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Abstract—Due to the increasing complexity of metamaterial
geometric structures, direct optimisation of these designs using
conventional approaches, such as Gradient-based and evolutionary
algorithms, are often impractical and limited. This is in part due to the
inherently high computational cost associated with running multiple
expensive high-fidelity full-wave simulations, commonly required to
optimise the constitutive parameters of a single metamaterial particle.
In order to alleviate this issue, we propose an efficient optimisation
approach which exploits the Co-Kriging methodology, such that we can
successfully couple varying levels of discretisation and solver accuracy
obtained from a 3d full-wave numerical solver suite. In contrast
to other optimisation strategies, we investigate the improvement in
efficiency of optimisation through the use of the LOLA-Voronoi, in
conjunction with Expected Improvement and the embedding of a trust-
region framework within our optimisation algorithm, to accelerate the
convergence of Co-Kriging. Finally, the effectiveness of the outlined
algorithm will be demonstrated by a quantitative evaluation of the
performance of optimised planar 2D negative index of refraction
structures.

1. INTRODUCTION

The ability to independently tailor the electric and magnetic response
of sub-wavelength geometric structures to electromagnetic energy, has
provided the opportunity for designers to create fully customised
artificial materials termed Metamaterials. These structures allow for
fully tuneable material properties that can be engineered to have
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either positive or negative values of permittivity ε, permeability µ and
consequently the ability to achieve a negative index of refraction n
(NIR) [1, 2].

The macroscopic properties of metamaterials are harnessed by
engineering the geometric dimensions of the constituent particles. Due
to the increased complexity of these geometric structures, exacerbated
by the increased interest in generating inhomogeneous and anisotropic
metamaterials, direct optimisation of these designs using conventional
approaches such as Gradient-based [3] and Genetic algorithms [4] are
often impractical and limited. This is in part due to the inherently high
computational cost associated with running multiple expensive high-
fidelity (primary) full-wave simulations, commonly required to optimise
the constitutive parameters of a single metamaterial particle, and the
underlying numerical noise that can adversely affect the simulation-
driven optimisation cycle.

Thus, a key challenge is to be able to perform global optimisation
using physics-based simulations in an efficient manner so as to allow
these methods to be used within the short time-scales of conceptual
design. As a consequence, alternative measures which make economical
use of the primary data must be considered, in conjunction with
surrogate models that can incorporate low fidelity (auxiliary) data
within the framework of a global optimisation strategy. Preferably,
the auxiliary model should be a reasonably accurate representation
of the primary model, computationally inexpensive to evaluate and
amenable to optimisation. A wide variety of possible auxiliary models
are available and are largely dependant on the type of system been
modelled. Typically, these include simplified physics models, numerical
models evaluated at varying levels of discretisation and/or converged
to contrasting degrees of accuracy, Reduced Order Models (ROMs),
response surfaces models and artificial neural networks. Indeed,
while analytical methods can be formulated for limited classes of
metamaterial structures, they are often unable to accurately predict
the macroscopic behaviour of metamaterials. More importantly they
may not be acceptable or even desirable in an automated design driven
optimisation cycle.

An optimisation design space with widely set bounds can be
searched effectively using local surrogate based methodologies, such
as space and manifold mapping [5, 6] if the design space is uni-
modal. However, it must be assumed that there may be local
basins of attraction, with the prospect that the objective function
multi-dimensional landscape is highly nonlinear. As such, a global
search is required to increase the chances of isolating the global
optimum. Commonly used global approximation surrogate models
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such as Kriging [7], Radial Basis Functions [8] (RBFs) and polynomial
response surface model [9] (RSM), attempt to approximate the primary
objective function landscape, which in turn are inexpensive to evaluate
within an optimisation cycle. These models may be realised by
sampling the primary objective landscape at a large number of
sites, in order to assimilate the underlying salient feature of the
landscape. To achieve the right balance between exploitation and
exploration of the design space, these approaches must be coupled with
a credible infill criterion. Accurately modelling suboptimal regions is
not essential in a global optimisation approach, while exploiting the
surrogate model before the design space has been explored sufficiently
may lead to the global optimum lying undiscovered. This trade
off can be successfully achieved with the Expected Improvement
(EI) criteria [10, 11], which determines the next infill point by
calculating the amount of improvement we can expect compared to
the best observed objective value. Based on the expected problem
dimensionality, complexity and the form of infill strategy we wish to
pursue, Kriging is a natural selection that makes the least amount
of assumptions regarding the underlying landscape and provides the
potential for the most accurate predication [11, 12].

However, a more efficient use of the primary simulations can be
conceived, the Co-Kriging [10, 13], which uses auxiliary simulations
to build a statistical approximation of the objective landscape. If
the sampled points are reasonably uniformly spread, then the method
should be accurate enough to guide the search towards promising areas
of the landscape. The Co-Kriging essentially couples a relatively small
amount of primary data to improve the accuracy of the model by
correcting the output of the auxiliary model. This ensures that the
computation time is drastically reduced in finding the global optimum,
by proving a more exhaustive search of the auxiliary model to seed
a narrower search using the primary simulations. In order to limit
the number of data points in an optimal manner while maximising
the model accuracy, we employ an adaptive sampling algorithm, the
LOcal Linear Approximation (LOLA)-Voronoi [14]. This algorithm
iteratively selects data points based on the previous iterations to
efficiently distribute new samples in areas that highlight the most
salient features of the design space. In addition, we also employ a
trust-region inspired methodology [15] that ensures the convergence of
the Co-Kriging scheme to a solution of the primary problem. This is
achieved by providing a systematic response to situations in which an
optimisation phase preformed gives a poor prediction of the primary
model actual behaviour.

The motivation for this work is to consider for the first time the
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application Co-Kriging to the topology optimisation of metamaterial
structures. In addition, we evaluate what additional amendments
are required to result in an efficient and robust automated global
optimisation scheme that requires no prior knowledge of the problem.
In particular, we exploit the co-Kriging methodology to successfully
couple varying levels of discretisation and solver accuracy gleaned from
a 3d full-wave numerical solver suite. In contrast to other optimisation
strategies, we investigate the improvement in efficiency of optimisation
through the use of the LOLA-Voronoi, in conjunction with EI and the
embedding of a trust-region (TR) framework within our optimisation
algorithm, to accelerate the convergence of Co-Kriging. Finally, the
effectiveness of the outlined algorithm will be demonstrated by a
quantitative evaluation of the performance of optimised planar 2D NRI
structures in the GHz regime.

