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Abstract—We generalize Wheeler-Feynman electrodynamics with
a variational problem for trajectories that are required to merge
continuously into given past and future boundary segments. We
prove that the boundary-value problem is well posed for two
classes of boundary data. The well-posed solution in general
has velocity discontinuities, henceforth a broken extremum. Along
regular segments, broken extrema satisfy the Euler-Lagrange neutral
differential delay equations with state-dependent deviating arguments.
At points where velocities are discontinuous, broken extrema satisfy
the Weierstrass-Erdmann conditions that energies and momenta are
continuous. Electromagnetic fields of the finite trajectory segments are
derived quantities that can be extended to a bounded region B of space-
time. Extrema with a finite number N of velocity discontinuities have
extended fields defined in B with the possible exception of N spherical
surfaces, and satisfy the integral laws of classical electrodynamics
for most surfaces and curves inside B. As an application, we study
the hydrogenoid atomic model with mass ratio varying by three
orders of magnitude to include hydrogen, muonium and positronium.
For each model we construct globally bounded trajectories with
vanishing far-fields using periodic perturbations of circular orbits. Our
model uses solutions of the neutral differential delay equations along
regular segments and a variational approximation for the head-on
collisional segments. Each hydrogenoid model predicts a discrete set
of finitely measured neighbourhoods of periodic orbits with vanishing
far-fields right at the correct atomic magnitude and in quantitative
and qualitative agreement with experiment and quantum mechanics.
The spacings between consecutive discrete angular momenta agree with
Planck’s constant within thirty-percent, while orbital frequencies agree
with a corresponding spectroscopic line within a few percent.
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1. INTRODUCTION

We generalize Wheeler-Feynman electrodynamics [1, 2] with a
variational principle whose extrema are required to satisfy a boundary-
value problem [3, 4]. As in all variational problems, there is no
guarantee that smooth classical solutions exist. In fact, here we
prove that one should expect piecewise smooth extrema. For generic
boundary data, solutions are continuous trajectories with velocity
discontinuity points, henceforth corner points [5].

Piecewise smooth extrema satisfy the Wheeler-Feynman neutral
differential delay equations with state-dependent deviating arguments
along smooth segments [3, 4]. At corner points piecewise smooth
extrema satisfy the Weierstrass-Erdmann conditions that partial
energies and momenta are continuous [5].

For two special classes of boundary data we prove that the
variational principle is well-posed, i.e., there exists a unique solution
depending continuously on the boundary data. The piecewise smooth
solutions define generalized electromagnetic fields inside a bounded
region B of space-time by extension. We show that the extended
fields satisfy the integral laws of classical electrodynamics inside B,
i.e., Gauss’s surface integral law for the electric field, Gauss’s surface
integral law for the magnetic field, Ampere’s law and Faraday’s
induction law in integral form [6].

Wheeler and Feynman derived neutral differential delay equations
of motion (NDDE) for point charges [1, 2]. Neutral differential
delay equations are functional differential equations whose qualitative
behaviour has just begun to be understood [7–9]. In qualitative
agreement with the existence of broken extrema, solutions of NDDE
must be defined piecewise [4]. The continuation of solutions often
leaves a set of points where trajectories are not differentiable [8]. In
the numerical analysis literature, a velocity discontinuity point is called
a breaking point [8], while in variational calculus (and here) the name
corner point is used [5].

Surprisingly, atomic models become sensible in variational
electrodynamics. More specifically, our generalized electrodynamics
allows globally bounded two-body orbits with vanishing far-fields, thus
introducing bounded motions along which an atom is isolated from
disturbing/being disturbed by other atoms. The essential ingredient
is precisely corner points. It is proved in [4] that globally bounded
two-body orbits with vanishing far-fields must have corner points. We
attempt to validate our theory by exploring the hydrogenoid atomic
model with mass-ratio varying by three orders of magnitude to include
the hydrogen, muonium and positronium atoms.
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We construct periodic orbits having regular segments where
the neutral differential delay equations and deviating arguments are
linearized, while on the (thin) boundary-layer segments a variational
approximation is used.

