results of the regularization method and modified FFT
method. The effectiveness of the correction method has been verified by 1D experiments. Moreover,
the 2D simulation experiments demonstrate that the superior improvement effect can be achieved by
the proposed accurate Gac by the comparison of the results between the regularization methods with
Gac and Gap . Moreover, although the proposed method is presented for the near-field imaging of SAIR,
it can also be utilized for the far-field imaging, and the superior reconstruction effects can be obtained.
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