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Abstract—The selection of a near-field or far-field ground-penetrating
radar (GPR) model is an important question for an accurate
but computationally effective characterization of medium electrical
properties using full-wave inverse modeling. In this study, we
determined an antenna height threshold for the near-field and far-
field full-wave GPR models by analyzing the variation of the spatial
derivatives of the Green’s function over the antenna aperture. The
obtained results show that the ratio of this threshold to the maximum
dimension of the antenna aperture is approximately equal to 1.2.
Subsequently, we validated the finding threshold through numerical
and laboratory experiments using a homemade 1–3 GHz Vivaldi
antenna with an aperture of 24 cm. For the numerical experiments,
we compared the synthetic GPR data generated from several scenarios
of layered medium using both near-field and far-field antenna models.
The results showed that above the antenna height threshold, the
near-field and far-field GPR data perfectly agree. For the laboratory
experiments, we conducted GPR measurements at different antenna
heights above a water layer. The near-field model performed better
for antenna heights smaller than the threshold value (≈ 29 cm), while
both models provided similar results for larger heights. The results
obtained by this study provides valuable insights to specify the antenna
height threshold above which the far-field model can be used for a given
antenna.

Received 31 May 2013, Accepted 20 July 2013, Scheduled 26 July 2013
* Corresponding author: Anh Phuong Tran (phuong.tran@uclouvain.be).



416 Tran et al.

1. INTRODUCTION

Over the last decades, ground-penetrating radar (GPR) has become
an advanced non-destructive technique that is widely used in
geoscience [14], archeology [11] and civil engineering [2, 12]. However,
most of the existing techniques rely on strong simplifications
concerning the wave propagation and antenna mutual coupling, which
inherently limits the GPR effectiveness. Recently, with developments
in computational technology, efforts have been made to model the
antenna by numerical methods, e.g., finite difference time domain
(FDTD) [1, 4], or method of moments (MoM) [5]. Yet, simultaneous
modeling of the antennas and medium is still a challenge for these
methods due to the different spatial resolution requirements of the two
domains. It is also difficult to apply these methods in inverse modeling
frameworks for the fact that they require a significant computation
time.

For decreasing computation time, other authors attempted to
find analytical solutions of Maxwell’s equations by using several
specific assumptions. For example, Gentili and Spagnolini [6] modeled
a horn antenna at some distance over a three-dimensional (3-D)
layered medium using an array of frequency independent source
dipoles and a feeding line characteristic impedance. However, the
interactions between antenna and medium were not considered in
this model. Lambot et al. [10] developed a far-field antenna model
to characterize planar layered media. The model accounts for the
antenna effects through global transmission/reflection coefficients. The
wave propagation in planar layered media is simulated using 3-D
Green’s function. Nevertheless, the model requires the antenna to
be situated far enough from the medium to satisfy the far-field
assumption. Lambot and André [9] generalized the far-field model
so that it also applies to near-field conditions while still resorting to an
analytical, closed-form solution of Maxwell’s equations. The model was
successfully validated in laboratory conditions. Comparison between
this model and a FDTD-based model (GprMax, Giannopoulos [7]) was
recently evaluated by Tran et al. [16]. Using this model, the antenna
can operate nearer the dielectric medium, which reduces the emitting
and back scattering radiuses. As a result, there is more information
about medium contained in the GPR data, and therefore, the medium
electrical properties can be better obtained. Moreover, the smaller
footprint of the antenna in the near-field region makes the assumption
of local homogeneity under the antenna footprint more valid.

Although the near-field GPR model provides more accurate
estimations, the far-field one is more effective in terms of computation
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time. However, it is not clear to which extent of the antenna height,
the far-field GPR model holds. As a result, it is necessary to find an
antenna height threshold for the selection of the GPR model depending
on the antenna location. In this study, we theoretically estimate the
antenna height threshold by analyzing the partial derivatives of the
Green’s function over the antenna aperture. Then, this threshold is
validated by comparing the near- and far-field GPR models using both
numerical and laboratory experiments.

