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Abstract—One of the most promising alternative imaging modalities
for breast cancer detection involved the use of microwave radar
systems. A critical component of any radar-based imaging system for
breast cancer detection is the early-stage artifact removal algorithm.
Many existing artifact removal algorithms are based on simplifying
assumptions about the degree of commonality in the artifact across all
channels. However, several real-world clinical scenarios could result
in greater variation in the early-stage artifact, making the artifact
removal process much more difficult. In this study, a range of existing
artifact removal algorithms, coupled with algorithms adapted from
Ground Penetrating Radar applications, are compared across a range
of appropriate performance metrics.

1. INTRODUCTION

In the context of early breast cancer detection, Confocal Microwave
Imaging (CMI) has been proposed as a method to identify and locate
regions of dielectric scatterings within the breast [1, 2]. Adaptive
beamforming is typically used to process the backscattered signals,
and to compensate for frequency-dependent propagation effects [3–
5]. Regions of high energy within the resultant images may suggest
the presence of cancerous tissue due to the dielectric contrast that
exists between normal and cancerous tissue. Other approaches
such as Microwave Tomography, reconstruct the spatial distribution
of dielectric properties within the breast, using inverse scattering
algorithms [6, 7].

One of the most important components of any CMI system for
breast cancer detection is the early-stage artifact removal algorithm.
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The early-stage artifact is composed of the input signal, the reflection
from the skin-fat interface and any antenna reverberation present.
This artifact is typically several orders of magnitude greater than
the reflections from any tumours present within the breast. If the
artifact is not removed effectively, it could easily mask tumours present
within the breast. Despite the importance of artifact removal, and the
development of a number of algorithms, no comprehensive comparison
of early-stage artifact removal algorithms for breast cancer detection
using microwave imaging has been performed previously. In this paper,
a wide-range of existing microwave breast imaging artifact removal
algorithms, along with algorithms adapted from Ground Penetrating
Radar (GPR) applications, are implemented and compared across
a range of appropriate performance metrics. The remainder of the
paper is organised as follows: Section 2 describes each artifact removal
algorithm in detail; Section 3 describes the numerical breast phantom
and performance metrics used to evaluate the algorithms; Section 4
describes the various tests applied to the artifact removal algorithms
and the corresponding results; Finally, conclusions and suggestion for
possible future work are discussed in Section 5.

2. ARTIFACT REMOVAL ALGORITHMS

2.1. Average Subtraction

In this simple method, the artifact is estimated as an average of the
signal recorded at each channel. The artifact is removed by subtracting
this estimated artifact from each received signal:

si[n] = bi[n]− 1
N

N∑

i=1

bi[n] (1)

where bi[n] is the vector containing the signal recorded at channel n,
N is the total number of channels and si[n] is the artifact-free signal.

2.2. Rotation Subtraction

The Rotation Subtraction method was proposed by Klemm et al. [8]
and requires two separate radar measurements. The first set of
measurements is recorded with the circular antenna array surrounding
the breast in one position and a second set of signals is recorded after
the antenna array has been rotated at a certain angle in the horizontal
plane around the vertical axis, as follows:

si[n] = bi[n]− br[n] (2)
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where br[n] is the vector containing the signals recorded after the
antenna array has been rotated.

2.3. Adaptive Filtering

2.3.1. Wiener Filter

The Wiener Filter artifact removal algorithm was originally proposed
by Bond et al. [3]. This algorithm improves on the simple Average
Subtraction method by compensating for channel-to-channel variation
in artifacts due to local variation in skin thickness, breast heterogeneity
and differences in antenna-skin distances. In this method, the artifact
in each channel is estimated as a filtered combination of the signals in
all other channels. The estimated artifact signal for channel i is then
subtracted from the received signal at channel i as follows:

si[n] = bi[n]− qT bPN [n] (3)

where bi[n] is the vector containing the signal received at channel i,
bPN [n] a vector calculated from all other channels except i, and q
the vector of filter weights. The filter weights are chosen to minimize
the residual signal mean-squared error over the portion of the signal
dominated by the artifact.
For example, in order to remove the artifact from channel 1, a
(2J + 1)× 1 vector of time samples in the kth channel is defined as:

bk[n] = [bk[n− J ], . . . , bk[n], . . . bk[n + J ]]T , 2 ≤ k ≤ N (4)

where J is the number of samples on either side of nth time sample and
2J +1 the length of the averaging window centered on n. The samples
of bk[n] for channels 2 through N are concatenated into a vector b2N [n]
as:

b2N [n] =
[
bT
2 [n], bT

3 [n], . . . , bT
N [n]

]T
(5)

The filter weight vector q is then calculated as

q = arg min
q

no+m−1∑
n=no

∣∣b1[n]− qT b2N [n]
∣∣2 (6)

where the time window n = no to n = no +m−1 represents the initial
portion of the signal dominated by artifact.

