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Experimental Research of the Electric Field Potential of a Rotating
Magnetized Sphere

Vladimir B. Timofeev* and Tamara E. Timofeeva

Abstract—We performed an experiment for the verification of existing theoretical formulas for the
electric field potential of a rotating magnetized sphere. Measurements of the electric field potential
differences across cylindrical capacitors were carried out. Experimental results are essentially in accord
with the potential obtained using the special relativity transformations and contradict formula for the
quadrupole field potential.

1. INTRODUCTION

Below, in a brief review, the theoretical formulas for the electric potential and electric field intensity of
a rotating magnetized sphere are given, and some experimental results are discussed.

It is known that a homogeneously magnetized sphere rotating around the axis parallel to the
magnetic moment of the sphere is the source of the potential electric field [1]. There exist different
calculation methods for the electric field potential ϕ of the rotating magnetized sphere.

The first, the simplest one, supposes that the Lorentz force induces a displacement of free or bond
electric charges rotating with a magnet. The Lorentz force is produced by the rotating magnetized
body’s self-magnetic field [2]. This method gives the correct value of the unipolar induction e.m.f.
acting between the pole and the equator of the sphere and the quadrupole electric field. However, in the
experiment of Wilson and Wilson [3], the Einstein’s formula has been confirmed. Based on this result
we can conclude that the charge polarization of the rotating magnetic insulator is observed only in the
external magnetic field of a coil that is at rest in the lab frame, and the self-magnetic field of a rotating
magnetic dielectric does not produce any polarization. In the experiment in [4], we attempted to detect
free charges displacement in an aluminum conductor which was mounted on a magnet rotating together
with the conductor. The experiment did not detect any displacement of the free electric charges in the
conductor under the Lorentz force action.

The second method is based on several elements of the special relativity followed by the boundary-
value electrostatic problem solving. In this method, the material Minkowski equations [1], the magnetic
field transformation [2, 6] inside the magnetic sphere and the magnetic moment transformation [5, 6]
are used. In this case, it is implicitly assumed that the special relativity transformations are applicable
in the rotating frame of reference. Solutions obtained by this method also give the quadrupole electric
field potential of the rotating magnetized sphere.

In particular, the expression for the scalar potential of the sphere — conductor (ε = ∞, ε —
permittivity of the sphere), which was obtained using the material Minkowski equations, is [1]

ϕ = − 1
3c
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where m is the magnetic moment, R the radius, ω the angular velocity of the magnetized sphere, c the
light speed, and r, θ are spherical coordinates of the observation point, r ≥ R. The expression for the
electric field obtained in [1] depends on the sphere material (dielectric, conductor) and radius of the
sphere. The radial component of the electric field deduced from the potential (1) has the form [6]

Er = −mωR2

cr4

(
3 cos2 θ − 1

)
. (2)

The quadrupole electric field intensity falls off as 1/r4. The results of the experiment [4] exhibit that the
discrepancies between the values of the quadrupole electric field (2) and experimental data of relative
value measurements are about 79%.

The third method directly uses the Lorentz electromagnetic field potential transformations
without solving the electrostatic problem [7]. The electric field potential is determined by the direct
transformations from the frame of reference rotating with the sphere to the laboratory frame

ϕ =
(ω × r) ·A

c
=

mω

cr
sin2 θ, (3)

where A is the vector potential, r ≥ R. The potential ϕ (3) is valid only inside the light cylinder
ωr ¿ c.

The radial component of the electric field intensity obtained from (3) (r ≥ R) is given by [7]

Er =
mω

cr2
sin2 θ. (4)

This electric field intensity decreases with distance from the center of the sphere r as 1/r2. The electric
field potential (3) and the electric field (4) are independent from material (conductor, dielectric) and
radius R of the sphere. The values of the measured electric intensity of a rotating toroidal magnet [8] are
in good agreement with theoretical values of the electric field deduced using the Lorentz transformations,
the discrepancies are about 10%. In the experiment [4] with the toroidal magnet approximating
the sphere the discrepancy between the Equation (4) and the experimental data of relative value
measurements is about 10%.

2. EXPERIMENT AND DISCUSSION

2.1. Experimental Setup

In this paper we report measurements of the potential difference of the electric field of a rotating
conducting magnet and compare the experimental data with the theory. A spinning magnet from
neodymium sphere with diameter 30mm was a source of the potential electric field. The axis of rotation
passed through the center of the sphere and was parallel to the magnetic moment. The magnetic moment
of the sphere was calculated from the magnetic field measurements at 15 points located in the equatorial
plane on different distances from the center. Magnetic field was measured by the linearized Hall probe
with the instrument 1.5% error. The magnetic moment was calculated for each measured value of the
magnetic field. Further, the average value of the magnetic moment and the mean square error were
calculated. This method allows to take into account errors of mutual orientation of the magnetic moment
and of the Hall probe, distance measurement errors between the sphere center and the Hall probe. The
relative mean square error of 15 measurements and total error were 0.5% and 1.6%, respectively. The
measured value of the magnetic moment of the sphere was 13638± 218G·cm3. The sphere was rotated
at an angular velocity of 1470 rev/min (24.5 rev/s) with an accuracy to about 1%.