1.1. Planar 2D Negative Refractive Index (NRI)
Metamaterials

Initial efforts to harvest NRI materials were realised by designing
structures consisting of split-ring resonators (SRRs) in combination
with electric inductive-capacitive (ELC) resonators [16] (D1)† or wire
arrays [1, 2] (D2). However, there were fundamental limitations in both
the design and manufacturability of such approaches. This is a result
of the restrictive orientation of the excitation field relative to the SRR
design required to produce a NRI response which is further complicated
by the bi-anisotropy nature of these structures. Accordingly, the
incident magnetic field must be perpendicular to the SRRs plane to
produce a negative µ, with the electric field parallel to the wire array
to obtain a negative ε via a plasmonic response.

By a procedure of continuous transformation, these designs
have been simplified to a pair of carefully aligned metallic strips
(D3) separated by a dielectric spacer, which overcomes the limiting
restriction imposed by the original design [17]. The capability of
paired metallic strips to provide a NRI response, stems from the
hybridisation of the plasmonic eigenmodes of each individual strip that
results in two separate eigenmodes with opposite symmetry. This mode
hybridisation is due to near-field interactions between the paired strips
that leads to the resonance splitting, subject to an in-plane electric and
magnetic excitation [18]. A Lagrangian formulation with a quasi-static
dipole-dipole interaction model has been successfully used to study the
hybridisation effects in SRR arrays [19]. In these resonator systems,
it is found that both electric and magnetic dipoles contribute to inter-
† Where D1–D6 refers to specific designs.
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resonator coupling, and the coupling efficiency depends on the distance
and relative orientation among the resonators.

The high energy or anti-bonding mode, |ω+〉 is characterised by in-
phase current oscillations associated with a resonant electric response
and a negative ε regime, while the opposite is true for the bonding
of low energy |ω−〉 magnetic resonance [19]. The design of NRI
metamaterials consists of preserving an overlap between these two
modes, where the frequency split ∆ω = ω+−ω− ≈ κω0 is proportional
to the coupling strength κ [19]. As the tuning of the two resonances by
a single geometric parameter l (the length of the strip) is not feasible,
the eigenmode overlap is obtained by adjusting either the spacer or
the alignment of the paired metallic strips [20]. The lower resonance
frequency in particular is extremely sensitive to the characteristics of
the gap between the wires, making the cut wire lattice difficult to
design accurately.

An alternative approach, to lower the electric resonance in the
magnetic negative µ region, is to increase the inter-particle capacitance
by increasing the width of the strip ends to produce the classic
dogbone shape [21] (D4). This increase in capacitance can only be
obtained by strongly reducing the spacing between two consecutive
strips, which will be limited according to the fabrication technology.
Other theoretical proposals include combining continuous strips (D5)
to produce negative ε due to a plasmonic response with the negative µ
produced by the metallic strip pair [22]. However, these strip lattices
exhibit strong spatial dispersion regardless of the wavelength relative
to the lattice spacing, and as a consequence of the natural scaling of
the effective permittivity with the unit cell dimensions, makes these
designs problematic.

To mitigate this sensitivity, several variants of the strip structure
have been introduced. In the context of a proven robust and scalable
design the fishnet structure [23–25] Figure 1 (D6), has provided
significant progress in the realisation of NRI at higher frequencies well
into the THz range. The fishnet design consists of a pair of metal films
separated by a dielectric layer, with an array of periodically placed
rectangular, circular, elliptical or cross shaped holes penetrating the
metallic layers. Conceptually this design is derived from extending the
paired strip end of D5 to join the continuous wire arrays to produce a
continuously connected network.

Recently, a further possibility to accomplish a NRI response at
both high frequencies and high dimensions was realised based on an
isolated pair of ELC components combined with a metallic strip [26]
Figure 1 (D7). Under normal incidence, the fundamental electrically
excited resonant eigenmodes |ω1,2〉 of the single ELC undergo a
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(a) (b)

(c)

Figure 1. (a) Schematic representation of the 2D mode hybridisation
metamaterial NIM design, (b) isometric view of a layer of the
metamaterial formed by a periodic array of patterned metallic double
layers separated by a thin dielectric substrate and (c) bottom view of
the proposed structure.

hybridisation, where the coupling between the paired ELCs lifts the
degeneracy of the single ELC mode into two separate eigenmodes.
As with D4 these modes exhibit opposite symmetry and display
|ωe2〉 > |ωm2〉 > |ωe1〉 > |ωm1〉, where e, m refers to the type of
resonance. Unlike D4 where the overlap between the negative ε from
|ωe1〉 and negative µ from |ωm2〉 is achieved by adjusting the overlap
between the paired strips, the same effect can be achieved with ease by
adjusting the ELC geometric parameters. Indeed this design alleviates
the limitation of D4 by providing additional flexibility in the design of
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a NRI response, with the parameter lc providing sufficient modulation
to ensure the overlap between the hybridized modes.

Nevertheless, these different classes of designs D1–D6, remain
very sensitive to their constituent geometric parameters and lattice
spacing, implying the need for careful selection and optimisation of
these parameters.

1.2. Retrieval of Effective Constitutive Parameters

In order to conceptualise the complex propagation characteristics of
the local field structure around metamaterial elements, one needs to
average the local field charge and current distribution which yields
a macroscopic interpretation of the inhomogeneous composites [27].
This homogenisation procedure relies on the applied fields having a
spatial variation on a scale significantly larger than the scale of the
composite particles and the period of the lattices. By replacing the
inhomogeneous structure with a continuous material and restricting
our analysis to that of a linear polarized incident wave, the effective
permittivity ε and permeability µ of the inhomogeneous slab can be
characterised. Based on Nicolson and Ross [28] (NR) these effective
parameters can be retrieved by calculating the scattering parameters
from a material slab and comparing them to analytical expression for a
homogeneous slab of the same thickness d. Assuming a time harmonic
time dependence, the reflection Γ and transmission T coefficients are
given by

Γ = K ±
√

K2 − 1, T =
S21

1− S11Γ
(1)

K =
S2

11 − S2
21 + 1

2S11
,

1
Λ

=
−j

2πd
ln(T ) (2)