2.3.2. Recursive Least Squares Filter

The Recursive Least Squares (RLS) algorithm was proposed for artifact
removal by Sill et al. [9]. RLS is an adaptive filtering algorithm that
recursively computes and updates the filter weights, in contrast to the
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Wiener Filter method which shifts constant weight vectors through the
selected window. Let ur be the 1×N vector containing N time samples
of desired signal at channel r and u = [ur+1, ur+2, . . . , ur+Q]T is the
Q×N matrix containing signals at the remaining Q channels. Define
Q× 1 weight vector at time n is:

w(n) = [wr+1(n), wr+2(n), . . . , wr+Q(n)]T (7)

The desired signal d(i) = ur can then be approximated as:

d̂(i) = wT (n)u(i) (8)

and the error is calculated as:

e(i) = d(i)− d̂(i) (9)

At time n the sum of squared error is defined as:

J(n) =
n∑

i=1

λn−i |e(i)|2 (10)

where λ is the forgetting factor and n the current sample number.
The minimization of mean squared error with respect to w(n) results
in the well-known Wiener-Hopf equation which can be recursively
solved using standard brute force approach. Further details on the
specific implementation can be found in [9]. The RLS algorithm is
used in conjunction with Woody-Averaging [10]. The RLS algorithm
is applied to the initial portion of signal which is dominated by artifact
and Woody averaging is applied to remaining portion of the signal.
This total estimated signal is then subtracted from the target signal.
The artifact-dominated portion of signal is selected empirically in this
study.

2.3.3. Singular Value Decomposition

Singular Value Decomposition (SVD) has been previously used for
clutter reduction in GPR [11] and through-wall imaging [12]. SVD
is used to decompose the received data into tumour and artifact
subspaces. The components containing the tumour are selected,
discarding the artifact. The received signals are represented by a Q×N
matrix X where N is the total number of time samples and Q is the
total number of channels. A singular value decomposition of X is given
as:

X = USV T (11)

where U = [u1, u2, . . . , uM ] and V = [v1, v2, . . . , vN ] (having
dimensions Q × Q and N × N) are left and right unitary matrices
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respectively. Let S = diag(σ1, σ2, . . . , σQ) with σ1 ≥ σ2 ≥ . . . ≥ σQ ≥
0 be the singular values of X. The SVD of X can then be written as:

X =
Q∑

i=1

σiuiv
T
i (12)

X = E1 + E2 + E3 + . . . + EN (13)

where Ei is the ith eigenvalue of the mode of X having the same
dimensions as of X.
X can be decomposed into two subspaces as:

X =
k∑

i=1

σiuiv
T
i +

Q∑

i=k+1

σiuiv
T
i (14)

where the first k singular values belong to the artifacts and the
remaining values belong to the tumour response. Verma et al. [12]
proposed that first spectral component k = 1 in (14) represents the
clutter. However, in this study the experimental data suggested that
the clutter subspace is composed of more than one spectral component.
Therefore, the difference of singular values σi−σi+1 is used to estimate
the optimal value of k:

k = arg max
i

(σi − σi+1) (15)

2.4. Entropy Based Time Window

The Entropy Based Time Window artifact removal algorithm was
proposed by Zhi and Chin [13]. The algorithm is based on the
assumption that the artifacts in the received signals are highly similar
across all channels, which is not the case for the tumour response, as
it is delayed and attenuated differently in each channel. Entropy is
a measure of the variation of the signal, where entropy is inversely
proportional to the amount of variation. Therefore, a larger value of
entropy is obtained from similar artifacts in the early portion of the
radar signal and conversely the tumour reflections result in a much
lower entropy value. A window function can be defined based on the
entropy values and the artifacts can be removed by multiplying the
window function with the received signal at each channel.
A probability density function is created by normalizing each received
radar signal:

pi[n] =
‖bi[n]‖2

Q∑

i=1

‖bi[n]‖2

(16)
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where bi[n] is the received signal at ith channel, and Q is the total
number of channels. Previous Equation (16) satisfies pi[n] ≥ 0 and∑Q

i=1 pi[n] = 1 and can be interpreted as energy density in antenna
domain. The αth-order Renyi entropy at time sample n is defined as:

Hα[n] =
1

1− α
log

{
Q∑

i=1

(pi[n])α

}
(17)

where α is real-positive and the entropy varies from zero for certain
event to log Q for uniform distribution. Next eHs

