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Abstract—In this paper, a novel forward-looking imaging method
based on the compressed sensing is proposed for scanning phased array
radar (PAR) in order to improve the azimuth resolution. Firstly,
the echo of targets is modeled according to the principle of PAR.
Then, it is analyzed why some of the former methods as multi-channel
deconvolution are ineffective based on the signal model. Using a
widely accepted assumption that dominant scatterers in an interesting
area are sparse or compressible, an imaging algorithm based on
the compressed sensing is proposed and investigated. This method
obtains its high range resolution by transmitting and compressing
chirp pulse signal, and improves its azimuth resolution by utilizing
the compressed sensing technique. The effectiveness of the proposed
method is illustrated and analyzed with simulations data.

1. INTRODUCTION

Since synthetic aperture radar (SAR) has the characteristics of imaging
an interesting area with high resolution in all weather conditions, it
moves radar technology from crude detection and estimation to fine
resolution imaging and feature extraction [1–5]. Nowadays, it has
become an important detecting tool in the military reconnaissance
and civil remote sensing fields and has been widely used on airborne
or missile-borne platforms. However, due to the limitations of its
principle, the conventional SAR can work well only when the radar
is side looking or squint looking with a small squint angle. If the radar
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works with a large enough squint angle even under the forward-looking
condition, it cannot provide images with high azimuth resolution. So
the conventional SAR cannot be applied in certain scenarios, such as
aircraft landing, which require the radar to image a forward swath
rather than a sideward swath like a vehicle’s headlight [4, 6]. It means
that the SAR exists an imaging blind zone which locates at the forward
of the platform.

In order to overcome this problem, many methods have been
proposed and these methods can be divided into two categories
roughly. The first is that the platform maneuvers along a pre-designed
trajectory and lets the target area locate at the obliquely forward of
the platform. The radar illuminates the target area with a high squint
angle and synthetic aperture processing can be used to image the area.
This method avoids the forward looking imaging problem. However,
it can reduce but cannot eliminate the imaging blind zone. Especially
at the end of the trajectory, the problem still exists. And this method
increases demands for maneuverability of the platform. The second
category includes various systematic or numerical methods, which have
been proposed to enable the radar to image the forward swath with an
azimuth resolution to some extent. Commonly, these methods can be
categorized into the following classes.

(1). Forward imaging SAR using a forward looking array as the
sector imaging radar for enhanced vision (SIREV) which has been
developed at the German Aerospace Center [7–15]. The problem of
this approach is that it has so complicated a system that when a
high azimuth resolution is required, there will be an expensive and
large-scale transformation to the existing systems. Even so, according
to SAR, its azimuth resolution is constrained by the length of the
synthetic aperture, which is equal to the real aperture length of the
array, so this method is only suitable for landing of airplanes on which
a large scale antenna can be achieved, and unsuitable if the aperture
is not large enough, such as a missile-borne radar.

(2). Monopulse forward imaging based on monopulse angle
measurement. This method is investigated in many literatures [16, 17]
and it has been used in some systems [18]. This method uses the
advantage of monopulse angle measurement which has high precision,
but it cannot distinguish scatterers in the same range resolution cell.

(3). Forward imaging based on the technology of direction of
arrival (DOA) [19, 20]. If this method is used, multiple channels
are required, and the scatterers’ number must be smaller than the
channels’. It can be acquired that more scatterers mean more channels
and more complicated system. And more important is that high-
volume data should be processed. If a broadband signal is used, the
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impact of bandwidth should be considered, which makes the algorithm
more complicated.

(4). Scanning radar forward-looking imaging based on deconvolu-
tion [21–23]. Research of this method can be traced back to 1980s,
and a lot of papers have been presented. Recently, because of the
increasingly urgent requirement for the forward-looking imaging, it
attracts people’s attention again. Because the antenna pattern is a
low-pass system and the single-channel deconvolution in the frequency
domain cannot work well in the singular region, a multi-channel de-
volution method [24] in the frequency domain is proposed, which uti-
lizes the characteristic of monopulse radar which has a sum and a
difference channel. This method also includes some modified forms,
such as deconvolution in the time domain [25], least square estima-
tion (LSE) [26, 27], et al. Limitations of these approaches are that the
imaging result is sensitive to the signal-to-noise ratio (SNR) and what
matters more is that absolution of the antenna pattern is used in the
former researches. But according to antenna theory, it is not the fact. If
the phase of the antenna pattern is considered, its bandwidth in which
area its spectrum is not equal to zero is finite and approximately equal
to the electrical length of the antenna, so the azimuth resolution is
approximately equal to the beam width of the antenna pattern, which
will be investigated in detail in the paper. When deconvolution in
time domain or LSE is used, the difficulty will be encountered because
the sensing matrix is of a great condition number even ill-conditioned.
The rank of the measurement matrix is much smaller than the azimuth
resolution cells’ number, so the equations will have many solutions. If
some regularization technologies are adopted, the rank of the measure-
ment matrix will be increased and its singularity will be eliminated.
However, the equations will be changed seriously and the correct solu-
tion cannot be obtained.

In addition, there are some other forward-looking imaging
methods, such as scanned angle/time correlation (SATC) [28] and
bistatic forward-looking SAR imaging [29–37]. The former is not given
detailed in the literature, and an important precondition of this method
which is difficult to achieve is that the antenna pattern should maintain
a fixed phase relationship with the transmitted signal during the
azimuth scanning process, and what is more important is that echoes
from different directions do not satisfy the translation invariance,
These problems constrain the use of the method for forward-looking
imaging. The latter is a promising method for forward-looking imaging
with high resolution, but the difficulty is the synchronization of the
receiver and the transmitter.