Subsequently ε, µ and the complex effective refractive index n can be
extracted from the Γ and T coefficients

εr =
λ2

0

(
1/Λ2

)

µr
, µr = λ0

1
Λ

(
1 + Γ
1− Γ

)
, n = ±√εµ (3)

where λ0, Λ are the free space and sample wavelengths, respectively.
The resultant retrieved material parameters must be physically
reasonable and are subject to the following restrictions

‖Γ‖ =≤ 1, n′′ ≥ 0 (4)

required by causality for passive materials [27, 29], where (·)′ and (·)′′
denote the real and imaginary part operators, respectively. However,
ambiguity can still arise in the definition of the constitutive parameters
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due to the multi-valued solution to the branching problem in the
logarithmic function (see Equation (2)), stemming from the complex
exponential propagation factor in the transmission coefficient. To
resolve this phase ambiguity, we use a conceptually simple routine
recently published [30] which recast the logarithmic function as

1
Λ

=
{ 1

2πd (−j ln ‖T‖+ φ) if − π < φ < π
1

2πd (−j ln ‖T‖+ φ + 2mπ) otherwise
(5)

where m is an integer denoting the branch index. The choice of m is
determined by examining the behavior of the phase of T at which the
phase jumps from −π to π. Based on this information, the unwrapping
method introduces the phase component 2mπ into T to ensure that the
logarithmic function will be single valued and continuous at ‖T‖‡.

In addition to correctly determining the branch indices, in order
to remove any ambiguity in the material retrieval process, one must
also be careful in determining the location of the effective boundaries
between the metamaterial slab and air. Due to the effect of the
scattered field produced by the resonant metamaterial structure, an
effective boundary must be introduced which indicates the distance
at which the reflected wave behaves like a plane wave. Based on the
fact that the impedance of a homogenous slab of material does not
depend on its thickness, the effective boundary is determined as the
location where the impendence difference between two slabs of different
thickness is minimised [31]. It should be noted that the topic of
parameter extraction is still evolving with several alternative schemes
having been postulated in recent years (see [31, 32]).

1.3. Co-Kriging

Co-Kriging is a multivariate enhancement to the geostatistical method
of Kriging [7], that attempts to build an approximation of a function
that is expensive to evaluate, through coupling cheap low fidelity data
(auxiliary) with a small amount of high fidelity data (primary) [13].
The auxiliary is cross correlated with the primary and is usually
sampled more frequently and regularly, thus allowing estimation of
unknown points using both data sets globally.

A brief overview of Co-Kriging will be given here with the reader
directed to [12, 13] for more detailed information on this approach.
Although multi sets of variable-fidelity data can be considered, we are
only interested in two data sets, that of the primary with values yp at
‡ It should be noted that when the phase of T remains confined to the interval [−π, π]
there is no branching problem and the standard extraction procedure is able to correctly
retrieve the constitutive parameters.
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points Xp and auxiliary, ya at points Xa (Xp ⊂ Xa). These data sets
are concentrated to give the combined set of points

X =
(

Xa

Xp

)
=

(
x(1)

a , . . . ,x(na)
a ,x(1)

p , . . . ,x(np)
p

)T
(6)

y =
(

ya (Xa)
yp (Xp)

)

=
(
ya

(
x(1)

a

)
, . . . , ya

(
x(na)

a

)
, yp

(
x(1)

p

)
, . . . , yp

(
x(np)

p

))T
. (7)

To construct a Co-Kriging model, the auto-regressive formulation of
Kennedy and O’Hogan [33] is used

Zp(x) = ρZa(x)+Zd(x), cov
{

Zp

(
x(i)

)
, Za(x)|Za

(
x(i)

)}
= 0 |∀x6=x(i)

(8)
where Za(·) and Zp(·) are Gaussian processes that represents the local
features of the auxiliary and primary data. The above auto-regressive
model approximates the primary as the sum of the auxiliary, scaled
by a constant factor ρ plus a Gaussian process Zd(·) representing the
difference between ρZa(·) and Zp(·). As with the Kriging approach,
the observed data is correlated with each other using the Kriging basis
function expression

Ψ
(
x(i), x(j)

)
= exp

(
−

n∑

k=1

θk

∥∥∥x(i)
k − x(j)

k

∥∥∥
p

k

)
(9)

where θ is a width parameter controlling the spatial extent of a
sample point’s influence, and p is a parameter controlling the local
smoothness§. A key attribute of surrogate modelling is the ability to
modify the co-Kriging formulation such that the data can be regressed
appropriately to filter out any noise. Any anomalies in the data can
make optimisation difficult and might mislead an infill criterion into
poor design areas. For multi-fidelity analysis different levels of filtering
may be required. This is useful when our sampled data has an element
of systematic error, due to for example, different levels of discretisation
and or convergence [34, 35]. In the augmented Co-Kriging formulation,
regression constants λa, λp are added to the leading diagonal of the
correlation matrices to give

C=




σ2
a

{
Ψa (Xa,Xa)+I(na×na)λa

}
ρσ2

aΨa (Xa,Xp)

ρσ2
aΨa (Xp,Xa)

ρ2σ2
a

{
Ψa (Xp,Xp)+I(np×np)λa

}

+σ2
d

{
Ψd (Xp,Xp)+I(np×np)λp

}


 (10)

§ We assume that there will not be any discontinuities and use p = 2, thus reducing the
complexity associated with tuning the hyper-parameters.
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where σ2 is the processes variance of Y(·) and Ψ the spatial correlation
function. As our auxiliary data is considered independent of the
primary, we can calculate the unknown parameters µa, σ2

a, λa, and
θa (hyper-parameters) by maximising the ln-likelihood

−na

2
ln

(
σ2

a

)− 1
2

ln |det (Ψa (Xa,Xa) + λaI)| (11)

where the variance and mean are given by maximum likelihood
estimates (MLEs)‖

σ2
a =

(ya − 1µa)
T (Ψa + λaI)

−1 Ψa (Ψa + λaI)
−1 (ya − 1µa)

na
(12)

µa =
1T (Ψa + λaI)

−1 ya

1T (Ψa + λaI)
−1 1

. (13)

Similarly, the parameters µd, σ2
d, θd and the scaling factor ρ associated

with the difference model
d = yp − ρya (Xp) (14)

are calculated by maximising the ln-likelihood of d, given by

−np

2
ln

(
σ2

d

)− 1
2

ln |det (Ψd (Xp,Xp + λpI))| (15)

yielding MLEs of

σ2
d =

(d− 1µd)
T (Ψd + λpI)

−1 Ψd (Ψd + λpI)
−1 (d− 1µd)

np
(16)

µd =
1T (Ψd + λpI)

−1 d

1T (Ψd + λpI)
−1 1

. (17)

Equations (11) and (15) cannot be reliably solved using a local
optimisation technique. As such a suitable global search routine is
typically used¶.