α[n] is defined as the
theoretical dimension of [b1[n], b2[n], . . . , yQ[n]] where Hs

α[n] is the
smoothed entropy, given as:

Hs
α[n] =

1
M

k=n+M∑

k=n

Hα[k] (18)

The time window function is obtained by comparing the theoretical
dimension with a specific threshold as follows:

W [n] =
{

0, eHs
α[n] > N0

1, otherwise
(19)

where 1 < N0 < Q.
The artifact removed signal can then be obtained by multiplying the
time window function with the received signal at the ith channel:

si[n] = W [n]bi[n] (20)

2.5. Frequency Domain Pole Splitting

The Frequency Domain Pole Splitting artifact removal algorithm was
originally proposed by Maskooki et al. [14]. The principle of this
algorithm is to represent the frequency response of each received
radar signal as a sum of complex exponentials, where each complex
exponential represents a pole of the system and each pole corresponds
to a specific scatterer in the view of the antenna. The artifacts can
then be removed by removing the pole corresponding to the strongest
scatterers from frequency response. The frequency response of each
received signal can be decomposed into its poles as follows:

y(k) =
N∑

p=1

ape
(αp+j 4π

c
Rp)k∆f (21)

where N is the total number of scatterers or poles of the system,
ap the constant coefficient, αp the frequency decay/growth factor, Rp
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the range of the pth scatterer, and ∆f the sampling frequency. The
received signals are first converted to the frequency domain using the
Fast Fourier Transform (FFT) algorithm. These frequency domain
signals are then processed using the linear system identification method
to estimate the frequency model given in (21) [15]. The frequency
domain signal is arranged in the form of a Hankel matrix as follows:

H =




yi(1) . . . yi(L)
...

. . .
...

yi(N − L + 1) . . . yi(N)


 (22)

where yi(n) is nth frequency sample at channel i, and N is the total
number of frequency samples. The Hankel matrix is then decomposed
into the signal plus noise and noise only subspaces using SVD and
removing the noise subspace. H can be approximated as:

H̃ = UsnΣV ∗
sn (23)

where Usn is the left unitary matrix of the signal-plus-noise subspace,
V ∗

sn the right unitary matrix of signal plus noise subspace, and Σ
contains the dominant singular values of H in descending order and
(∗) denotes conjugate transpose. The criterion to separate the two
subspaces is the Akaike Information Criterion [16]. The approximated
H from (23) is used to estimate the ap, αp and Rp. Using these
parameters in (21), the frequency domain signal is reconstructed. The
parameter ap is directly related to the amplitude of pulses in the time
domain signal. Since the magnitude of the tumour pulse is much
smaller than the artifact, a threshold is used to remove the poles
with dominant ap values during the reconstruction of the frequency
response. Hence, the reconstructed signal will only contain the tumour
response. This reconstructed signal is then converted into the time
domain using the inverse FFT.

3. NUMERICAL BREAST PHANTOM AND
PERFORMANCE METRICS

A 2D Finite Difference Time Domain (FDTD) breast model has been
developed, based on an MRI-derived breast phantom, taken from the
UWCEM breast phantom repository at the University of Wisconsin-
Madison [17]. Two breast models have been considered in this study.
The FDTD model shown Fig. 1(a) is dielectrically homogeneous model,
composed of adipose tissues only whereas the model shown in Fig. 1(b)
is heterogeneous with a region of fibroglandular tissue.

The antenna array consists of 12 elements modelled as electric-
current sources equally spaced around the circumference of the breast
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Figure 1. FDTD breast model with antennas and corresponding
beamformed images after ideal artifact removal: (a) homogeneous
breast model, (b) heterogeneous breast model, (c) beamformed image
of homogeneous breast model, (d) beamformed image of heterogeneous
breast model.

and backed by a synthetic material matching the dielectric properties
of adipose tissue. The entire simulation space is 95 mm× 120 mm. A
location within the breast is described in terms of (X mm, Y mm). A
7.5mm diameter tumour is located at two different positions in each
breast model ((59mm, 72mm) and (59 mm, 88 mm)). The input signal
is a 150-ps differentiated Gaussian pulse, with a centre frequency of
7.5GHz and a −3 dB bandwidth of 9 GHz. Before further processing,
the acquired backscattered recorded signals are downsampled from
1200GHz to 50 GHz.

Four metrics are used to evaluate the artifact removal algorithms.
The Peak-to-peak Response Ratio (PPRR) and Correlation Measure
(CM) are applied to the raw radar signals, whereas the Signal-to-Mean
Ratio (SMR) and Structure Similarity Index Metric (SSIM) [18] are
calculated from the resultant beamformed images.