Now, more and more phased array radar (PAR) systems are
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used on airborne or missile-borne platform, and sometimes, because
of the limitations of the platform size, data storage capacity and
costs, multiple channels cannot be achieved and the sensor has only
two channels — the sum and the difference channel, which is named
as monopulse PAR, so in this paper, the forward-looking imaging
of monopulse PAR is considered. Signal model of an azimuth-
scanning PAR is established according to its principle. Limitations of
deconvolution forward-looking imaging algorithm are investigated in
detail through theoretical analysis and experiments. A novel forward-
looking imaging method is proposed based on compressed sensing
(CS), which obtains high range resolution by pulse compression of
a broadband signal and azimuth discrimination in the same range
resolution cell by an optimum estimation based on CS for a sparse
scene. After pulse compression, data of the same range cell at
different azimuth scanning angles constitute the azimuth echo signal,
and they are the sums of multiple targets’ echoes from different azimuth
directions which are weighted by the antenna pattern. Therefore,
estimation of the targets’ amplitudes and azimuths from the azimuth
echo signal is an inverse problem. In most cases, inverse problems
are underdetermined and ill-posed. And it is difficult to obtain an
accurate and stable solution. Tikhonov regularization method [38, 39]
can eliminate isolated singular points of the inverse problem. However,
if the system function is equal to zero in a large continuous area of the
frequency domain, such as an antenna pattern, it is difficult to get
the correct answer. Compressed sensing can be used to resolve inverse
problems [40], and it has been applied in radar imaging [41–44]. But
it is mainly used to reduce the sampling pressure. If the sparsity of
the scene is used as the regularization condition and CS is applied to
forward-looking imaging, image resolution can be improved.

This paper is organized as follows. In Section 2, the signal
model is established based on the principle of monopulse PAR. In
Section 3, some deconvolution forward-looking imaging methods are
analyzed in detail, which include the multi-channel deconvolution and
the LSE method. The inefficiency of these methods is verified through
theoretical analysis and simulations. Based on the prior information
that the target area is sparse or compressible, a novel method based
on compressed sensing is proposed, and performance of the method
is established. In Section 4, some numerical simulation results are
presented, and performance of the novel method is compared with the
deconvolution imaging methods, and system parameters’ impact also
is analyzed.
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2. ESTABLISHMENT OF THE SIGNAL MODEL

Suppose that the operating frequency is f0 and corresponding
wavelength λ0. A forward-looking uniform linear PAR is constituted
by Mx elements. The space between two adjacent elements is dx. A
chirp pulse is emitted during a single pulse repetition interval, its
instantaneous bandwidth is Br and its time duration is Γ. In order
to simplify the problem, PAR remains stationary during an imaging
period, thus impact of the motion can be ignored, and the chirp’s
bandwidth is so small that effects of aperture filled phenomenon can
be ignored and azimuth scanning is achieved through phase-shifted
method. Signals from the sum and the difference channels are obtained
through weighting the signal from each element. The monopulse PAR’s
structure is shown in Fig. 1.

s s

T
ra
n
s
m
itte
r

Σ

Σ

Σ ∆

Figure 1. Structure diagram of a monopulse PAR.

Let the antenna phase center (APC) locate at the geometry center
of the array. When the radar is working for forward-looking imaging,
the beam of the antenna will scan the target area. If the beam’s
direction is θ0

i , the signal emitted from the mx-th element can be
expressed as

smx(i, tf )=rect
(

tf
Γ

)
exp

{
j2πf0tf +jπγt2f

}
exp

{
−j2πf0

mxdx sin θ0
i

c

}

(1)
where i is the index number of a probe, and tf is the fast time
whose origin is located at the start of a pulse repeated interval as
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many literatures have been explained about synthetic aperture radar.
γ = Br/Γ is the chirp rate. If the k-th scatterer locates at (Rk, θk)
and its amplitude is Ak, the distance between the scatter and the
mx-th element is equal to Rk,mx = Rk − mxdx sin θk approximately,
where Rk is the distance between the scatterer and the APC, θk is its
azimuth angle. Time delay between the scatterer and the element is
τk,mx = Rk,mx/c = Rk/c−mxdx sin θk/c = τk− τmx , so the echo which
is collected by the p-th element is given as follows

sk,px(i, tf ) = Ak exp
{
−j2πf0

pxdx sin θ0
i

c

}∑
mx

exp
{
−j2πf0

mxdx sin θ0
i

c

}

rect
(

tf − τk,mx−τk,px

Γ

)
exp

{
j2πf0 (tf−τk,mx−τk,px)
+jπγ (tf−τk,mx−τk,px)2

}
(2)

where τpx = pxdx sin θk/c, τk,px = Rk,px/c = Rk/c − pxdx sin θk/c =
τk − τpx . In order to form the sum and difference antenna patterns
with lower sidelobes, Taylor and Bayliss series are used to weight
signals from these elements [45]. Supposing that the weighting series
are aΣ = [aΣpx ] and a∆ = [a∆px ] respectively, the signals which are
collected by the radar are the weighted summation of the signal from
each element and can be written as

sΣk (i, tf ) =
∑
px

{aΣpxsk,px (i, tf )} (3)

s∆k (i, tf ) =
∑
px

{a∆pxsk,px (i, tf )} (4)

If there are K scatterers in the target area, the signal can be
expressed as

sΣ (i, tf ) =
∑

k

sΣk (i, tf ) (5)

s∆ (i, tf ) =
∑

k

s∆k (i, tf ) (6)