With the parameters estimated, the Kriging and Co-Kriging
predication at an unknown x is now given by

ŷa

(
x(na+1)

)
= 1µa + Ψa (Ψa + λaI)

−1 (ya − 1µa) (18)

ŷp

(
x(np+1)

)
= 1µ + cTC−1 (y − 1µ) (19)

‖ Ψa will now be shorthand for Ψa(Xa,Xa), similarly Ψd = Ψd(Xp,Xp).
¶ It should be noted that for high dimensional data sets, d > 10, a substantial increase
in computational time can occur and techniques by [36] will be required to efficiently
circumvent this cost. Further reductions in time can be achieved by keeping the hyper-
parameter θc constant over several iterations. This has be shown to have a limited effect
on the overall accuracy of the approximation.
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where

c =
(

ρσ2
aΨa

(
Xa,x(n+1)

)
ρ2σ2

aΨa

(
Xp,x(n+1)

)
+ σ2

dΨd

(
Xp,x(n+1)

)
)

(20)

µ = 1TC−1y/1TC−11. (21)

The estimated mean squared error (MSE) corresponding to the
predictors is subsequently given by

s2
a(x) = σ2

a

[
1−ΨT

a Ψ−1
a Ψa +

1− 1T Ψ−1
a Ψa

1T Ψ−1
a 1

]
(22)

s2
p(x) = ρ2σ2

a + σ2
dc

TC−1c. (23)

1.4. Infill Criteria

The success and failure of surrogate based optimisation rests on the
correct choice of model and infill criteria. Global based optimisation
must find the right balance between exploitation and exploration of
the design space. Accurately modelling suboptimal regions is not
essential in a global optimisation approach. However, exploiting the
surrogate model before the design space has been explored sufficiently
may lead to the global optimum lying undiscovered. By modelling the
uncertainty in the predication by considering it as the realisation of
a Gaussian random variable Y (x) with mean ŷ(x) (Equations (18),
(19)) and variance s2(x) (Equations (22), (23)), an infill criteria can
be constructed which balances the values of ŷ(x) and s2(x). This
trade off can be successfully achieved with the Expected Improvement
(EI) criteria [10, 11, 13, 37] which determines the next infill point by
calculating the amount of improvement we can expect compared to the
best observed objective value min{yp}. While a maximising EI infill
process will eventually find the global optimum, its convergence can
be slow. Thus it is necessary to couple this approach with alternative
measures to ensure convergence in an accelerated framework. Such
measures will be discussed in the following sections.

1.5. Adaptive Sampling Plans

In order to limit the number of data points in an optimal manner
while maximising model accuracy, we employ an adaptive sampling
algorithm the LOcal Linear Approximation (LOLA)-Voronoi [14].
This algorithm iteratively selects data points, based on the previous
iterations, to efficiently distribute new samples into areas highlighting
the most salient features of the design space. This is achieved by
balancing the trade off between exploring regions of design space not
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yet identified with exploitation of regions which are highly dynamic.
This process starts with an initial design of experiment (DOE) sample
data set, such as the Latin Hypercube (LHC) sampling technique, and
uses the maximum optimality criterion of Morris and Mitchell [38] in
order to achieve uniform coverage of the design space+. The density of
this data set is then estimated by computing an approximation of the
Voronoi tessellation of the entire design space. These samples are then
ranked based on the Voronoi cell size which is indicative of whether
this region is under-sampled. While this ensures that no region is
left permanently under-sampled, an additional measure, the LOLA,
is required to sample highly dynamic regions. The LOLA component
estimates the gradient at each sample location x(r), based on a set of
neighboring samples N(x(r)) = (x(r1),x(r2), . . . ,x(rm))

∇y
(
x(r)

)
=




δy(x(r))
δx

(r)
1

δy(x(r))
δx

(r)
2
...

δy(x(r))
δx

(r)
d




=




x
(r1)
1 − x

(r)
1 x

(r1)
2 − x

(r)
2 . . . x

(r1)
d − x

(r)
d

x
(r2)
1 − x

(r)
1 x

(r2)
2 − x

(r)
2 . . . x

(r2)
d − x

(r)
d

...
...

. . .
...

x
(rm)
1 − x

(r)
1 x

(rm)
2 − x

(r)
2 . . . x

(rm)
d − x

(r)
d




−1




y
(
x(r1)

)
y

(
x(r2)

)
...

y
(
x(rm)

)


 . (24)

where m = 2d and d is dimension size. Having estimated the gradient
by fitting a hyperplane though the sample point x(r) based on its
m neighbours in a least squared sense, the local nonlinearity can be
quantified from the normal of the hyperplane given by

E
(
x(r)

)
=

m∑

k=1

∥∥∥y
(
x(rk)

)
−

(
y

(
x(r)

)
+∇y

(
x(r)

)(
x(rk)−x(r)

))∥∥∥ . (25)

+ Pre-optimised LHC designs are available online which will provide better space-filling
properties than those created using the maximum optimality criterion above and will
significantly reduce the computational cost of producing an optimum sample set.
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Data points with a large deviation indicate a region in the design space
where the data is varying more rapidly and will require a proportional
increase in samples within this region. In regions where the function
is almost linear, the output is easily predicted and will result in a
low LOLA value. Combining the Voronoi and LOLA criteria into one
metric, provides an optimal approach that can identify locations for
additional points in a robust and efficient manner.

1.6. Constraints

Having considered the role of EI in determining new infill points,
we must now discuss how to effectively include constraints in the
optimisation procedure [12, 39]. To ensure that the objective function
is not unfairly penalised in the wrong areas due to a deceptive
constraint function, a probabilistic approach will be factored into the
calculation of the EI expectation. As with the objective function, the
constrained function is modelled by a Gaussian process based on the
same sampled data. Using this model to ensure that a design is feasible,
we calculate the probability of the predication being greater than the
constraint limit [12]. We can couple these results with the EI of the
objective function to formulate a Constrained Expected Improvement
(CEI). As before, the next infill point will be calculated by maximising
this coupled expression to provide a new infill point that both improves
on the current best point and is also feasible.