In the three cases of hydrogen, muonium and positronium,
a discrete set of finitely measured neighbourhoods of orbits with
vanishing far-fields have frequencies in agreement with Quantum
Mechanics (QM), within a few percent. The qualitative agreements
with QM are (i) the angular momenta of the unperturbed circular
orbits are approximately integer multiples of a basic angular
momentum agreeing with Planck’s constant within thirty percent;
(ii) the emitted frequency is the difference of two eigenvalues of a
suitable linear problem; and (iii) the Weierstrass-Erdmann conditions
involve the continuity of momenta and energies, which are the relevant
quantities of QM.

This paper is divided as follows. In Section 2, we introduce
the boundary-value problem, the variational structure, and the
Weierstrass-Erdmann conditions. In Section 3, we prove that the
boundary-value problem is well-posed. In Section 4, we explain
variational electrodynamics as an extension of Wheeler-Feynman
electrodynamics by discussing the conditions for the validity of
the integral laws, which are the experimental basis of classical
electrodynamics. Section 4 also discusses invariant manifolds and
a generalized absorber condition. In Section 5, we introduce the
circular orbits and magnitudes in the limit of small delay angles. In
Section 6, we linearize the Wheeler-Feynman NDDE about circular
orbits and explain the infinite number of linearly unstable transversal
modes. Section 7 discusses the boundary-layer theory and application
of the Weierstrass-Erdmann conditions. In Section 8, we validate our
theory by comparing the predictions of the hydrogenoid model with
the experimental magnitudes of hydrogen, muonium and positronium.
Last, in Section 9, we put the discussions and conclusion.

2. BOUNDARY-VALUE PROBLEM

We henceforth use a unit system where the speed of light is c ≡ 1 and
the electronic charge and electronic mass are respectively e1 ≡ −1 and
m1 ≡ 1. The protonic charge and protonic mass in our unit system
turn out to be respectively e2 = 1 and m2 = 1836.1526.

A seemingly essential ingredient for a viable physical (and
mathematical) theory is the minimization of a suitably defined
functional, henceforth a variational principle. A useful paradigm is
the principle of least action of classical mechanics specialized to the
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Kepler two-body problem [10]. Hamilton’s principle states that the
action functional assumes an extremum on the classical two-body orbit
of a finite time-interval, when considered in the class of C2 smooth
trajectories sharing the same endpoints.

The principle of least action [10] defines a two-point boundary
problem for the ordinary differential equations (ODE) of classical
mechanics [11, 12], often called a shooting problem to distinguish
from the initial value problem [11, 12]. Motivated by Wheeler-
Feynman electrodynamics, Ref. [3] constructed a Poincaré-invariant
action principle at the expense of introducing the unusual boundary
conditions explained below.

Physical trajectories should have a velocity lesser than the speed of
light, henceforth sub-luminal trajectories. We describe our relativistic
trajectories in the usual Minkowski space, where every point P ≡ (t,x)
has a time and a Cartesian coordinate [3, 13]. A point P+ ≡ (tj+,xj+)
belongs to the future of P when tj+ > t+‖xj+−x‖, while a point P− ≡
(tj−,xj−) belongs to the past of P when tj− < t−‖xj−−x‖ [13]. The
set of points neither in the future of P nor in the past of P is defined
as the elsewhere of P [13]. A point P± along trajectory xj ≡ xj(tj) is
in the light-cone relation with another point P if

tj± = t± ‖xj±(tj±)− x‖. (1)
Equation (1) is an implicit state-dependency on xj(tj±), henceforth
the light-cone condition or the Einstein locality condition. In Eq. (1),
the plus sign defines the future light-cone of P and the minus sign
defines the past light-cone of P .