Based on the previous assumption, effects of the aperture filled
phenomenon are ignored, and approximately, the signal from the sum
channel can be rewritten as

sΣ(i, tf ) ≈
∑

k

AkgΣ

(
θ0
i , θk

)
rect

(
tf − 2τk

Γ

)

exp
{
j2πf0(tf − 2τk) + jπγ(tf − 2τk)2

}
(7)
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where gΣ(θ0
i , θk) is the gain of the sum channel antenna pattern which

is given as

gΣ

(
θ0
i , θk

)

= gΣR

(
θ0
i , θk

)
gT

(
θ0
i , θk

)
=

∑
px

aΣpx exp

{
j2πf0

pxdx

(
sin θk − sin θ0

i

)

c

}

∑
mx

exp

{
j2πf0

mxdx

(
sin θk − sin θ0

i

)

c

}
(8)

Similarly, the signal from the difference channel can be expressed as

s∆ (i, tf ) ≈
∑

k

Akg∆

(
θ0
i , θk

)
rect

(
tf − 2τk

Γ

)

exp
{

j2πf0 (tf − 2τk) + jπγ (tf − 2τk)
2
}

(9)

where g∆(θ0
i , θk) is the gain of the difference channel antenna pattern

which is given as

g∆

(
θ0
i , θk

)

= g∆R
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θ0
i , θk
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=
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c

}
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exp

{
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(
sin θk − sin θ0

i

)

c

}
(10)

Since signal processing of the sum and the difference channel are
the same, only processing of the sum channel is given below. After
down-conversion and pulse compression, the signal of the sum channel
can be expressed as

sΣ(i, tf )≈
∑

k

Ak exp {−j4πf0τk} sinc {Br (tf−2τk)} gΣ

(
θ0
i , θk

)
(11)

Then azimuth resolution is obtained through processing the signal
in the same range resolution cell which is formed by multiple probes.
Herein, the number of probes is I. The echo collection model is
illustrated in Fig. 2.

The length of the antenna pattern is defined as the region in which
the gain is significantly larger than zero, and here is N = 2K+1, which
is shown in Fig. 2(a) as a bold solid line. Echo collection process is
illustrated in Fig. 2(b). It shows that the scanning process is a one of
weighted summation to the echoes from different targets in the same
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range resolution cell. Thus, after pulse compression the total signal
also can be expressed in matrix form as

SΣ = GΣX (12)

If noise is considered, it can be rewritten as

SΣ = GΣX + WΣ (13)

If sampling points’ number along the fast time is L, dimension
of SΣ is I × L. Each row is a high range resolution profile of each
probe, and each column has the same radial distance and constitutes
the echo of the ring. Rows’ number of GΣ is I, and the i-th row is
the sampling of the antenna pattern of the i-th probe. It should be
noted that the antenna pattern is changing with the beam’s direction,
which is different from mechanical rotating radar. Sampling range is
from θ0

0 − Kδθ to θ0
I−1 + Kδθ, which is the total antenna patterns

coverage of the whole scanning process and the number of sampling
points is Q. Here, sampling interval of the antenna pattern is assumed
as δθ. It should be noted that, the sampling interval of the antenna
pattern is not necessarily equal to the step between two adjacent
probes which is denoted as ∆θ. Thus, the i-th row of GΣ can be
written as a row vector gΣi = [gΣ(θ0

i , θq)], where θq is a sampling point
in [θ0

0 −Kδθ, θ0
I−1 + Kδθ], and the length of gΣi is Q. The rows’

number of X is equal to Q, which corresponds to the length of gΣi,
and its columns’ number is equal to L, which corresponds to the range
sampling number. Expressions of SΣ, GΣ, X are given as follows

SΣ =




sΣ (0, tf,0) sΣ (0, tf,1) . . . sΣ (0, tf,L−1)
sΣ (1, tf,0) sΣ (1, tf,1) . . . sΣ (1, tf,L−1)

...
...

. . .
...

sΣ (I − 1, tf,0) sΣ (I − 1, tf,1) . . . sΣ (I − 1, tf,L−1)




GΣ =




gΣ

(
θ0
0, θ0

)
gΣ

(
θ0
0, θ1

)
. . . gΣ

(
θ0
0, θQ−1

)

gΣ

(
θ0
1, θ0

)
gΣ

(
θ0
1, θ1

)
. . . gΣ

(
θ0
1, θQ−1

)
...

...
. . .

...
gΣ

(
θ0
I−1, θ0

)
gΣ

(
θ0
I−1, θ1

)
. . . gΣ

(
θ0
I−1, θQ−1

)




X =




A (θ0, tf,0) A (θ0, tf,1) . . . A (θ0, tf,L−1)
A (θ1, tf,0) A (θ1, tf,1) . . . A (θ1, tf,L−1)

...
...

. . .
...

A (θQ−1, tf,0) A (θQ−1, tf,1) . . . A (θQ−1, tf,L−1)




where, tf,l (l = 0, 1, . . . , L − 1) is each sampling instant along the
fast time, A(θq, tf,l) is the amplitude of the scatterer at (θq, ctf,l/2)
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Figure 2. Signal received process. (a) Truncated antenna pattern.
(b) Signal collection process of the scanning radar.

with the impact of the pulse compression, which contains a delayed
phase determined by the radial distance. Obviously, it can be seen
that X is a mesh dissection of the target area. In case that X could
be recovered through signal processing, finer dissection means higher
resolution. Because the antenna pattern has a certain beam width,
beam coverage is larger than the scanning area, which is to say that
the range from θ0

0 − Kδθ to θ0
I−1 + Kδθ is larger than that from θ0

0

to θ0
I−1, which is illustrated in Fig. 2(b), and commonly in order to

improve the resolution, δθ is smaller than ∆θ, so Q > I, and it means
that Equations (12) and (13) are underdetermined, and the number of
unknowns is larger than the equations’ number.