In the experiment, the potential difference was measured across the cylindrical air capacitors of
sheet brass (0.4mm thick). During measurements, one of the capacitors was mounted symmetrically
with respect to the axis of rotation in the equatorial plane of the sphere (Figure 1). It was repeated
each time before new series of measurements with other capacitor. The first air cylindrical capacitor
armatures were 44.2mm and 56.8mm in diameters and 22.0 mm and 25.0 mm in heights, respectively.
The second capacitor was 82 mm internal diameter, 96 mm external diameter and 26 mm height. The
third capacitor with diameters 117mm, 132 mm had a height of 26 mm. Capacitor armatures were
connected with insulated gates of field effect transistors (FETs) of the input differential amplifier by
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Figure 1. A scheme of the experimental setup (the rotating magnetized sphere and coaxial-cylinder
capacitors).

thin wires with diameter 0.15 mm. The fabrication error of capacitors and device geometric dimensions
was 0.5 mm. Air capacitors capacitance and the input capacitance of the FETs were measured by
the LRC meter E7-11. The instrument error of the LRC meter E7-11 in our measurement range was
(1 + 20/C)%, where C is the value of measured capacitance in pF. Capacities of capacitors were 7.5 pF
with an error of 3.7%, 12 pF — 2.7% and 15.5 pF — 2.3%. Input capacitances of KP305D FETs were
4.7 pF and 5.1 pF with an error of 5%. During measurements, the sphere, a capacitor, and an input
amplifier were shielded from external fields by a grounded aluminum screen. An output signal of the
differential amplifier was applied to the input of a direct current millivoltmeter, located outside of the
shielded volume. Before measurements, the amplifier calibrating and the differential amplifier stage
balancing were done, and the operating point of transistors was adjusted. The calibration voltage was
1mV with an accuracy of 1.5%.

2.2. Measurements of the Potential Difference across Capacitors

The reading of the millivoltmeter deflection was taken. The double-deflection method [9] was used to
make measurements, and the average number of divisions and the mean-square error were found. While
the magnetic sphere rotates, an electrization of the sphere and capacitor occurs by an air flow. Electrical
polarity of the potential difference across the capacitor, caused by the electrization, is independent from
direction of rotation of the sphere, whereas polarity of the electromagnetic signal depends on direction
of rotation. By subtracting the signals obtained, while the sphere spun in opposite directions, we
subtracted a noise and summed useful signals. Potential differences across the capacitor were calculated
by the formula

∆ϕ = nl (5)

where n — the average number of divisions and l — the scale value of the millivoltmeter. The scale
value for all measurements was 0.091mV/div with an error of 5%. A total relative error of measurement
of the potential difference across the capacitors was calculated by

σ∆ϕ

∆ϕ
=

√
σ2

n

n2
+

σ2
o

n2
+

σ2
l

l2
, (6)

where σn — the mean square error of the mean number of divisions, σo — the reading error, and σl —
the error of the scale value. For the first capacitor the measured value of the potential difference was
1.84mV with an error of 6%, for the second — 0.59 mV with an error of 11%, for the third — 0.34mV
with an error of 15%.

2.3. Calculation of the Potential Differences across Capacitors

In the potential difference calculating across capacitors some spatial distribution distortion of the
electric field by the measuring circuit is taken into account. The cylindrical capacitor armatures are
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equipotential surfaces and ones average potential distribution along the coordinate θ (Figure 1). The
average value of the potential of a capacitor armature was calculated by the formula

ϕ =
1

π/2− θ1

π/2∫

θ1

ϕ (θ, r)dθ = ϕ (r0) f (θ1) , (7)

where ϕ(r0) is the potential in the midpoint of an capacitor armature, f(θ1) the averaging factor, and
θ1 the polar angle of the capacitor armature edge (Figure 1) with respect to the z-axis.

The input capacitance of the amplifier reduces the measured potential difference in k times, where

k =
Cc

Cc + Cin
, (8)

here Cc is the cylindrical capacitor capacitance, Cin is the input capacitance of the amplifier.
Capacitances of the “sphere — an armature of a cylindrical capacitor” also affect the measured

potential difference. An influence of the sphere-capacitor capacitance on the first capacitor (Figure 1)
is stronger than the influence of one on a capacitor located father from the sphere center. It is difficult
to estimate this effect, so it was not included in the calculation of the potential difference. This effect
can be reduced by increasing radius of a capacitor, increasing its capacitance, decreasing the input
capacitance of transistors.