2. THEORY

2.1. Green’ Function

The propagation of electromagnetic waves in planar layered media
can be simulated by the Green’s functions, which are solutions of
Maxwell’s equations. In our case, the Green’s functions are defined
as the scattered x-directed electric field at the field point for a unit-
strength x-directed electric source [10, 13]. In the spectral domain, the
Green’s function at the source point is written as below:

G̃·· =
[
cos2(kθ)

(
Γ0R

TM
0

2η0
+

ζ0R
TE
0

2Γ0

)
− ζ0R

TE
0

2Γ0

]
exp(−2Γ0h0) (1)

in which G·· is the Green’s function with dots (··) referring the field
and the source points, respectively. RTM

0 and RTE
0 are the transverse

magnetic (TM) and electric (TE) global reflection coefficients at the
free-space interface accounting for all reflections from the N -layered
medium. These coefficients are determined by using an upward
recursive scheme as below:
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where subscript n (n = 0, . . . , N − 1) denotes the index of the nth
interface increasing from the top to bottom layer, in which n = 0
represents the upper half-space (free-space) interface; rTM

n and rTE
n are

the TM- and TE-mode local reflection coefficients of the nth interface;
hn is the layer thickness with h0 indicating the distance between the
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source/receiver points and the first medium interface; Γn is the vertical
wavenumber defined as Γn =

√
k2

ρ + ζnηn, whilst ζn = jωµn and
ηn = σn + jωεn with µn, εn and σn are the dielectric permittivity,
magnetic permeability and electrical conductivity, respectively. For
the upper half-space, we have Γ0 =

√
k2

ρ − (ω
c )2 with c being the free-

space wave velocity.
The upward recursive scheme begins to calculate the TM and TE

global reflection coefficients at the interface (N − 1)th with RTM
N−1 =

rTM
N−1 and RTE

N−1 = rTE
N−1 for the fact that there is no reflection from

the lower half-space.
The spatial-domain Green’s functions are obtained from their

spectral-domain counterpart using the inverse Fourier transform:
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(

1
2π

)2 ∫ +∞

0

∫ 2π

0
exp[−jρ cos(θ)kρ cos(kθ)

+ρ sin(θ)kρ sin(kθ)]G̃··kρdkρdkθ (6)
By introducing the first kind Bessel functions Jm(kρρ):
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the 2-dimensional integral (6) can be reduced to a 1-dimensional one
as below:
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in which m denotes the order of the Bessel functions; ρ =
√

x2 + y2

and θ = arctan( y
x) are, respectively, the distance and angle in the xy-

plane between the field and source points; kρ and kθ are the horizontal
Fourier transformation counterparts of ρ and θ.

2.2. Partial Derivative of Green’s Function with Respect to
Antenna Spatial Variables

The relationship between the far-field threshold and the antenna
aperture size was investigated by analyzing the variations of the
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backscattered field over the antenna aperture. Accordingly, we
evaluated the partial derivatives of the Green’s function with respect
to the antenna spatial variables, namely, ρ and θ. If these derivatives
are equal to zero, the Green’s function is supposed to be constant
everywhere in the region delineated by the antenna aperture and,
therefore, the far-field assumption will be satisfied. From Equation (8),
the derivatives are derived as:
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= 1
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It is worth noting that, in Formula (11), only the Bessel functions
J0 and J2 depend on ρ, and in Formula (12), only the component
cos(2θ) depends on θ. After doing some rearrangements, we obtain:
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J2(kρρ)g̃2 sin(2θ) exp (−2Γ0h0) kρdkρ (14)

Formulas (13) and (14) indicate that the antenna height-
dependent derivatives ∂G··

∂ρ and ∂G··
∂θ are equal to zero only when the

antenna height approaches the infinite, h0 → +∞. This implies that
the far-field condition cannot be perfectly satisfied with an finite value
of h0. Consequently, we attempted to find an antenna height at
which both of the above derivatives are relatively small as a practical
threshold for the far-field modeling.