1.7. Trust Radius (TR)

In many situations maximising CEI will prove to be the best route
to finding the global optimum. However, it may converge very
slowly if the optimum is deceptively positioned. It is therefore
prudent to implement a procedure that ensures convergence of the
algorithm to a solution of the primary problem. Based on the TR
methodology [40, 41], the next trial solution xi+1 is gleaned from the
optimisation of the Co-Kriging model, which has been constrained to
the vicinity of the current optimum solution x∗, by the TR radius
δi (see Table 1). At each iteration, an optimisation of the Co-Kriging
model is performed within a TR, where the model trends are thought to
approximate the function trend adequately for finding a step towards a
solution. Once completed, the trial solution is evaluated by comparing
the actual improvement in the objective function to the predicated
improvement ŷp. The trial step is then either accepted or rejected
based on a sufficient decrease condition and the TR is updated based
on the comparative performance of the model. Unlike traditional
TR approaches, in this scheme all solutions rejected or otherwise,
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Table 1. Trust Region Approach, where R̂a, R̂p represent the Kriging
and Co-Kriging model respectively and Lb, Ub are the lower and
upper bounds over which the models are optimised.

begin Trust Region Approach
x0

p= x∗a or x∗p
y0

p = 3dFEMSimPrimary
(
x0

p

)
, [θd, ρ, λd] = MLE

(
y0

p,y
0
a,x

0
p

)

R̂p = CoKrigCreate
(
y0

p,y
0
a,x

0
p, θd, ρ, λd

)
, ŷ0

p = R̂p

(
x0

p

)
set i = 0, δ0 = 0.2, Lb = x0

p − δ0, Ub = x0
p + δ0

for j = 1 : ntr
p

xi+1
p = Optimise

(
R̂p,Lb,Ub

)

yi+1
p = 3dFEMSimPrimary

(
xi+1

p

)

yi+1
a ≈ ŷa = R̂a

(
xi+1

p

)
[θd, ρ, λd] = MLE

(
yi+1

p ,yi+1
a ,xi+1

p

)

R̂p = CoKrigCreate
(
yi+1

p ,yi+1
a ,xi+1

p , θd, ρ, λd

)

ŷi+1
p = R̂p

(
xi+1

p

)
ζ = ‖yi+1

p − yi
p‖/‖ŷi+1

p − ŷi
p‖

if ζ <= 0.01 then δi+1 = δi/5
elseif ζ > 0.5 then δi+1 = min

(
δi ∗ 2, 1

)
else δi+1 = δi

endif
if ‖xi+1

p − xi
p‖2 <= 1e−3 or δi+1 <= 1e−3 then

return
endif
if yi+1

p < yi+1
p then i = i + 1

else δi = δi/5
endif
Lb = xi

p − δi+1, Ub = xi
p + δi+1

end Trust Region Approach

are incorporated into the Co-Kriging model in order to improve the
accuracy of the model within the expected optimum vicinity.

2. RESULTS

We now present our strategy for the geometric optimisation of
NIR metamaterial structures utilising a Co-Kriging model, built
from 3d full-wave numerical simulations solved at varying levels of
discretisation and solver accuracy. By optimising the geometry of



Progress In Electromagnetics Research B, Vol. 55, 2013 101

artificial metallic-dielectric structures to give a specific electric and
magnetic response to incident electromagnetic waves, the effective
refractive index of the composite material can be varied from positive
to negative. A material can have a negative refractive index if its
effective permittivity and permeability satisfy the following necessary
condition ε′µ′′ + ε′′µ′ < 0. Along with providing the required negative
index values, many metamaterial-enabled devices must have minimal
absorption loss and reflection properties. Consequently, the metallic-
dielectric structures must be optimised to give an electromagnetic
response that simultaneously balances ε′, µ′ and ε′′, µ′′ to produce the
desired negative refractive index across the frequency band of interest.
The goal therefore should be to maximise the figure of merit (FOM)
represented by the ratio∥∥∥∥

n′

n′′

∥∥∥∥ =
‖ε′‖ ‖µ‖+ ‖ε‖ ‖µ′‖
‖ε′′‖ ‖µ‖+ ‖ε‖ ‖µ′′‖ . (26)

Subject to this relation, it is clear that double negative NIM will result
in greater values of FOM as compared to single negative NIM, where
either ε′ or µ′ are negative. Incorporating this constraint into our
optimisation scheme is achieved by using the constrained expected
improvement as detailed in Section 1.6.

While there is no hard-and-fast rule that specifies the size of the
initial sampling plan (nlhc

a ), it is generally accepted that a minimum
value of nlhca > 10d, where d is the dimension of the problem, will
be required to reasonably cover the d-dimensional landscape [10, 11].
While the main benefits of Co-Kriging are achieved with increasing the
number of design variables, there is of course a natural upper limit on
this number. The limiting factor being the time required to tune the
hyper-parameters for large quantities of data, overtaking the expense
of a 3d full-wave simulation. Therefore, one must be careful to isolate
only the most important design variables.

The LHC sampling technique is used in conjunction with the
maximum optimality criterion of Morris and Mitchell as the initial
design of experiment (DOE) sample data set. Of course the goal
here is not to create a globally accurate model, but one which should
be accurate enough to guide the search towards promising areas of
the landscape. In order to achieve this aim in an optimal manner,
we employ the LOLA-Voronoi with a minimum value of nlv

a = nlhc
a .