3. IMAGING ALGORITHM

If Equations (11), (12) and (13) can be solved, a high resolution
image can be achieved. The antenna pattern of the PAR changes
with the beam’s direction which is different from the mechanical
rotating radar, and from the point of signal and system, it means
that the antenna pattern is a linear time-varying system. The azimuth
echo is a result of the target area information passing through this
linear time-varying system. We cannot use the linear deconvolution
method to solve this problem. However, if the scanning range is small
enough, the antenna pattern can be considered as a constant and
approximately time-invariant system. Deconvolution in the frequency
domain is highly time-efficient, which is benefit for achieving real-time
implementation. If this algorithm could be used to obtain high azimuth
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resolution, it was a promising method for forward-looking imaging, and
performance of the scanning radar would be improved significantly.
Because the antenna pattern of a single channel has singular areas,
multi-channel deconvolution has been proposed. This method utilizes
the characteristic that a monopulse radar has two channels, the sum
and the difference channel. Unfortunately, it is inefficient for azimuth
resolution improvement, which will be verified below. In addition, two
channels can double the number of the equations while the number
of unknowns keeps constant, so LSE has been proposed for solving
equations. Some results of LES is presented, which shows that this is
inefficient, and the reason is analyzed. Based on the analysis about the
echo collected by the PAR, a novel forward-looking imaging method
using compressed sensing is proposed.

3.1. Analysis of the Two-channel Deconvolution
Forward-looking Imaging Method

For a scanning monopulse radar, the received echo can be modeled as

sΣ (θ, tf ) = x (θ, tf )⊗ gΣ (−θ) + wΣ (θ, tf ) (14)
s∆ (θ, tf ) = x (θ, tf )⊗ g∆ (−θ) + w∆ (θ, tf ) (15)

where x(θ, tf ) is the targets’ distribution on the ring distance from
which to the APC is ctf/2, gΣ(θ) and g∆(θ) are the sum and
the difference channel antenna pattern respectively. wΣ(θ, tf ) and
w∆(θ, tf ) are noise, and the symbol ‘⊗’ means the convolution of two
functions. Result of two-channel deconvolution is given as

X(Θ, tf )

=
G∗

Σ(−Θ)SΣ(Θ, tf )/W 2
Σ(Θ, tf )+G∗

∆(−Θ)S∆(Θ, tf )/W 2
∆(Θ, tf )

G∗
Σ(−Θ)GΣ(−Θ)/W 2

Σ(Θ, tf )+G∗
∆(−Θ)G∆(−Θ)/W 2

∆(Θ, tf )
(16)

If noise is not taken into account or the noise’s spectrums of two
channels are the same, Equation (16) can be rewritten as

X (Θ, tf ) =
G∗

Σ (−Θ)SΣ (Θ, tf ) + G∗
∆ (−Θ)S∆ (Θ, tf )

G∗
Σ (−Θ)GΣ (−Θ) + G∗

∆ (−Θ)G∆ (−Θ)
(17)

where X(Θ, tf ), SΣ(Θ, tf ), S∆(Θ, tf ), GΣ(−Θ), G∆(−Θ) are the
Fourier transformations of x(θ, tf ), sΣ(θ, tf ), s∆(θ, tf ), gΣ(−θ) and
g∆(−θ) respectively. W 2

Σ(Θ, tf ) and W 2
∆(Θ, tf ) are the power

spectral density functions of wΣ(θ, tf ) and w∆(θ, tf ) respectively.
The superscript ‘*’ means complex conjugate. The inverse Fourier
transformation of X(Θ, tf ) is the scatterers’ distribution. From the
upper analysis, some conclusions can be obtained. Singular areas of
X(Θ, tf ) are determined by GΣ(−Θ) and G∆(−Θ), i.e., zero points
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of GΣ(Θ) and G∆(Θ). According to the principle of sum-difference
amplitude-comparison monopulse technology, gΣ(θ) and g∆(θ) can be
expressed as

gΣ (θ) = g (θ −∆θ) + g (θ + ∆θ) (18)
g∆ (θ) = g (θ −∆θ)− g (θ + ∆θ) (19)

where g (θ −∆θ) and g (θ + ∆θ) are two sub-beams’ antenna patterns
which are used to form the sum channel antenna pattern and the
difference channel antenna pattern, respectively. ∆θ is half of the
angular interval between these two sub-beams. Fourier transformations
of gΣ (θ) and g∆ (θ) are given by

GΣ(Θ) = 2 cos(2πΘ∆θ)G(Θ) (20)
G∆(Θ) = −j2 sin(2πΘ∆θ)G(Θ) (21)

It shows that zero points of G(θ) also are zero points of GΣ(Θ)
and G∆(Θ). If the antenna surface current intensity is I(u) and the
aperture length is L, the antenna pattern can be expressed as

g (θ) =

L/2∫

−L/2

I (u) exp
{
−j2πf0

u sin θ

c

}
du (22)

Generally, L is much larger than λ0 = c/f0 and the beam is so
narrow that Equation (22) can be approximated as follows

g (θ) ≈
L/2∫

−L/2

I (u) exp
{
−j2πf0

uθ

c

}
du (23)

So G(Θ) can be expressed as

G(Θ)=

π∫

−π

L/2∫

−L/2

I(u) exp
{
−j2πf0

uθ

c

}
exp {−j2πΘθ} dudθ

=I

(
−cΘ

f0

)
(24)