2.3. Near-field and Far-field Antenna Models

For validating the antenna height threshold, we compared the near-
and far-field antenna models at different heights. The numerical and
laboratory validations proved that the near-field antenna model works
well in both near- and far-field conditions [9, 16]. Consequently, the
antenna height threshold for the far-field modeling can be verified if the
behaviors of the near- and far-field antenna models are approximately



420 Tran et al.

identical at that threshold. The paragraphs below briefly present the
two models:

Near-field antenna model : The near-field antenna model was
proposed by Lambot and André [9] to accurately reproduce the
radiated antenna field and capture the scattered field distribution in
near- and far-field conditions. Resorting to the superposition principle
approach, the model characterizes the antenna by an equivalent set
of infinitesimal source/field points and frequency-dependent global
reflection/transmission coefficients. With this characterization, the
radiated and scattered fields of the antenna can be decomposed into
plane waves and, therefore, the electromagnetic fields are calculated
using 3-D Green’s functions (Equation (8)). In the frequency domain,
this antenna model is written as:

S =
b

a
= T0 + Ts(IN −G0Rs)−1GTi (15)

with

Ts = [Ts,1 Ts,2 . . . Ts,N ] (16)

Rs =
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...

...
...

0 0 . . . Rs,N


 (17)

Ti = [Ti,1 Ti,2 . . . Ti,N ]T (18)
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21 G0
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...
...
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 (19)

and

G =




G11 G12 . . . G1N

G21 G22 . . . G2N
...

...
...

GN1 GN2 . . . GNN


 (20)

where S(ω) is the ratio between the backscattered b(ω) and incident
field a(ω) at the radar transmission line reference plane, with ω
being the angular frequency; T0(ω) denotes the global transmission
or reflection coefficient of the antenna in free space; Ts is the global
transmission coefficient vector for fields incident from the field points
onto the radar reference plane; Ti is the global transmission coefficient
vector for fields incident from the radar reference plane onto the point
sources; and Rs is the global reflection coefficient matrix for the field
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incident from the layered medium onto the field points; IN is the
N -order identity matrix; and superscript T denotes the transpose
operator.

Far-field antenna model : When the far-field condition is satisfied,
the scattered fields can be approximated by a plane wave. Hence,
the antenna can be effectively characterized by an infinitesimal point
source and receiver, which simplifies Equation (15) to the far-field
model of Lambot et al. [10]:

S(ω) = T0 +
Ts,1G11Ti,1

1−G0
11Rs,1

(21)

In order to apply the near- and far-field antenna models for
quantitative reconstruction of a planar layered medium, the coefficients
(T0, Ti, Ts and Rs) need to be calibrated. We refer to Lambot and
André [9] for the near-field calibration and Lambot et al. [10] for the
far-field antenna calibration.

It is apparent that the far-field model is much effective in terms
of computation time than the near-field one for the fact that it has
a more simple radar equation and less Green’s function evaluation.
Indeed, we only need to calculate the Green’s functions G0

11 and G11

in the far-field model, while all G0·· and G·· need to be evaluated in
the near-field model. The larger the number of source/field points,
the longer computation time we need. Therefore, the far-field model
should be applied when the far-field condition is satisfied.

3. RESULTS AND DISCUSSION

3.1. Antenna Threshold for Far-field Antenna Modeling

Figure 1 shows the amplitude of the spatial complex derivatives of
the Green’s function versus the antenna height and frequency. Our
evaluation was performed for a synthetic 2-layered medium. The upper
and lower electrical properties of the medium were fixed to εr1 = 4,
σ1 = 0.0063 S/m and εr2 = 9, σ2 = 0.0296 S/m, and their thicknesses
were h1 = 12 cm and h2 = 15 cm, respectively.