To continue trajectory 1 from an initial point O1 ≡ (tO1 ,x1(tO1)),
a relativistic variational principle needs the whole intersection of
trajectory 2 with the elsewhere of O1, which is a finite segment of
trajectory 2. For the classical principle of least action, the elsewhere
of O1 degenerates into the initial point of trajectory 2. Last, at the
end-point L2 of trajectory 2, the relativistic least-action principle needs
the intersection of trajectory 1 with the elsewhere of L2, again a finite
segment of trajectory 1 rather than a simple endpoint.

The unusual boundary conditions for a relativistic variational
principle are illustrated in Fig. 1, i.e., (a) the initial point O1 of
trajectory 1 and the respective boundary-segment of trajectory 2 inside
the light-cone of O1 (red triangle of Fig. 1), and (b) the final point L2 of
trajectory 2 and the corresponding boundary-segment of trajectory 1
inside the light-cone of L2 (upside down red triangle of Fig. 1).

Along continuous and piecewise C1 sub-luminal trajectories
satisfying the boundaries of Fig. 1, the past and future light-cone
conditions (1) have unique solutions tj±(t,x) [14]. Illustrated in Fig. 1
are also the forward light-cone rays starting from O+

1 and moving



Progress In Electromagnetics Research B, Vol. 53, 2013 151

O
1

O
+

1
O

+

1
L

2

L
2

+
L

2

+

b
3

1

b
2

f
3

f
2a

+

2

a
+

1

f
1

a
11

a
21

a
12

a
22

Figure 1. Schematic illustration of the boundaries in R4, i.e.,
(a) initial point O1 ≡ (tO1 ,x1(tO1)) of trajectory 1 and the respective
elsewhere boundary segment of x2(t2) for t2 ∈ [tO−1 , tO+

1
] (solid red

line); (b) endpoint L2 ≡ (tL2 ,x2(tL2)) of trajectory 2 and the respective
elsewhere boundary segment of x1(t1) for t1 ∈ [tL−2 , tL+

2
] (solid red

line). Trajectories x1(t1) for t1 ∈ [tO1 , tL−2
] (solid blue line) and x2(t2)

for t2 ∈ [tO+
1
, tL2 ] (solid green line) are determined by the extremum

condition. The principal sewing chains are also illustrated; i.e., the
forward sewing chain of O+

1 , (O+
1 , f1, f2, f3), (broken golden line)

and the backwards sewing chain of L−2 , (L−2 , b1, b2, b3) (broken dark
line). Sewing chain (a−2 , a11, a21, a12, a22, a

+
1 ) has two points on each

trajectory (solid violet line). Violet arrows are directions of integration
to be explained below. Arbitrary units.

with the future light-cone condition (1) to f1, f2 and f3, and the
backwards light-cone rays starting from L−2 and moving with the past
light-cone condition (1) to b1, b2 and b3, henceforth called the forward
and backward principal sewing chains, respectively.

The action functional is a sum of four integrals: two local
integrals each involving one trajectory,

∫
Ti(xi, ẋi)dti; and two

interaction integrals depending on both positions and velocities, where
one position/velocity is evaluated at a deviating time argument,∫

V ±
ij (xi, ẋi,xj±, ẋj±)dti. The action functional can be expressed in
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two equivalent forms, i.e.,

S ≡
∫ tL2

t
O+

1

T2dt2 +
∫ t

L−2

tO1

T1dt1 +
∫ t

L+
2

tO1

V −
12dt1

︸ ︷︷ ︸
+

∫ t
L−2

tO1

V +
12dt1

︸ ︷︷ ︸
, (2)

‖ ‖

=
∫ t

L−2

tO1

T1dt1 +
∫ tL2

t
O+

1

T2dt2 +

︷ ︸︸ ︷∫ tL2

t
O−1

V +
21dt2 +

︷ ︸︸ ︷∫ tL2

t
O+

1

V −
21dt2, (3)

where vertical braces under each interaction integral indicate
equivalence by a change of the integration variable. The Jacobian for
each change of variable from ti to tj±(ti) is equal to the derivative of
the delayed time tj±(ti,xj(ti)) evaluated along the orbit, as obtained
taking a derivative of the implicit condition (1) with x ≡ xi(ti),

dtj±
dti

=
(1± nj± · vi)

(1± nj± · vj±)
, (4)

and explained in Refs. [3, 14]. One can thus express the interaction
terms by either integrals over t1 (Eq. (2)) or by integrals over t2
(Eq. (3)). In principle, an arbitrary variational structure could
be defined using generic V ′s on line (2), which would in turn
determine the V ′s on line (3) by changing variables with (4) or the
equivalent Jacobian if the constraints were other than the light-cone
conditions (1).