The PPRR is the ratio of the peak-to-peak magnitude of the radar
signal following and prior to artifact removal. The PPRR measures
how much of the artifact has been removed from a particular channel.
The CM is used to measure the ability of artifact removal algorithm
to preserve the tumour response. This is computed by correlating
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the ideal tumour response with the tumour response obtained for
a particular artifact removal algorithm. The SMR is a measure of
the quality of beamformed image after the application of a particular
artifact removal algorithm. It is defined as the ratio of peak tumour
response to the average response in the image. Finally, the SSIM is an
image quality metric, that indicates the similarity between two images.
The SSIM outputs a values in the range 0–1, where 1 indicates that the
test and the reference image are identical. An ideal reference image is
generated using an ideal artifact removal algorithm. SSIM is calculated
as follows:

SSIM =
(2× x̄× ȳ + C1) (2× σxy + C2)(
σ2

x + σ2
y + C2

)× (x̄2 + ȳ2 + C1)

where x is the reference image; y is the test image; x̄ and ȳ represent the
corresponding mean; σx and σy represent the corresponding variance;
σxy is the covariance of the reference and test image; C1 and C2 are
small constants.

4. RESULTS

Table 1 illustrates the overall performance of each artifact removal
algorithm in terms of PPRR and CM, while Table 2 presents their
respective performances in terms of the quality of the resultant breast
images (SMR and SSIM). Fig. 2 shows the time-domain plots and
images for each algorithm.

From Table 1, the Average Subtraction and Rotation Subtraction
algorithms fail to effectively remove the artifact, as indicated by the
fact that these algorithms have the lowest PPRR values. The PPRR

Table 1. Performance metrics for artifact removed signals.

Algorithms PPRR Correlation Measure

Ideal −131.39 1.00
Rotation Subtraction −30.73 0.14
Average Subtraction −38.18 0.10

Wiener Filter −126.38 0.66
RLS −83.61 0.37
SVD −123.19 0.45

Entropy Based Time Window −121.88 0.60
Frequency Domain −135.43 0.37
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Table 2. Performance metrics for beamformed images.

Algorithms SSIM SMR

Ideal 1.00 30.32
Rotation Subtraction 0.05 15.00
Average Subtraction 0.05 18.38

Wiener Filter 0.84 25.59
RLS 0.80 25.88
SVD 0.72 25.36

Entropy Based Time Window 0.77 24.54
Frequency Domain 0.60 23.07

and CM values for the RLS algorithm suggest that while the algorithm
removes the majority of the artifact, the tumour response suffers
significant distortion. Similarly, the SVD algorithm also significantly
reduced the artifact but introduces distortion in the tumour response.
The Entropy Based Time Window performed quite well as evidenced by
both the PPRR and CM values. The Frequency Domain Pole Splitting
algorithm has better PPRR value but poor CM value, again indicating
a distortion of the tumour response. Finally, the Weiner Filter yields a
smaller PPRR value and the highest CM value, suggesting that it not
only removes almost all the artifact, but it also preserves the tumour
response.

Similar trends can be seen in terms the imaging performance
metrics shown in Table 2. The Wiener Filter algorithm produces
the highest SSIM value indicating that it generated best beamformed
image. SSIM values for RLS and Entropy based Window algorithm
are also quite close to the ideal image. The RLS algorithm has high
SSIM value despite its poor CM value, because residual artifacts have
been compensated by beamformer. A more detailed analysis of the
performance of each algorithm is now provided.

Figure 2(a) shows the radar signal derived from the homogeneous
model, after processing by the Rotation Subtraction artifact removal
algorithm, and the same signal following the application of an ideal
artifact removal algorithm. The solid line shows the ideal signal
and dashed line is the tumour response signal after the Rotation
Subtraction algorithm has been applied. The results are obtained after
the antenna array has been rotated by 30◦. It can be seen that the
Rotation Subtraction algorithm has failed to completely remove the
artifact. This is due to the variation in artifact at different locations
across the breast. Figs. 2(b)–(c) show the images generated from the
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resultant artifact removed signals. Maximum energy concentration
is at the antenna locations due to dominant artifacts which remain
following the application of the Rotation Subtraction algorithm.

Figures 2(d)–(f) illustrate the performance of the simple Average
Subtraction artifact removal algorithm. The signals obtained following
the application of the Average Subtraction algorithm still have strong
artifacts contained in the early-stage response. This can be attributed
to the fact that the Average Subtraction algorithm assumes that the
early-stage artifact will be same across all channels, and the averaging
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Figure 2. Artifact removed time domain signals and the
corresponding beamformed images.

process will correctly estimate the artifact. However, typically the
artifact varies between channels due to local variations in skin thickness
and differences in the antenna-skin distance. Due to the presence of
strong artifacts in the resultant image, the tumour cannot be detected
in the breast images, as shown in Figs. 2(e)–(f).