We considered three antenna types: A homemade Vivaldi
antenna, a linear polarized double-ridged horn antenna (BBHA 9120-F,
Schwarzbeck Mess-Elektronik, Schönau, Germany) and a commercial
bowtie antenna (400-MHz GSSI, Geophysical Survey Systems, Inc.,
http://www.geophysical.com). The Vivaldi antenna has an aperture
of 24 cm and a height of 15 cm. It was operated in the frequency
range 1–3.0 GHz with a frequency step of 8 MHz. The BBHA 9120-
F antenna was operated in the frequency range 200–2000MHz with
a step of 6 MHz. Its aperture area is 68 × 95 cm2. The model
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5103–400MHz GSSI antenna works in the time domain with a center
frequency fc = 400 MHz. The dipole spacing between the transmitter
and receiver bowtie antennas is 16 cm and distance from the dipole to
the edge of antenna housing is 6 cm. We selected the frequency range
for this antenna from fc/2 to 2fc with a step 20 MHz. It is worth
noting that the variable θ vanishes in the cases of the Vivaldi and
BBHA 9120-F antennas as these two antennas act simultaneously as
both transmitter and receiver.

In Figure 1, instead of using the antenna height, we used the
ratio of the antenna height to the maximum dimension of the antenna
aperture (h0/D) to account for the dependence of the far-field antenna
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Figure 1. Derivatives of the Green’s function with respect to the
variables (a), (b), (c) ρ and (d) θ versus ratio of the antenna height to
the maximum dimension of the antenna aperture (D) and frequency
for (a) the Vivaldi, (b) BBHA 9120-F and (c), (d) 400-MHz GSSI
antennas. The analysis used the 2-layered medium with εr1 = 4,
σ1 = 0.0063 S/m, εr2 = 9, σ2 = 0.0296 S/m, h1 = 12 cm and
h2 = 15 cm.
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height threshold on the antenna aperture dimension. The figure
shows that, for all antenna types, the amplitudes of the partial
derivatives of the Green’s functions are negatively proportional to
the antenna height. They quickly reduces when the antenna height
increases from 0 to around 1.2D. After that, they slowly approach
zero when the antenna height continues increasing. Figure 1 also
shows that the amplitudes of the derivatives is higher for the higher
frequency, implying that the Green’s functions fluctuate more with
increasing frequency. Yet, the effect of frequency on the derivatives is
especially pronounced for the small antenna heights, while it appears
to be insignificant when the antenna height is larger than about
1.2D. Similar results were also obtained for the other scenarios of the
medium. As a result, we may consider the antenna height h0 = 1.2D
as a threshold for the near-field and far-field full-wave GPR models.

4. VALIDATION OF THE ANTENNA HEIGHT
THRESHOLD

4.1. Numerical Experiments

In this section, we validated the antenna height threshold determined in
the previous section by comparing the near- and far-field models using
numerical experiments. We constructed a synthetic medium with 1
and 2 dielectric layers on an infinite perfect electrical conductor (PEC).
For the 1-layered medium, the layer thickness is 15 cm and its relative
dielectric permittivity and electrical conductivity are, respectively,
εr = 9 and σ = 0.0296 S/m. In the case of the 2-layered medium,
we used a layer thickness of 12 cm for the first layer and 15 cm for the
second layer. With respect to the electrical properties of the medium,
we considered two scenarios: scenario 1: εr1 = 4, σ1 = 0.0063 S/m,
εr2 = 9, σ2 = 0.0296 S/m, and scenario 2: εr1 = 9, σ1 = 0.0296 S/m,
εr2 = 4, σ2 = 0.0063 S/m.