Here we consider only the variational structure defined by
constraints (1) and functionals (2) and (3) with

Ti ≡ mi

(
1−

√
1− v2

i

)
, (5)

V ±
ij (xi, ẋi,xj±, ẋj±) ≡ − eiej(1− vi · vj±)

2rj±(1± nj± · vj±)
, (6)

where j ≡ 3 − i and i = 1, 2; henceforth variational electrodynamics.
For the hydrogenoid problem we henceforth replace eiej ≡ −1 and
carry an arbitrary protonic mass, for which case V ±

12 ≥ 0 and V ±
21 ≥ 0,

thus defining a semi-bounded action functional (2) (S ≥ 0).
The variational problem is to find the trajectory segments

(O1, L
−
2 ) (blue) and (O+

1 , L2) (green) between the endpoints of Fig. 1.
For the linear variation, trajectory 2 is to be kept fixed while
trajectory 1 is varied, and line (2) with the first term kept constant
defines partial Lagrangian 1. Vice-versa, trajectory 1 is to be kept
fixed while trajectory 2 is varied, and line (3) with the first term frozen
defines partial Lagrangian 2.
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Next we discuss acceptable trajectories for the variational
problem. The classical calculus of variations requires at least a
neighbourhood in a normed space of piecewise-smooth continuous
trajectories [5]. Specific difficulties are (i) along acceptable trajectories
satisfying the boundaries of Fig. 1, functionals (2) and (3) require
existence of unique advanced/retarded arguments t2±(t1), ∀ t1 ∈
[tO1 , tL+

2
] and t1±(t2), ∀ t2 ∈ [tO−1 , tL2 ]; and (ii) functional-analytic

results require a whole domain in which functionals (2) and (3) are
well defined, e.g., a normed linear space.

To satisfy (i) a neighbourhood of C1 smooth sub-luminal
trajectories suffices, as guaranteed by Lemma 1 of Ref. [14]. We
remark that Lemma 1 of [14] can be extended to continuous trajectories
that are sub-luminal almost everywhere, a measure-theoretic extension
not pursued here. As regards (ii) we notice that the integrands of
functionals (2) and (3) include denominators that should be non-zero
outside sets of zero measure, as discussed in Ref. [15] for the Kepler
problem.

To study critical points using the modern topological theo-
rems [16, 17] would require a reflexive space (Banach or Hilbert),
where (2) and (3) are finitely integrable [15] and Frechét differen-
tiable [17]. Such ambitious goal is beyond the present work. Hence-
forth we study functional minimization restricted to neighbourhoods
of non-collisional sub-luminal trajectories, along which the denomina-
tors of (2) and (3) are everywhere finite. The topology used is that of
the normed space of continuous and piecewise C2 functions, henceforth
Ĉ2.

For C2 smooth extrema, the critical point conditions are the
Euler-Lagrange equations of the integrands of Eqs. (2) and (3) with
the respective first term dropped, henceforth the partial Lagrangians
defined by

Li ≡ Ti − vi ·Aj + Uj , (7)

where

Aj ≡ vj−
2rj−(1− nj− · vj−)

+
vj+

2rj+(1 + nj+ · vj+)
,

Uj ≡ 1
2rj−(1− nj− · vj−)

+
1

2rj+(1 + nj+ · vj+)
,

for j ≡ 3 − i and i = 1, 2. In Eq. (7), Aj is the vector potential of
particle j.