Since I(u) is non-zero only in [−L/2, L/2], G(Θ) will be non-
zero only under the condition that |Θ| ≤ Lf0/(2c), which means
that the value of X(Θ, tf ) can be recovered only when it is in
[−Lf0/(2c), Lf0/(2c)], and the length of this area is L/(c/f0), so the
azimuth resolution is (c/f0)/L which is equal to the beam width of one-
way antenna pattern. Similarly, the azimuth resolution of the round-
trip antenna pattern is (c/f0)/(2L) which is equal to the beam width
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of the round-trip antenna pattern. Exact Fourier transformation of
g(θ) can be expressed as

G(Θ) =

π∫

−π

g(θ) exp {−j2πΘθ} dθ

= 2πλ0

L/(2λ0)∫

−L/(2λ0)

I(v)J2πΘ(−2πv)dv (25)

where J2πΘ(−2πv) is the first kind Bessel function. It shows that, G(Θ)
is a Bessel integral and it is difficult to obtain its accurate expression,
but its change rule can be found by numerical analysis. The numerical
integral of G(Θ) can be expressed as

G (Θ) = 2πλ0

L/(2λ0)∑

−L/(2λ0)

I (v) J2πΘ (−2πv)∆v (26)

Suppose that the antenna current distribution is uniform and
electrical length of the aperture L/λ0 equal to 20, 40 or 80, which
means v = [−10, 10], [−20, 20] or [−40, 40], respectively. The
numerical integral is illustrated in Fig. 3. It shows that, if Θ is larger
than L/λ0, the value of G(Θ) will decline to zero rapidly, so multi-
channel deconvolution in the frequency domain cannot be used to the
forward-looking imaging.

The function |sinc(·)| is often used as an approximation of the
antenna pattern for forward-looking imaging in the existing literatures.
An instance is given below. Supposing that every sub-beam’s width is
4◦, and 2∆θ = 0.4◦, rotating frequency of the antenna is 6 rounds per
minute and the scanning area ranges from −15◦ to 15◦. A chirp pulse
is emitted in each pulse repeated interval, the operating frequency
is 10 GHz, Br = 150 MHz, its pulse time duration is 5µs and the
pulse repeated frequency is 1000 Hz. Distribution of the scatterers is
illustrated in Fig. 4, and these amplitudes are all equal to 1. Imaging
result with high resolution of multi-channel deconvolution is shown
in Fig. 5(a). Every scatterer can be discriminated. However, if the
function sinc(·) which is closer to the real situation is used, the imaging
result is shown in Fig. 5(b). It shows that high azimuth resolution
cannot be achieved. The reason is that |sinc(·)| has a wider and richer
frequency domain information than sinc(·) and the bandwidth of sinc(·)
is limited. However, it can be deduced from above analysis that |sinc(·)|
cannot be realized.

Above theoretical analysis and simulations prove that multi-
channel deconvolution cannot be used to improve azimuth resolution of
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(a) Electrical length equal to 20. (b) Electrical length equal to 40.
(c) Electrical length equal to 80.
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Figure 4. Distribution of the scatterers (illustrated as black dots).

the image formed by the antenna-rotating radar. In fact this derivation
for phased array radar is also true. If scanning area is not large enough,
the antenna pattern can be considered approximately as a constant.
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Figure 5. Imaging result using different antenna patterns.
(a) Imaging result using the |sinc| antenna pattern. (b) Imaging result
using the sinc antenna pattern.
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Figure 6. Antenna pattern of the monopulse phased array radar.

Although the principle of monopulse PAR has little difference with the
monopulse mechanical rotating radar, the essence is the same, Fourier
transformation of the PAR antenna pattern is also equal to the antenna
current distribution density approximately, and its bandwidth also is
determined by the electrical length of the aperture. For an instance,
supposing that the operating frequency f0 is 35 GHz and that the
number of elements is 25, the distance between two adjacent elements
is 0.6 times of the wavelength λ0; chirp signal is used, Br = 80 MHz,
Γ = 5µs; scanning area ranges from −15.6◦ to 15.6◦ with a constant
step; Taylor and Bayliss series are used to form the sum and the
difference channel antenna pattern, respectively. The antenna patterns
are shown in Fig. 6 when the beams are pointing along the normal line
of the array.

Antenna patterns at all the time and these Fourier transformations
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Figure 7. Antenna pattern and these spectrums. (a) Antenna
patterns of the sum channel. (b) Antenna patterns’ spectrums of
the sum channel. (c) Antenna patterns of the difference channel.
(d) Antenna patterns’ spectrums of the difference channel.

are shown in Fig. 7. It shows that bandwidths of the sum channel
antenna patterns and the difference channel antenna patterns are
extremely limited, therefore, two-channel deconvolution in frequency
domain is inefficient when it is used to improve azimuth resolution
of the forward-looking image. The reason is that the Fourier
transformations of the antenna patterns have a finite bandwidth. In
order to overcome this shortcoming, the existing methods use some
regularized measurement for deconvolution, such as supposing that the
amplitudes of scatterers is positive. However, after pulse compression
along the fast time, the amplitudes include the phases which are
formed by the fixed distance between the targets and the radar, and
these phases cannot be compensated because these positions cannot
be obtained accurately enough. It can be seen that these simple
regularized measurements are inefficient.
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3.2. Analysis of the LSE Forward-looking Imaging Method

If the scanning area is so large that the change of the antenna
pattern cannot be ignored, deconvolution method cannot be utilized
for forward-looking imaging. So another methods based on the matrix
form of the echo which is given by Equations (12) and (13) are
proposed, and one of these methods is the LSE, which means that
X is estimated from SΣ according to the least square criterion. From
the above description about the model, we know that the number of
unknowns is larger than the number of equations, and LSE can be
used to solve the problem and achieved an optimum solution. If the
radar is a monopulse one which has two channels, LSE also can be
used to image. At this time, S = GX + W, where S =