The Wiener Filter artifact removal algorithm is applied to the
radar signals with filter parameters J = 3, p = 12, m = 23 and results
are plotted in Figs. 2(g)–(i). The results demonstrate that artifacts
have been significantly reduced when compared to the Rotation
Subtraction and Average Subtraction algorithms. The Wiener Filter
algorithm has performed equally well for both tissue models considered
in this study. Fig. 2(g) shows that the Wiener Filter algorithm has
not been able to completely eliminate the skin artifacts, but they are
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significantly reduced with very little distortion being introduced in to
the tumour response. The resultant beamformed images are shown in
Figs. 2(h)–(i). The images closely resemble the ideal images shown in
Figs. 1(c)–(d) and both tumours can be easily detected.

The RLS Filter combined with Woody Averaging artifact removal
algorithm is applied to the received signals and results plotted
in Figs. 2(j)–(l). These results demonstrate that RLS-Woody
combination has reduced the artifacts but residual artifacts still
remain. These residual artifacts include a peak in the early-time
response which is actually greater in magnitude than the tumour
response. Furthermore, the averaging of the late-time signal introduces
distortion in the tumour response, which can reduce the quality of the
resultant beamformed images. These images are shown in Figs. 2(k)–
(l).

Figures 2(m)–(r) show the results obtained by removing the early-
stage artifact using SVD. It can be seen that the algorithm has reduced
the artifact but failed to completely remove the artifact. It has also
significantly distorted the tumour response and this distortion effect
is clearly visible in beamformed images, where tumour energy looks
relatively dispersed (i.e., incoherent addition of the radar signals at
the tumour location), as shown in Figs. 2(m)–(r).

In the case of the Entropy Based Time Window algorithm, third
order entropy with α = 3 is computed for the received radar signals.
The artifact has a large entropy compared to the late-time tumour
response. The threshold value is set to half of the number of channels,
i.e, N0 = 6 in order to design the time-window (which is then multiplied
with radar signals across all channels). This is shown in Fig. 2(p)
where the artifacts have been almost completely removed by this
algorithm while portions of artifacts close to the tumour response were
not removed. This is due to the fact that the algorithm incorrectly
estimates the artifact as part of the tumour response when the residual
artifacts are very close in magnitude to tumour response. Since the
algorithm is only applied to the early-time portion of the signal, no
distortion of the tumour response occurs. Images obtained from signals
after the Entropy Based Time Window algorithm are applied are shown
in Figs. 2(p)–(r).

The Frequency Domain Pole Splitting algorithm is applied to the
radar signals and results are shown in Figs. 2(s)–(u). In order to remove
the dominant poles, the threshold is set to higher than the ratio of peak
tumour to the artifact response multiplied by the maximum ap values,
as proposed by Maskooki [14]. The poles with ap values larger than
this threshold are then removed. The algorithm is quite effective in
removing artifacts, but the distortion in the tumour response is much
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greater as compared to all other algorithms, resulting in relatively poor
images as shown in Figs. 2(s)–(u). Residual artifacts and distortion
are much more visible in the hetergeneous model. The tumour can
be detected in the homogeneous model as shown in Fig. 2(t) but it is
obscured by clutter in the heterogeneous model as shown in Fig. 2(u).

5. CONCLUSIONS AND FUTURE WORK

In this paper, an extensive range of artifact removal algorithms
developed originally for both microwave breast imaging and GPR
applications have been described and compared. Results presented
in this study indicate that the Rotation Subtraction and Average
Subtraction artifact removal algorithms fail to effectively remove the
early-stage artifact, primarily due to local variations in skin thickness
and differences in the antenna-skin distance. Conversely, adaptive
filtering algorithms perform well when applied to the portion of
signal dominated by artifacts and are more robust to variations
in the early-stage artifact. The Frequency Domain Pole Splitting
and the SVD method significantly reduce the artifact but tend to
introduce considerable distortion in the tumour response. The Entropy
Based Time Window algorithm completely removes the part of signal
estimated to contain the artifacts; however it often fails to accurately
estimate the exact portion of signal containing the artifact.

Future work will focus on the development of a hybrid artifact
removal algorithm, where the Entropy Based Time Window algorithm
will be improved to better estimate the part of signal containing the
artifact and the Wiener Filter algorithm will be used to remove this
artifact without introducing any distortion into the tumour response.
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