The Euler-Lagrange equation of the above defined Li yields the
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Lorentz-force law (the equation of motion of Wheeler and Feynman)

mi
d

dt


 vi√

1− v2
i


 = ei(Ej(t,xi) + vi ×Bj(t,xi)), (8)

for i = 1, 2 [1, 2]. In Eq. (8), the Liénard-Wiechert fields of the other
charge (j ≡ 3− i) are

Ej(t,x) ≡ 1
2
(Ej+ + Ej−), (9)

Bj(t,x) ≡ 1
2
(Bj+ + Bj−), (10)

with

Ej±(t,x) ≡ ej

{
uj±

γ2
j±r2

j±
+

nj± × (uj± × aj±)
rj±

}
, (11)

uj±(t,x) ≡ (nj± ± vj±)
(1± nj± · vj±)3

, (12)

Bj±(t,x) ≡ ∓nj± ×Ej±, (13)

where γj± ≡ (1 − v2
j±)−1/2, and vj± ≡ dxj/dt|t=tj± and aj± ≡

d2xj/dt2|t=tj± are the velocity and acceleration of charge j evaluated at
the advanced/retarded times tj± defined by Eq. (1). Last, in Eq. (11)
the distance in light-cone is a scalar function of (t,x) defined by

rj± ≡ ‖x− xj(tj±)‖, (14)

and

nj± ≡ (x− xj(tj±))/rj±, (15)

is a unit vector from position xj(tj±) to point x [1, 2, 6]. Eq. (8) is
a neutral differential delay equation (NDDE) with state-dependent
deviating arguments [1, 2, 4].

In the following we study the wider class of piecewise smooth
continuous extrema having a finite number of corner points, henceforth
broken extrema [5]. Piecewise smooth extrema have the following
nice properties: (i) inside intervals where trajectory and deviating
arguments are C2 smooth, broken extrema satisfy the Euler-Lagrange
Eq. (8); and (ii) at corner points extremal trajectories satisfy the
Weierstrass-Erdmann conditions explained below [5].
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The first Weierstrass-Erdmann condition [5] is the continuity of
the momentum of partial Lagrangian i (as defined by Eq. (7)), i.e.,

∂Li

∂vi
=

mivi√
1− v2

i

− vj−
2rj−(1− nj− · vj−)

− vj+

2rj+(1 + nj+ · vj+)
, (16)

=
mivi√
1− v2

i

−Aj . (17)

Notice that Eq. (16) includes the past/future velocities of charge
j ≡ 3− i. Should the extremal trajectory of particle i have a velocity
discontinuity at time ti, the trajectory of particle j must compensate
with a corner point in light-cone at either tj− or tj+, in order to make
the right-hand-side of (16) continuous.

Here we use the name partial energy to distinguish from the
constant value of the Hamiltonian along a Hamiltonian dynamics.
After the no-interaction theorem [18, 19] we know that a finite-
dimensional Hamiltonian does not exist for the electromagnetic two-
body problem, even though partial energies are introduced below by
an energy-looking formula.

The partial energy of partial Lagrangian (7) is defined by

Ei ≡ vi · ∂Li

∂vi
−Li =

mi√
1− v2

i

− Uj . (18)

The second Weierstrass-Erdmann condition [5] is that the partial
energy (18) is continuous across each corner point. In Eq. (18) index
j is defined by the usual j ≡ 3 − i, e.g., for i = 2 we have j = 1. We
stress that the Ei in Eq. (18) are not constants of the motion. The
partial energy is a property of each particular corner (perhaps different
for different corners). Each Ei is conserved only across a particular
corner in the sense of having the same value to the left and to the right
of that corner.