[
ST

Σ ST
∆

]T ,
G =

[
GT

Σ GT
∆

]T and the superscript ‘T ’ means transpose operation.
As described above, the number of equations will be doubled while the
number of unknowns keeps constant, and the number of equations will
be larger than that of unknowns. Imaging results of the LSE method
can be expressed as

X̂ =
(
GHG

)−1
GHS (27)

where the superscript ‘H’ indicates conjugate transpose. Dimension of
GHG is Q ×Q. Since strong correlations between any two equations
may be presented, the rank of G will be much smaller than the column
number, which implies that most of the eigenvalues of GHG are equal
to zeros, and GHG is irreversible. In order to eliminate its singularity,
Tikhonov regularization method is adopted. And the result of the
modified LSE is given by

X̂ =
(
GHG + λE

)−1
GHS (28)

where λ is a small positive value, and E is an identity matrix whose
dimension is Q×Q. The singularity is eliminated while the equations
are changed significantly and the real solution cannot be achieved.
For an instance, if the radar parameters are the same with the above
simulation which is used in the last of Section 3.1, the number of
scanning steps is 625 from −15.6◦ to 15.6◦, and the scanning step
between two adjacent probes is 0.05◦. The antenna pattern coverage
area is from −15.6− 8.5 = 24.1◦ to 15.6 + 8.5 = 24.1◦, that is, targets
from −24.1◦ to 24.1◦ are considered. If the sampling interval of the
antenna pattern also is 0.05◦, the sampling number of the antenna
pattern will be 965, and the number of unknowns is 965. If two channels
are used, there will be 625 × 2 = 1250 equations. It shows that the
number of the equations is larger than that of unknowns. Scatterers’
distribution is illustrated in Table 1.
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Table 1. Scatterers distribution in the area.

No. Slant Range/m Azimuth/◦ Amplitude
1 1995 0.5 1
2 1995 0 1
3 1995 −0.5 1
4 2000 0.5 1
5 2000 0 1
6 2000 −0.5 1
7 2005 0.5 1
8 2005 0 1
9 2005 −0.5 1

The condition number of G which is calculated using Matlab is
equal to 1.7944×1018, and the rank of GHG is 30. If λ = 1×10−10, real
beam scanning result and imaging result based on the LSE are shown
in Fig. 8. Spots in the figure are the real positions of the scatterers.
It shows that the image resolution is improved but the extent is non-
significant.

Several simulations validate the conclusion. The reason is that
the scanning step is so small that two adjacent rows of GΣ or G∆ are
approximately equal to each other. And the LSE method cannot solve
the problem efficiently.

3.3. forward-looking Imaging Based on Compressed Sensing

Above theoretical analysis and numerical simulations show that neither
two-channel deconvolution nor the LSE can improve azimuth resolution
of the real beam scanning image efficiently. The reason is that
in order to solve the inverse problem and improve the azimuth
resolution of the image, priori information is essential. If it could
be used efficiently, forward-looking imaging with high resolution may
be possible. An important priori information is that scattering
characteristic of the target area in the optical area is equivalent to
the coherent superposition of a number of strong scatterers, these
scatterers are only a small part of the area, and amplitudes of the
other area are equal to zero approximately. That is to say, the scene
is sparse or compressible. Specifically, most of elements of X are equal
to zero, and only few of them have non-zero values, which implies that
the inverse problem is a one about sparse signal reconstruction and
compressed sensing method could be able to solve the problem. After
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Figure 8. Imaging result of the LSE method. (a) Result of the sum
channel. (b) Result of the difference channel. (c) Image by the least
square estimation. (d) Azimuth resolution of a target at 2000 m along
the slant range.

pulse compression, the u-th column could be abstracted from SΣ and
X, and a novel equation is obtained which is given by

su = GΣxu + wu (29)

where wu indicates the impact of noise, su the u-th column of SΣ, and
xu the u-th column of X which indicates the targets’ distribution on
the u-th isometric ring, and its length is Q. Suppose that there are k
scatterers on the ring. Because of the sparsity of the scene, k is much
smaller than Q, and xu is a sparse vector with the order equal to k. Let
θ0 = θ0

0−Kδθ, θQ−1 = θ0
I−1 +Kδθ, θq = θ0 +qδθ (q = 0, 1, . . . , Q−1).

Without loss of generality, we can assume that the relationship between
the scanning step ∆θ and the sampling interval of the antenna pattern
δθ is ∆θ = Jδθ, so θ0

i = θ0
0 + i∆θ = θ0

0 + iJδθ, i = 0, 1, . . . , I − 1,
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and GΣ can be expressed as GΣ = [gΣ0 gΣ1 . . . gΣQ−1 ], where
gΣq =

[
gΣ

(
θ0
0, θq

)
gΣ

(
θ0
1, θq

)
. . . gΣ

(
θ0
I−1, θq

)]T , and in order to
bring (29) to a CS scheme, a new vector is constructed which is given
by

g′Σq =
[
gΣ

(
θ0
0, θq

)
, gΣ

(
θ0
0 + δθ, θq

)
, . . . , gΣ

(
θ0
0 + (J − 1) δθ, θq

)
,

gΣ

(
θ0
0 + Jδθ, θq

)
, . . . , gΣ

(
θ0
0 + (I − 1)Jδθ, θq

)]T

Thus we have a dense dictionary as follows:
G′

Σ =
[
g′Σ0 g′Σ1 . . . g′ΣQ−1

]

It shows that GΣ = DG′
Σ, where D is given by

D =




1 0 . . . 0 0 . . . 0
0 0 . . . 1 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . 1




Dimension of D is I × [(I − 1)J + 1], only the iJ-th element of
the i-th row is equal to 1, and the others are all equal to 0, and that
is to say, the matrix D chooses the columns of G′