Following this process, the location of new points of interest are
iteratively found using the Max{E[I(x)]∗P [F (x)]} criteria (performed
by a Hybrid Particle Swarm Optimisation algorithm (HPSO) [42]) as
discussed in Section 1.6. After each iteration, the hyper-parameters
are subsequently re-tuned until the global optimum is found. The
optimisation of these hyper-parameters, via maximisation of the MLEs,



102 Bradley

requires o(n3) factorisation for each evaluation of the likelihood, where
n is the numbers of sample points upon which the model is constructed.
The cost of this optimisation therefore increases dramatically as the
number of sample points and dimension increases, resulting in a natural

Table 2. Co-Kriging algorithm, note that all design variables are
normalised into the unit cube to safeguard against scaling issues.

begin Co-Kriging
xr= [b−x ; b+

x , b−y ; b+
y , w−c ; w+

c , l−c ; l+c , w−e ; w+
e , g−; g+, t−s ; t+s ]

xa = LatinHyperCube (xr → [0, 1])
ya = 3dFEMSimAuxiliary (xa → xr)
for i = 1 : nlv

a
xa = [xa;LOLAVoronoi (xa,ya)]
ya = [ya;3dFEMSimAuxiliary

(
xi

a → xr
)
]

endfor
[θa, λa] = MLE (xa,ya)
R̂a = KrigCreate (ya,xa, θa, λa)
for j = 1 : ncei

a /4
for k = 1 : 4

xa = [xa;CEI (xa,ya)]
ya = [ya;3dFEMSimAuxiliary

(
xend

a → xr
)
]

endfor
[θa, λa] = MLE (xa,ya)
R̂a = KrigCreate (ya,xa, θa, λa)

endfor
x∗a = Min (ya)
xp = SubSet (xa)
yp = 3dFEMSimPrimary (xp → xr)
for j = 1 : ncei

p
xp = [xp;CEI (xp,yp)]
yp = [yp;3dFEMSimPrimary

(
xend

p → xr
)
]

ya = [ya;≈ ŷa = R̂a

(
xj

p

)
]

[θd, ρ, λd] = MLE (xp,yp,ya)
R̂p = CoKrigCreate (yp,ya,xp, θd, ρ, λd)

endfor
x∗p = Min (yp)
end Co-Kriging
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limit on the size of n and d. In an attempt to reduce this cost,
we limit the re-tuning of the auxiliary hyper-parameters θa and λa

to every fourth update (with minimal impact), while the re-tuning
of the primary hyper-parameters is performed at each step. The
tuning of the hyper-parameters is performed by a sequential GA-
SQP algorithm [43] that combines the efficiency and robustness of the
global search Genetic Algorithm (GA) with the fast convergence of the
Sequential Quadratic Programming algorithm (SQP). While the model
accuracy can be assessed by using a leave-one-out cross validation
procedure [12], this is neither a computationally efficient approach or
warranted in a global optimisation routine. Instead, the maximum CEI
updates should proceed starting from a small initial sample size and
stop when Max{E[I(x)]∗P [F (x)]} falls consecutively below a threshold
over a number of iterations or when the maximum number of iterations
have been met ncei

a <= 10d. With na = nlhc
a + nlv

a + ncei
a in place, a

conservative value of ne <= 10d should be chosen, split between a
Morris-Mitchell exchange derived subset [12] (nss

p ) of xa and the CEI
infill criteria (ncei

p ).
Exploitation of the Co-Kriging model can now be implemented

by employing a TR inspired methodology, as outlined in Table 1 and
subsequently in Table 2. This ensures accelerated convergence of the
Co-Kriging scheme to a solution of the primary problem. The size
of the initial trust region is set at 20% of the design space and then
updated based on the design obtained from optimising the Co-Kriging
model. This iterative process continues until either the trust region
process converges or the maximum number of iterations has been met
(ntr

p <= 2d). For ease of implementation, the salient features of the
proposed metamaterial optimisation approach can be identified in the
block diagram of Figure 3.

2.1. 2D Mode Hybridisation ELC Metamaterial NIM
Design (D7)

We first consider the application of the proposed topology optimisation
strategy to achieve a NIR response within the Ku band (10–18 GHz)
of a 2D mode hybridisation metamaterial structure as shown in
Figure 1 and experimentally demonstrated in [26]. The structure is
parameterised by d = 7 design variables whose ranges xr and rankings
θ are given in Table 3. While θ cannot tell us about the interaction
between the variable it does provide the order of importance of the
parameters. The ability to filter noise out of the model is a key
attribute to the Co-Kriging approach and this is borne out in the high
values of the regression factor λa, and to a lesser extent λp required to
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Table 3. Relative change in the eigenfrequencies ωe1, ωm2 subject to
an increase in a single parameter, with regression constants λa = 0.56,
λp = 0.85 and scaling term ρ = 0.11.

Symbol Min value Max value θa θd ωe1 ωm2

bx 3.7 4.5 2.17 0.02 ⇓ ⇑
by 5.0 7.0 11.24 5.57 ⇓ =⇒
lc 11.0 13.0 3.61 3.02 ⇑ ⇓
g 0.8 1.4 0.97 1.32 ⇑ ⇑
wc 1.0 1.4 12.57 5.96 ⇑ ⇑
we 0.8 1.2 6.52 8.02 ⇑ ⇑
ts 0.8 1.4 2.02 1.36 ⇓ ⇑
tz 0.034 - - - - -
ax 6.0 - - - - -
ay 13.5 - - - - -
εr 3.55 - - - - -

tan δ 0.0027 - - - - -

smooth the primary full-wave simulation results. Included also are the
corresponding effects that individual parameters have on the hybrid
eigenmodes ωe1 and ωm2. The objective of this optimisation will be to
maximise the overlap between the negative ε from |ωe1〉 and negative
µ from |ωm2〉 by adjusting the ELC geometric parameters in order to
maximise the FOM.

The structures substrate is a Rogers 4003 printed circuit board
(ε = 3.55, loss tangent δ = 0.0027) and is coated with a 34µm
thick copper layer on both sides. Periodic magnetic and electric
boundary conditions are placed in the x and y planes respectively,
and a 1mm thick air layer is placed on either side of the structure
in the z plane which constitutes the effective boundaries between
the metamaterial slab and air. The auxiliary data is simulated in
CST Microwave Studio subject to a 1e−4 Tetrahedral mesh accuracy,
evaluated using the adaptive mesh refinement and solved using a 2nd
order solver. The use of this model enables quick evaluation of designs
(approximately 90 seconds), allowing for an exhaustive search of the
auxiliary model. Correspondingly, the primary model is discretised
using 1e−5 Tetrahedral mesh accuracy and a 3rd order solver resulting
in an average simulation time of 741 seconds.