To express the vanishing of the momentum jump (17) across a
corner point we introduce an upper index l or r to indicate respectively
left-velocity or right-velocity at the breaking point. Using Eq. (18) to
eliminate the mechanical momentum from Eq. (16), we obtain the
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combined necessary condition for a corner point,

∆
(

∂Li

∂vi

)
= Ei∆vi +


∆vi −

(
nj− · vl

j−
)
vr

i +
(
nj− · vr

j−
)
vl

i

2rj−
(
1− nj− · vl

j−
)(

1− nj− · vr
j−

)



+


∆vi +

(
nj+ · vl

j+

)
vr

i −
(
nj+ · vr

j+

)
vl

i

2rj+

(
1 + nj+ · vl

j+

)(
1 + nj+ · vr

j+

)



−

 ∆vj− − nj− ×

(
vr

j− × vl
j−

)

2rj−
(
1− nj− · vl

j−
)(

1− nj− · vr
j−

)



−

 ∆vj+ + nj+ ×

(
vr

j+ × vl
j+

)

2rj+

(
1 + nj+ · vl

j+

)(
1 + nj+ · vr

j+

)

 ≡ 0, (19)

where ∆vi ≡ vr
i − vl

i, ∆vj± ≡ vr
j± − vl

j± and j ≡ 3 − i. Eq. (19) is
a nonlinear condition for the jumping velocities, a necessary condition
involving the Ei to be adjusted such that (18) is continuous at that
corner. In Section 3, Eq. (19) is linearized for small jumps by replacing
vr

i → vl
i+∆vi and vr

j± → vl
j±+∆vj± and expanding up to linear order

on the ∆vi , in which case the partial energies appear as eigenvalues
of the linearized problem (19). In Section 7, the fully nonlinear
condition (19) is used.

3. WELL-POSEDNESS

As mentioned in [3, 14] and illustrated in Fig. 2, the shortest-length
boundary-value problem is when L−2 is in the forward light-cone of
O+

1 . Otherwise, the supposedly independent past and future histories
interact in light-cone, an absurdity.

In the following we give a pedestrian existence proof that the
boundary-value problem is well-posed for C2 boundary segments of
the above defined shortest length. We further assume boundary
segments sufficiently close to segments of circular orbits of small-delay-
angles [20], and define continuity with the Ĉ2 topology of continuous
and piecewise C2 functions.

It is instructive to translate the schematics of Fig. 1 and Fig. 2 in
terms of the magnitudes of circular orbits with small delay angles,
whose light-cone-distance is rb ≡ 1/µθ2, (Eq. (33)), and velocity
|v| ' θ ¿ 1, (Eq. (35)). The time span of each circular trajectory
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Figure 2. Schematic illustration of the point-plus-elsewhere-
boundary-segments in R4 for the boundary value problem of shortest
length, i.e., (a) initial point O1 ≡ (tO1 ,x1(tO1)) of trajectory 1 and
the respective elsewhere boundary segment of x2(t2) for t2 ∈ [tO−1 , tO+

1
]

(solid red line); and (b) endpoint L2 ≡ (tL2 ,x2(tL2)) of trajectory 2 and
the respective elsewhere boundary segment x1(t1) for t1 ∈ [tL−2 , tL+

2
]

(solid red line). Trajectories x1(t1) for t1 ∈ [tO1 , tL−2
] (solid blue line)

and x2(t2) for t2 ∈ [tO+
1
, tL2 ] (solid green line) are determined by the

extremum condition. Sewing chain (a−2 , a1, a2, a+
1 ) from a1 along

trajectory 1 and moves (forward and backwards) until the boundary
segments (solid violet line).

of Fig. 2 is ∆tj ≡ tL−2
− tO1 = tO+

1
− tL2 = 2rb, for j = 1, 2 (blue

and green segments). The shortest time of flight is two light-cone
distances rb, and for small θ these are almost straight-line constant-
velocity trajectories (Fig. 4 with small θ).

The two-point-boundary-value problem with ∆tj = 2rb is related
to the initial value problem by a linear one-to-one map, i.e., x(∆t) =
x(0) +

∫ ∆t
0 v(t′)dt ' x(0) + 2rbv(0) [12]. Below we are dealing with

small perturbations of the former map, in which case the implicit
function theorem allows one to control the end-point by adjusting the
initial velocity.