Σ whose columns
index number is 0, J , iJ , . . . , or (I − 1)J . So a new equation can be
obtained which is written as follows:

su = DG′
Σxu + wu = GΣxu + wu (30)

It shows that su is the sparse sampling of G′
Σxu which is impacted

by noise. GΣ = DG′
Σ is the sparse measurement matrix of a

compressed sensing. Forward-looking Imaging based on compressed
sensing is to estimate xu based on the Equation (30) under the
condition that the scene is sparse or compressible. Above analysis
shows that xu is a sparse representation on the overredundant basis
{gΣq| q = 0, 1, . . . , Q− 1}, where gΣq is named as an atom. According
to the compressed sensing, xu can be recovered by solving the following
minimization problems which is expressed as:

(P0) min ‖xu‖0 s.t. ‖su −GΣxu‖2 ≤ ρ (31)
where, ‖x‖0 indicates the number of non-zero values in the vector,
i.e., the sparsity order of the vector. ρ is the error parameter
which indicates the impact of noise. Because the minimization is
an NP-hard problem, its approximate solution is considered and the
minimization problem will be relaxed. It has been verified that under
some conditions, the problem can be converted from the nonconvex
optimization to a convex one which can be solved using the linear
programming technique. And the problem can be relaxed as follows:

(P0) min ‖xu‖1 s.t. ‖su −GΣxu‖2 ≤ ρ (32)
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Using the famous Laplace method, the problem can be rewritten as(
P λ

1

)
x̂u = arg min {‖xu‖1 + λ ‖su −GΣxu‖2} (33)

where λ is a positive value, and it is determined by the power
of noise. In order to obtain correct reconstruction results, some
requirements are placed on the sensing matrix. As mentioned above,
one sufficient condition is known as the restricted isometric property
(RIP) of the sensing matrix. If the sensing matrix GΣ satisfies RIP
and I ≥ O(k · log Q), xu can be recovered exactly with overwhelming
probability. A matrix GΣ is said to satisfy the RIP of order k if there
exists a constant εk ∈ (0, 1) such that

(1− εk) ‖x‖2
2 ≤ ‖GΣx‖2

2 ≤ (1 + εk) ‖x‖2
2 (34)

holds for all ‖x‖0 ≤ k. εk is named as restricted isometric constant
(RIC). If the sensing matrix satisfies the RIP with appropriate order
and constant, the solution of the (P1) problem in Equation (31) will
be equivalent to that of the (P0) problem in Equation (32), and the
(P λ

1 ) problem can also recover sparse signal in noise stably. RIP
is broadly viewed as a sufficient criterion for evaluating whether a
dictionary behaves like an isometry system in CS recovery. However,
for a special dictionary, in general, it is not easy to test whether GΣ

satisfies RIP. Herein, a method based on eigenvalue statistics which has
been described in [46] is adopted. After scaling, columns of GΣ have
unit norm, and it is explicit that GΣ obeys-the RIP of order k when
GT

ΣkGΣk has eigenvalues sufficiently within (1− δk, 1 + δk). Herein,
GΣk is constructed by abstracting k columns from the scaled GΣ, and
the index number of columns are random, so there will be many sets.
Each set will have its own maximum eigenvalue ek max and minimum
eigenvalue ek min. The means of ek max and ek min can be obtained which
are denoted as êk max and êk min. If êk max and êk min are all within
(1− εk, 1 + εk), we can speculate that GΣ satisfies the RIP of order
k. In the experiment, supposing that the radar scans from −15.6◦ to
15.6◦ with a uniform step, coverage of the scanning processing ranges
from −24.1◦ to 24.1◦. The sampling interval of the antenna pattern
is 0.05◦, and the number of the sampling points is 965, and spacing
between two adjacent elements keeps 0.6 times of the wavelength. k
varies from 1 to 30. Fig. 9(a) shows the means of the maximum and
the minimum eigenvalues of GΣ with Mx = 25, 35, 45, 55. Fig. 9(b)
shows the means of the maximum and the minimum eigenvalues of GΣ

if there are I = 40, 79, 157, 313, 625 samplings available.
Some conclusions can be deduced from above experiment:

(1) Under the condition that Mx = 25, the means of the maximum
and the minimum eigenvalues are within (0, 2) only when the
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Figure 9. Analyzing RIP of GΣ. (a) Relationship between RIC and
Mx. (b) Relationship between RIC and sampling number.

order of sparsity k is less than 5, which indicates that there exists
a positive value εk ∈ (0, 1). RIP is satisfied and the sparse vector
can be recovered exactly by solving the optimum problem. But if
k > 5, the mean of these maximum eigenvalues will be larger than
two, RIP cannot be satisfied, and the problem cannot be solved
by the convex optimization. In order to overcome this difficulty,
performance of the sensing matrix GΣ should be improved through
some methods, such as more complicated antenna pattern design.

(2) If Mx increases and the sparsity order of the vector keeps constant,
RIC will decrease and xu will be recovered more easily. This is
consistent with the intuition. More elements mean a narrower
beam width and better azimuth resolution. But the cost, volume
and weight of the radar will increase.

(3) Under the condition that I ≥ O(k · log Q), the maximum and
minimum eigenvalues do not change with the number of the
scanning steps, which is shown in Fig. 9(c) and indicates that we
can obtain the high azimuth resolution with the fewest number of
scanning steps.
In summary, the proposed forward-looking imaging method based

on compressed sensing includes the following steps:
(1) A train of pulses with a large time-bandwidth product are emitted

to the target area which is located at the front of the monopulse
PAR at the same time the radar is scanning along the azimuth
direction, and echoes are collected by the radar.