We considered the Vivaldi antenna with the maximum aperture
D = 24 cm, operating in a frequency range of 1–3.0 GHz and step
of 8 MHz. The antenna characteristic global transimission/reflection
coefficients were calibrated as presented in [9]. Numerical comparison
between the two models was performed at different antenna heights
ranging from 0.1 to 2D. Figure 2 presents the GPR data generated
by these models for the 1- and 2-layered medium scenarios. On
the left panel, the magnitude and phase of the near- and far-field
GPR data at the antenna height threshold (h0 = 1.2D) are shown.
The figure indicates that for all scenarios, the phases of the far-field
antenna GPR data perfectly agree with the near-field ones. In terms
of the magnitude values, there are negligible differences between the
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Figure 2. Comparison of the GPR data (S11) generated by the
near- and far-field antenna models under different scenario of dielectric
medium. The left panel shows the magnitude and phase of the near-
and far-field GPR data at the antenna height threshold for the far-
field modeling (h0 = 1.2D with D being the maximum dimension of
the antenna aperture). The right panel presents the sum of squared
residuals (SSR) between near- and far-field GPR data as a function of
the antenna height. (a) 1-layered medium: εr = 9, σ = 0.0296 S/m.
(b) 2-layered medium: εr1 = 4, σ1 = 0.0063 S/m, εr2 = 9, σ2 =
0.0296 S/m. (c) 2-layered medium: εr1 = 9, σ1 = 0.0296 S/m, εr2 = 4,
σ2 = 0.0063 S/m.
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two models, which is attributed to the errors of the global antenna
characteristic transmission/reflection coefficients. The quantitative
comparison between their synthetic GPR data was evaluated by the
sum of squared residuals (SSR):

SSR =
(
SFF

11 − SNF
11

)T (
SFF

11 − SNF
11

)
(22)

in which SNF
11 and SFF

11 are the complex near- and far-field GPR data
vectors. The relationship between SSR and the antenna height is
presented on the right panel of Figure 2. As expected, the discrepancy
between the far- and near-field antenna models quickly decreases when
the antenna height increases from 0.1D to 1.2D. When the antenna
height is larger 1.2D, the difference is constant at around 0. This
proves that the antenna height threshold h0 = 1.2D is suitable for the
far-field modeling.

4.2. Laboratory Validation

For more realistic comparison of the near- and far-field models in terms
of both GPR signals and parameter estimation, we carried out GPR
measurements above a water layer with a thickness of 4.9 ± 0.1 cm
on a copper plane. The GPR system works in the frequency domain
and consists of a stepped-frequency continuous-wave vector network
analyzer (VNA, ZVRE, Rohde Schwarz, Munich, Germany) and a
homemade single Vivaldi antenna. The VNA and Vivaldi antenna
were connected to each other by a 50 Ω coaxial cable.

Measurements were conducted at 16 different antenna heights
ranging from 0 cm to 70 cm. Temperature and electrical conductivity
of water were 17.2◦C and 0.0806 S/m, respectively. The frequency
dependence of the water complex permittivity was described by the
Debye model [3]. The relationship between the water temperature and
the relaxation time was formulated by the Klein and Swift [8] equation,
and between the temperature and the static permittivity by Stogryn’s
equation [15].

The antenna height and water thickness were considered as
unknowns in this experiment. These variables were estimated at each
antenna height by inverse modeling of GPR data using both near-
and far-field models. The parameter space for the water thickness
was [2.5, 7.5] cm and extended from 50% to 150% of the measured
values for the antenna height.

Figure 3 compares frequency-domain modeled GPR data obtained
by the two models with measured ones at several heights from 0 to
29 cm. The near-field model reproduces very well the measured GPR
data for all antenna heights. There are only small discrepancies in
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Figure 3. Comparison of the magnitude and phase of the near-field
and far-field modeled GPR data with measured ones in the frequency
domain domain at antenna heights of 0, 5, 10, 15, 20 and 29 cm.
The experiments were performed in. (a) h0 = 0 cm. (b) h0 = 5 cm.
(c) h0 = 10 cm. (d) h0 = 15 cm. (e) h0 = 20 cm. (f) h0 = 29 cm.