Theorem I: (i) For C2 boundaries of shortest-length (Fig. 2),
the unique solution depends continuously on boundary data that
are sufficiently close to segments of a small-delay-angle circular orbit
(again, continuity in the Ĉ2 topology). (ii) Generically, the velocities
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are discontinuous at O+
1 and L−2 .

Proof : (i) As illustrated in Fig. 2, for the shortest-length case the
past light-cone of a1 falls on the past history segment, i.e., point a−2
of Fig. 2. Likewise, the future light-cone of a2 is on the future history
segment (illustrated by a+

1 in Fig. 2). Next we write the equations for
accelerations a1 and a2, which interact in light-cone. The equations of
motion (38) can be written as

m1a1√
1− v2

1

= Aa2 + F−2 (x1,x2+,v1,v2+), (20)

m2a2√
1− v2

2+

= Ba1 + F+
1 (x2+,x1v2+,v1), (21)

where we have singled out the linear dependence on the other particle’s
running acceleration across the light-cone. In Eq. (20), vector F−2
depends continuously on the past-history segment’s position, velocity
and acceleration. Analogously, in Eq. (21), F+

1 depends continuously
on the future history segment’s position, velocity and acceleration
(again, continuity with the Ĉ2 topology).

Eliminating a2 from the right-hand-side of Eq. (20) with Eq. (21),
and eliminating a1 from the right-hand-side of Eq. (21) with Eq. (20),
yields (

m1I3 − 1
m2
ÃB̃

)
a1 = F̃1 (x1,x2+,v1,v2+) , (22)

(
m2I3 − 1

m1
B̃Ã

)
a2 = F̃2(x1,x2+,v1,v2+), (23)

where Ã ≡
√

1− v2
1A, B̃ ≡

√
1− v2

2+B, and I3 is the 3 × 3 identity
matrix.

In Eqs. (22) and (23), vectors F̃1 and F̃2 depend continuously on
both history segments positions, velocities and accelerations. Near
small-delay-angle circular orbits the separation in light-cone r12 ≡
|x1 − x2+| ' rb is large and Ã and B̃ are O( 1

r12
), such that for

r2
12 À 1

m1m2
the matrices on the left-hand-sides of (22) and (23) are

non-singular quasi-diagonal matrices that can be inverted, yielding a
Lipshitz-continuous non-autonomous ODE for the accelerations.

The dominant linear dependence on accelerations is obtained from
the far-field component of (11) in the approximation of Eq. (41), which
yields Ã = B̃ = (1/r12)Q̃ with Q̃ an O(1) symmetric 3 × 3 matrix
depending only on the normal along the light-cone.

Last, points x2+ and x1 should evolve in the light-cone condition,
and given that a2 ≡ dv2+/dt2+ and a1 ≡ dv1/dt1, a further
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transformation using dt2+/dt1 as given by (4) is necessary to make
both evolution parameters of (22) and (23) equal (a near-identity
transformation). Eqs. (22) and (23) must then be used with a two-
point boundary problem by choosing initial velocities such that orbits
starting from O1 and O+

1 hit L−2 and L2.
(ii) The two-point boundary problem uses up all the adjustable

initial-positions and initial-velocities for ODE (22) and (23), and there
is no freedom left to adjust that the end velocities are continuous
with history velocities at O+

1 and L−2 . The case of perfectly
circular segments is exceptional due to the existence of the circular
solutions [20]. From circular boundary data, the above integration
simply continues the C∞ circular solution. Otherwise, from generic
near-circular boundary data, the integration defines a near-circular
orbit with velocity discontinuities at O+