(2) High range resolution profiles are obtained after pulse compression
to echoes of each pulse.
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(3) Echoes in each range cell from the sum channel is used to estimate
the distribution of the scatterers based on compressed sensing
respectively, and the azimuth discrimination is achieved.

4. SIMULATION RESULTS

In order to validate the proposed method and compare it with the
imaging results of the real beam scanning and the LSE method, some
simulations’ results are presented. Herein, point scattering model is
used. Since the imaging in three dimensional space is equivalent to
the imaging in the two dimensional space which is determined by
the spindle of the beam, these simulations are performed in the two-
dimensional space. Parameters used in the simulations are given below:
the operating frequency is 35 GHz, the space between two adjacent
elements is 0.6 times of the wavelength, and there exists 25 elements
in the array. The beam scans from −15.6◦ to 15.6◦, the number of
the scanning steps is 79, and the scanning step is 0.4◦. The target
area locates at the front of the radar from −24.1◦ to 24.1◦. Chirp
pulses are transmitted, and the instantaneous bandwidth is equal to
80MHz, which means that the range resolution is 1.875 meters. Three
simulations are carried out as follows.

4.1. Validity Simulation

In order to validate the method, suppose that there are nine scatterers
in the target area and that their polar coordinates are [1995m, 0.4◦],
[1995m, 0◦], [1995m, −0.4◦], [2000 m, 0.4◦], [2000m, 0◦], [2000m,
−0.4◦], [2005 m, 0.4◦], [2005 m, 0◦], and [2005 m, −0.4◦], respectively.
Amplitudes of the scatterers are all uniform. Noise impact is ignored.
Figs. 10(a) and (b) show the imaging results of the target area based
on the real beam scanning and the LSE method. Spots in the figures
are the real positions of the scatterers. It can be seen that neither
of them can discriminate two adjacent scatterers in the same range
resolution cell. Fig. 10(c) shows the imaging result of the proposed
method. Compared with above figures, it can be seen that the
azimuth resolution is improved significantly, and the scatterers can
be discriminated easily. Fig. 10(d) shows the imaging results of the
scatterers whose range are 2000 meters, which indicates that azimuth
resolution based on the LSE method is better than that of the real
beam scanning, but cannot discriminate two adjacent scatterers, and
azimuth resolution based on compressed sensing is the best. Validation
of the method is verified.
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Figure 10. Efficiency of the imaging method by the compressive
sensing. (a) Scanning result of the sum channel. (b) Imaging result
after the least square estimation. (c) Imaging result of the compressive
sensing method. (d) Results’ comparison of different methods.

4.2. Robustness Test

To verify the robustness of the algorithm, we designed the following
experiment: radar operating parameters have been mentioned above,
and assuming there is a scatterer whose range is 2000 meters and
azimuth angle is −0.5◦. Gaussian white noise model is assumed, and
Monte Carlo experiments are carried out and the signal-to-noise ratio
(SNR) ranges from 0 dB to 45 dB. Five hundred experiments are carried
out under each SNR. Herein, the SNR is defined as the ratio of the
echo’s total energy to noise power, which is given by

SNR = 10 log10

sH
u su

/
I

σ2
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scanning and compressive sensing.
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Figure 12. Estimation means
and variance of compressive sens-
ing under different SNRs.

Figure 11 shows the imaging results along azimuth dimension based
on the real beam scanning and the compressed sensing. Herein, noise
impact is not considered. It indicates that azimuth resolution of the
proposed method is better. Since the target occupies only one or two
points and it is difficult to define the azimuth resolution of the imaging
result, the mean and variance of the optimum estimation are selected
as a measure of imaging result.

It shows that even at low SNR, high azimuth resolution can be
achieved. However, it should be noted that lower SNR means longer
time for estimation. Fig. 12 shows the change rules of the mean
and variance via the SNR, which indicates that if the SNR increases,
estimation of the target position will be more accurate and the variance
of the estimation will be lower. It can be seen that improvement of the
SNR is benefit for estimation.

4.3. Impact Analysis of RIC

If the elements’ number Mx keeps constant, a greater order of sparsity
k means a larger RIC. And if the order of sparsity k keeps constant,
a greater Mx means a smaller RIC. Supposing that Mx = 25 and
noise does not exist, imaging results are illustrated in Fig. 13 with
k = 2, 3, 4. Herein, the azimuth angle interval between two adjacent
scatterers is 0.4◦. It shows that the correct recovery can be achieved
if k < 4. Otherwise, we cannot achieve the correct recovery.

If k keeps constant which is equal to 3 and the azimuth angle
interval between two adjacent scatterers is 0.3◦, imaging results are
given in Fig. 14 with Mx = 25, 35, 45. It shows that if Mx increase,
results of the estimation will be better. So a conclusion can be achieved
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Figure 13. Relationship between the estimation result and the
scatterers’ number. (a) k = 2. (b) k = 3. (c) k = 4.
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Figure 14. Relationship bet the estimation result and the elements
number. (a) Mx = 25. (b) Mx = 35. (c) Mx = 45.

that RIC is important for the forward-looking imaging based on the
compressed sensing. In order to obtain smaller RIC, the number
of elements in the array should be increased, but the cost increases
dramatically, and a comprise needs to be done.

5. CONCLUSION

In order to improve the azimuth resolution of the image based on
the real beam scanning under the forward-looking condition, a novel
method based on the compressed sensing is proposed. Simulations
verify the method and images with high resolution are achieved under
certain conditions. The algorithm does not require a large antenna
aperture or large-scale transformation, especially, relative tangential
motion between targets and the radar. The azimuth resolution can
be improved through signal processing, which should be a promising
method for forward-looking imaging.
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