Results obtained from five different optimisation strategies are
outlined in Table 4, with the size of na fixed throughout so as to allow
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(a) (b)

Figure 2. (a) Schematic representation of the 2D isotropic fishnet
metamaterial design and (b) isometric view of a layer of the
metamaterial consisting of a fishnet layer separated by a thin dielectric
substrate.

Figure 3. Block diagram of the proposed metamaterial optimisation
cycle.
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Table 4. Results for the 2D mode hybridisation ELC metamaterial
NIM design (D7) comparing various optimisation strategies, where
nc = nlhc

c + nlv
c + ncei

c , ne = nss
e + ncei

e and time is given in seconds.

V1 V2 V3 V4 V5

b

b
x

y

c

e

s

l
g
wc

w

t

LHC na
lhc

LV n
a
lv

CEI na
cei

Subset n
p
ss

CEI np
cei

TR n
p
tr

Av. time tc
Av. time te
Max. FOM

GHz

Total Time

n

m

4.49 4.484 3.82 4.092 3.959

5.96 5.962 5.944 5.938 5.942

12.93 12.93 12.71 12.93 12.94

1.39 1.389 1.284 1.4 1.399

1.17 1.166 1.0 1.151 1.155

0.95 0.954 1.129 0.9852 0.9816

1.31 1.321 1.351 1.298 1.318

70 70 70 70140

70 70 70 70-

70 70 70 7070

- - 20 20 20

- - 50 22 22

1 5 6 - 10

38.2 38.2 38.2 38.2 38.2

152.6 152.6 152.6 152.6 152.6

11.89 11.96 12.39 13.03 13.43

13.01 13.04 13.95 13.0 13.55

−1.337+0.1125 −1.205+0.10 −1.442+0.1164 −1.525+0.117 −1.531+0.114

−1.152 −1.144 −1.433 −1.617 −1.664

−1.538 −1.269 −1.44 −1.426 −1.398

11675 13825 56411 26965 32454

a comparison of the results. Strategy V1 refers to Kriging, where
the optimum y∗a is used as the basis for one iteration of the primary
model, likewise, V2 combines the Kriging model the TR methodology
to develop an limited Co-Kriging model. V3 is an Co-Kriging model
that uses a larger LHC set instead of the LOLA-Voronoi iterations,
while V4 and V5 are Co-Kriging models that apply LOLA-Voronoi
with and without the TR methodology.

The Co-Kriging based search consistently outperforms the Kriging
based search in finding better optima. This highlights the deficiency
in that the optimum of an auxiliary model would provide either a
valid starting point for a trust region approach or provide the Co-
Kriging with a basis for a limited design parameter range. However,
the auxiliary data when coupled with a small number of primary
data in a Co-Kriging model is sufficient to narrow the search towards
promising areas of the landscape. It is clearly evident from the results
of this paper that the LOLA-Voronoi is not just an approach to avoid
sampling sub-optimal regions, but one which can produce a significant
reduction in computational time as a consequence of requiring less
maximum CEI global searches in determining the new sample points.
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It should also be emphasized that the TR algorithm exhibits excellent
convergence patterns consistently in both the V2 and V5 optimisation
strategies (see Figure 4(d)) based on a very small number of primary
model evaluations.

The effective medium properties of the optimum design variables
(x∗ = [3.959, 5.942, 12.94, 1.399, 1.155, 0.9816, 1.318]) determined by
the optimisation strategy V5 are plotted in Figures 4(a)–4(c). These
dielectric properties give a complex effective refractive index of n =
−1.531 + 0.114i at 13.55GHz with a FOM of 13.43 obtained in a time
of 9.02 hours with 210 auxiliary simulations and a total of 54 primary
model evaluations.
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Figure 4. Example 1: Real and imaginary parts of (a) the effective
permittivity, (b) permeability, (c) index of refraction, retrieved from
the full-wave simulation of the metamaterial structure D7 and (d) the
trust region convergence plot where the index value corresponds to the
number of primary model evaluations based on x∗ provided by the
optimisation strategy V5.
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2.2. 2D Isotropic Fishnet Metamaterial NIM Design (D6)
Along with providing low-loss NIR values, many metamaterial enabled
devices require minimal reflection and absorption loss over a wide
bandwidth. To enhance the efficiency of these NIMs, the impedance
of the metamaterial should be well matched to free space and overlap
with the double negative index region. In this study, we consider the
application of the proposed topology optimisation strategy to achieve
a polarisation independent low-loss broadband NIR of n = −1 + 0i
at 40GHz, using the fishnet metamaterial structure as shown in
Figure 2. This will be achieved, by optimising the geometry to give an
electromagnetic response that simultaneously balances ε, µ → −1 at
the same frequency, to produce the desired NIR response and provides
a matched impedance with free space. The goal therefore should be to
minimise the cost objective function

Cost = ‖n− ntarget‖2 + ‖z − ztarget‖2 . (27)
where ntarget = −1 + 0i and ztarget = 1 + 0i are the target refractive
index and relative impedance, respectively. As before, double negative
NIM constraints will be incorporated into our optimisation scheme.

Table 5. Results for the 2D isotropic fishnet metamaterial NIM
design (D6) comparing various optimisation strategies, where nc =
nlhc

c + nlv
c + ncei

c , time is given in seconds (hours) with regression
constants λa = 3.1e− 6, λp = 0.14 and scaling term ρ = 0.09.

V1 V2 Range θ θ

a
w

r

LHC n
a
lhc

LV n
a
lv

CEI n
a
cei

TR n
p
tr

Av. time t
c

Av. time te

FOM

Cost

Total Time

n

m

st

mt

r

tand

n

z

4.91 4.884 4.5   5.5® 115.42 54.29
1.8 1.772 1.0   2.0® 6.34 0.0011

2.07 2.096 1.5   2.5 207.56 46.71®

1.17 1.189 0.6   1.2 1.72 0.001®

0.01 1.01335 0.01   0.02 0.002 0.001®

- - 2.2 - -
- - 0.0009 - -

50 50 - - -

50 50 - - -

100 100 - - -
1 5 - - -

65.6 65.6 - - -

215 215 - - -

37.83 40.86 - - -

−0.98+0.0259 −0.997+0.0244 - - -

1.069-0.0154 0.981-0.0139 - - -

0.006 0.001 - - -
−0.917 −1.017 - - -
−1.049 −0.978 - - -

12826 14532 - - -

a d



Progress In Electromagnetics Research B, Vol. 55, 2013 109

The structure is parameterised by d = 5 design variable whose ranges
xr and rankings θ are given in Table 5. From these values, it is
clear that the period a and radius r dominate the response of the
fishnet structure while the remaining parameters have little impact on
the resonance. This greatly reduces the complexity of the objective
function landscape and ensures that the auxiliary model needs only
to be coupled with a significantly reduced number of primary model
evaluations within a trust region framework in order to achieve the
desired electromagnetic response.