The potential difference across the cylindrical capacitor deduced from Equation (1) for quadrupole
electric field potential is given by

∆ϕ =
mωR2

3c

(
f1

r3
1

− f2

r3
2

)
k. (9)

Here f1, f2 are averaging coefficients, calculated from Equation (7), and k is the factor from (8).
An absolute error of the expression in parentheses was calculated by the formula

σrf =
√

σ2
1 + σ2

2. (10)

Here σ1, σ2 are the absolute errors of the first and second terms in (9). The relative error of the potential
difference (9) is

σ∆ϕ
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k
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. (11)

The first term under the square root gave an error of 1.6%, the second — 1%, and the third (for
the first capacitor) — 16%, the fourth (for the first capacitor) — 2.4%. Thus, the basic error of the
calculated values of the potential difference is determined by an accuracy of the geometric dimensions
of the capacitors.

The results of the potential difference calculated by Equation (9) and its error δ = σ∆ϕ

∆ϕ calculated
by the Equation (11) are ∆ϕ1 = 0.41mV, δ = 16% for the first capacitor, ∆ϕ2 = 0.05 mV, δ = 13% for
the second capacitor, ∆ϕ3 = 0.02mV, δ = 10% for the third capacitor.

The potential difference due to (3) can be written in the form

∆ϕ =
mω

c

(
f1

r1
− f2

r2

)
k. (12)

The results of calculations of the potential difference by the Equation (12) and errors δ are ∆ϕ1 =
1.34mV, δ = 13% for the first capacitor, ∆ϕ2 = 0.55mV, δ = 11% for the second capacitor,
∆ϕ3 = 0.33mV, δ = 10% for the third capacitor.

All of the obtained results are presented in Table 1.
As seen from Table 1, discrepancies between the experimental values of the potential difference

and the calculated values according to the Equations (9) or (1) are greater than measurement errors.
For the first capacitor, the discrepancy between the experimental value of the potential difference and
the theoretical value calculated according to Equations (12) or (3) is 0.5 mV, which is more than the
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Table 1. Experimental and theoretical values of the potential difference across a capacitor.

No. 1 2 3
radii of the cylindrical

capacitor armatures (cm)
2.21± 0.05
2.84± 0.05

4.10± 0.05
4.80± 0.05

5.85± 0.05
6.60± 0.05

experimental values of the
potential difference across

the capacitors (mV)
1.84± 0.11 0.59± 0.06 0.34± 0.05

theoretical values of the
potential difference calculated

by the Equation (9) (mV)
0.41± 0.06 0.055± 0.007 0.021± 0.002

theoretical values of the
potential difference calculated
by the Equation (12) (mV)

1.34± 0.17 0.55± 0.06 0.33± 0.03

measurement error. This discrepancy, possibly, arises due to capacity of the system: the sphere —
the first capacitor. For the second and third capacitors, experimental values of the potential difference
coincide within the experimental error with the values calculated by Equation (12).

What are the cause of large discrepancies between the experimental data and values deduced from
the Equation (1) and the cause of small discrepancies between the experimental data and values deduced
from the Equation (3)?

Theoretical methods, based on elements of the special relativity and subsequent decision of the
boundary-value electrostatic problem, use the Lorentz transformations only inside the sphere [1, 5, 6].
Since the magnetic field of a magnetized sphere is distributed not only in the volume of the sphere,
but also in the surrounding space, the Lorentz field transformations must be applied both inside and
outside the sphere. Solutions, obtained using the Lorentz transformations inside a sphere and the
Laplace equation outside the sphere, are incorrect.

It can be shown that the flow of the electric field vector (3) across a closed cylindrical surface with
the generatrix parallel to the axis of sphere rotation is equal to zero inside the light cylinder (ωr ¿ c).

∮
Eds =

2π∫

0

ρdϕ

∞∫

−∞
Eρdz = 0, (13)

where ρ, ϕ, z are cylindrical coordinates.
Thus, the total electric charge inside the cylindrical surface is equal to zero. This means that the

Lorentz transformations applying inside and outside a magnetized sphere does not violate the charge
conservation law.

It follows from Equation (3) and the equation of electrostatics that the charge is distributed in the
magnetic field inside and outside the rotating magnetized sphere in the form of an apparent charge with
the density

ρ = −ω ·B
2πc

(14)

and with the surface density

σ =
(ω ×R) · j

c2
, (15)

here B is the magnetic field induction and j the surface current density.
Indeed, it follows from the expression (14) that the charge density is independent from permittivity

ε and conductivity of the sphere, and it exists in a vacuum. Thus, these apparent electrical charges do
not have carriers in the form of electrons, protons or ions, and they are a manifestation of the purely
relativistic first-order effect.
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3. CONCLUSION

In this work we report an experiment, in which series of measurements of the potential difference across
cylindrical capacitors were performed. Cylindrical capacitors were placed in the equatorial plane of a
rotating conducting magnetic sphere coaxially to the axis of rotation. The experimental data allow us to
state that the observed electric field is not the quadrupole field. The experimental data are essentially
in accord with the theoretical Equation (3). A possible cause of discrepancies between the experimental
data and the theoretical values for the quadrupole field potential is the incorrect statement of theoretical
problem.
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