the range 1.7–2.2GHz for an antenna height of 0 cm. In contrast, the
agreement between far-field modeled and measured GPR data is not
good as that observed for the near-field one. However, the difference
between them considerably reduces as the antenna height increases.
For antenna heights of 0 and 5 cm, the measurements are not well
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reproduced by the far-field model. For antenna heights of 10 and 15 cm,
although there are still some small gaps between far-field modeled and
measured data, their difference significantly decreases. At 20 cm, the
differences are negligible and at 29 cm (1.2D), we cannot differentiate
the far-field GPR data from the near-field and measured ones.

Figure 4 shows the variation of SSR for the near- and far-field
GPR models versus the antenna height. The figure excludes the SSR
values corresponding with the antenna height equal to 0 cm because
it is very large for the far-field model. When the antenna increases
from 5 to 29 cm, while the SSR for the near-field model is constantly
very small, that of the far-field model significantly decreases. When
the antenna height is greater than 29 cm, the SSR of both models is
identical and nearly equal to 0. This strengthens our findings that
the antenna height h0 = 1.2D is a suitable threshold for the far-field
modeling.
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Figure 4. The RSS corresponding with the near- and far-field GPR
models at different antenna heights.

Figure 5 compares the antenna height and water thickness
estimated by the two models and their measured counterparts. The
figure shows that the near-field model perfectly reproduces the antenna
height and water thickness at all antenna heights. The high accuracy
of the estimated parameters and very close agreement of modeled and
measured GPR data prove the correctness of the near-field model
and proper determination of its transmission/reflection coefficients.
Therefore, this model can be used for characterization of the medium
properties in both near- and far-field conditions. As for the far-field
model, accurate results are also obtained for antenna heights greater
than or equal to 5 cm. However, when the antenna contacts with the
water surface, the estimated antenna height and water thickness are
no longer reasonable. It is worth noting that although the SSR of the
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Figure 5. Comparison of measured and modeled (a) antenna height
and (b) water thickness. The circle and asterisk markers describe the
values estimated by near-field and far-field model, respectively.

far-field model increases significantly when the antenna moves from
29 cm down to 5 cm, the parameter estimation is still accurate. This
might be explained by the small number of unknown parameters and
high sensitivity of GPR data to these parameters.

5. CONCLUSION

We specified the antenna height threshold above which the far-field
model can be effectively applied by evaluating the spatial variation
of the Green’s function over the antenna aperture. Accordingly, we
calculated the partial derivatives of the Green’s function with respect
to the spatial polar coordinates (ρ, θ), and analyzed their variations
with different antenna heights and frequencies. Assuming that the
Green’s functions are approximately constant everywhere over the
antenna aperture, and, therefore, equaling the amplitude of their
spatial derivatives to zero, the antenna height threshold was found
to be h = 1.2D for all kinds of antennas.

We validated the above threshold both by numerical and
laboratory experiments using a homemade 1–3 GHz Vivaldi antenna.
For the numerical evaluation, we compared the synthetic GPR data
generated by both of the near- and far-field antenna models above 1-
and 2-layered scenarios with antenna heights ranging from 0.1 to 2D.
The obtained results indicate that above the antenna height threshold,
the performance of the near- and far-field antenna models is similar,
both in magnitude and phase.

For laboratory experiments, we compared the two models by
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conducting GPR measurements from 0 to 70 cm above a water layer.
The optimized results show that the near-field GPR model perfectly
estimated the antenna height and water thickness at all antenna heights
with very small difference between modeled and measured GPR data.
The far-field model predicted well the unknown parameters for antenna
heights beyond 5 cm (≈ 0.2D). Regarding the GPR data, the difference
between far-field modeled and measured data increased rapidly as the
antenna moved from 29 (≈ 1.2D) down to 0 cm. However, at antenna
heights larger or equal to 29 cm, the far-field model data showed very
good agreement with the near-field modeled and measured data.
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