A similar simulation setup as given in Section 2.1 is adhered
too, and experimentally demonstrated in [23], resulting in evaluation
times of approximately 65 and 215 seconds for the auxiliary and
primary models, respectively. The unit cell substrate is a Duroid
5880 (ε = 2.2, loss tangent δ = 0.0009 at 40 GHz) separating two
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Figure 5. Example 2: Real and imaginary parts of (a) the effective
permittivity, (b) permeability, (c) index of refraction, (d) relative
impedance, retrieved from the full-wave simulation of the metamaterial
structure D6 based on x∗ provided by the optimisation strategy V2.
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Figure 6. Example 2: (a) Reflection Γ and transmission T coefficients,
trust region convergence plot where the index value corresponds to the
number of (b) primary model evaluations, retrieved from the full-wave
simulation of the metamaterial structure D6 based on x∗ provided by
the optimisation strategy V2.

copper layers. The termination condition parameter is set to Cost
<= 1e − 3 and as indicated above the algorithm is terminated either
upon convergence or if the trust region size is sufficiently small. As
can be seen in Table 5, the optimisation strategy V2 has converged
to 1e − 3 after only 5 primary model evaluations within the TR
framework (see Figure 6(b)). The resulting metamaterial parameters
for this design x∗ = [4.884, 1.772, 2.096, 1.189, 0.01335] are plotted in
Figures 5(a)–5(d) which exhibits a double negative between 38.1 GHz
and 41.8 GHz that corresponds to NIM bandwidth of 3.7GHz. At the
target frequency the near unity relative impedance (z = 0.981−0.0139)
and −1 index NIR band (n = −0.997 + 0.0244) coupled with their
respective small imaginary component, is central to the observed low
reflection and absorption loss as exhibited in the transmission and
reflection coefficients, Figure 6(a). For this specific optimised design
the archived FOMs for the NIR and effective impedance are 40.86 and
70.57, respectively.

3. CONCLUSIONS

In this work, we proposed an efficient and automated optimisation
approach, which exploits the Co-Kriging methodology in the design
and optimisation of metamaterial structures. This approach overcomes
the limitations of conventional approaches, such as Gradient-based
and evolutionary algorithms by successfully coupling varying levels of
discretisation and solver accuracy. This ensures that the computation
time is drastically reduced in finding the global optimum, by proving
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a more exhaustive search of the auxiliary model to seed a narrower
search using the primary simulations. In addition, we investigated the
improvement in efficiency of optimisation through the use of the LOLA-
Voronoi, in conjunction with CEI and the embedding of a trust-region
framework within our optimisation algorithm. The effectiveness of
the outlined algorithm was demonstrated by a quantitative evaluation
of the performance of optimised planar 2D NRI structures in the
GHz regime. Future research direction includes the integration
of alternative parameter retrieval extraction schemes within our
optimisation framework and the investigation of including sensitivity
information into the Co-Kriging model.
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32. Alù, A., “Restoring the physical meaning of metamaterial
constitutive parameters,” Phys. Rev. B, Vol. 83, 081102,
Feb. 2011.



114 Bradley

33. Kennedy, M. C. and A. O’Hagan, “Predicting the output from a
complex computer code when fast approximations are available,”
Biometrika, Vol. 87, No. 1, 1–13, 2000.

34. Picheny, V., T. Wagner, and D. Ginsbourger, “A benchmark of
Kriging-based infill criteria for noisy optimization,” Structural and
Multidisciplinary Optimization, 1–20, 2013.

35. Forrester, A. I. J., N. W. Bressloff, and A. J. Keane,
“Optimization using surrogate models and partially converged
computational fluid dynamics simulations,” Proceedings of the
Royal Society A, Vol. 462, No. 2071, 2177–2204, Jul. 2006.

36. Toal, D. J. J., A. I. J. Forrester, N. W. Bressloff, A. J. Keane, and
C. Holden, “An adjoint for likelihood maximization,” Proceedings
of the Royal Society A, Vol. 465, No. 2111, 3267–3287, Nov. 2009.

37. Couckuyt, I., F. Declercq, T. Dhaene, H. Rogier, and
L. Knockaert, “Surrogate-based infill optimization applied to
electromagnetic problems,” International Journal of RF and
Microwave Computer-Aided Engineering, Vol. 20, No. 5, 492–501,
2010.

38. Morris, M. D. and T. J. Mitchell, “Exploratory designs for
computational experiments,” Journal of Statistical Planning and
Inference, Vol. 43, No. 3, 381–402, 1995.

39. Sasena, M. J., “Flexibility and efficiency enhancements for con-
strained global design optimization with Kriging approximations,”
Ph.D. Thesis, University of Michigan, 2002.

40. Dennis, Jr., J. E. and R. B. Schnabel, Numerical Methods for
Unconstrained Optimization and Nonlinear Equations (Classics
in Applied Mathematics, Vol. 16, Soc. for Industrial & Applied
Math., 1996.

41. Koziel, S., L. Leifsson, I. Couckuyt, and T. Dhaene, “Robust
variable-fidelity optimization of microwave filters using Co-Kriging
and trust regions,” Microwave and Optical Technology Letters,
Vol. 55, No. 4, 765–769, 2013.

42. Yu, S., Z. Wu, H. Wang, and Z. Chen, “A hybrid particle
swarm optimization algorithm based on space transformation
search and a modified velocity model,” W. Zhang, Z. Chen,
C. C. Douglas, and W. Tong, editors, High Performance
Computing and Applications, Volume 5938 of Lecture Notes in
Computer Science, 522–527, Springer, Berlin, Heidelberg, 2010.

43. Mansoornejad, B., N. Mostoufi, and F. Jalali-Farahani, “A hybrid
GA-SQP optimization technique for determination of kinetic
parameters of hydrogenation reactions,” Computers & Chemical
Engineering, Vol. 32, No. 7, 1447–1455, 2008.