1 and L−2 .
As a bonus, the above construction shows that solutions with

discontinuous velocities are expected. For purely C2 segments there
are no Weierstrass-Erdmann conditions for shortest-length boundaries.
Still for the shortest-length case, the above result can be generalized
for boundary segments that are continuous and piecewise C2. For
those, the ODE integration has to be stopped at every breaking point
to satisfy the Weierstrass-Erdmann conditions (19) that can be written
as

m1∆v1√
1− v2

1

=
G1∆v2+

r12(1− (n · v2+)2)
+ U2−∆v2−, (24)

m2∆v2+√
1− v2

2+

=
G2∆v1

r12(1− (n · v1)2)
+ U1+∆v1+, (25)

as obtained substituting vr
j± = vl

j±+∆vj± into Eq. (19). In Eqs. (24)
and (25), G1 and G2 are O(1) 3 × 3 matrices and we have explicitly
introduced the extra factors in the denominators, which should be
near-one for low-velocity orbits. Still in Eqs. (24) and (25), matrices
U2− and U1+ are bounded and depend continuously on the boundary
segments positions, velocities and accelerations. Eqs. (24) and (25)
can be solved for the velocity discontinuities along the unknown orbital
segments, ∆v1 and ∆v2+, yielding

(m1m2I3 − λG1G2)∆v1 = K̃11∆v2− + K̃12∆v1+, (26)

(m1m2I3 − λG2G1)∆v2+ = K̃21∆v2− + K̃22∆v1+, (27)

with

λ ≡
√

1− v2
1

√
1− v2

2+

r2
12 (1− (n · v1)2) (1− (n · v2+)2)

. (28)
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Theorem II: For continuous and piecewise C2 boundary
segments of shortest type, having a finite number of velocity
discontinuities and sufficiently close to circular segments of λ ¿ m1m2

(λ defined in Eq. (28)), the boundary value problem is well-posed in
the Ĉ2 topology.

Proof: Every time the ODE integration of Theorem I is halted
because of a velocity discontinuity in a history segment, the ∆v1+ and
∆v2− on the right-hand-side of Eqs. (26) and (27) are small because
boundary segments are sufficiently close to circular segments. Given
that λ ¿ m1m2, the matrices on the left-hand-sides of Eqs. (26)
and (27) can be inverted, yielding small values for ∆v1 and ∆v2+.
Eventually, the two-point-boundary-value problem yields an orbit still
close to the circular segment.

The above constructed continuous trajectories have as many veloc-
ity discontinuities as the combined past/future history segments have.
Theorem II generalizes to boundary segments near constant-velocity-
straight-line-segments at large separations and small velocities. For
both circular and straight-line boundary segments, matrices K̂ij on the
right-hand-side of Eqs. (26) and (27) fall as 1/r12 (not indicated), such
that universal perturbations of distant charges decay with distance, as
mentioned at the end of Section 4.

Notice that the quantity λ defined in Eq. (28) appeared earlier in
Eq. (67) of Section 7 in a completely different limit. For the periodic
orbit of Section 7, the matrices on the left-hand-side of Eqs. (26)
and (27) would be near-singular because the stepping-stone condition
is λ ≈ m1m2, but then the velocity jumps on the right-hand-sides
of (26) and (27) are not arbitrary because in Section 7 we are dealing
with a periodic orbit.

The problem of boundary segments with longer time-spans
requires inversion of larger matrices. Figure 1 illustrates a longer
boundary-value problem (∆tj ' 3rb). Notice in Fig. 1 that sewing
chains starting from points either on segment (O1,b2) or on segment
(f1,L−2 ) have two vertices along trajectory 1, while sewing chains
starting from points on the central segment (b2, f1) have just one
vertex along trajectory 1. The situation of trajectory 2 is analogous.
The Wheeler-Feynman advance/delay equations for accelerations
a11,a12,a21,a22 illustrated in Fig. 1, are obtained analogously to the
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case of Theorem I, yielding




m1I3 0 Ga
rb

0
0 m1I3 Gb

rb

Gc
rbGa

rb

Gb
rb

m2I3 0
0 Gc

rb
0 m2I3







a11

a12

a21

a22




= F(t1,X,V, boundary segments), (29)
where X and V indicate positions and velocities of the four running
vertices of the sewing chain illustrated by solid violet lines in Fig. 1.

Theorem III: For near-circular C2 boundary segments with
2rb < ∆tj < 4rb, the unique solution depends continuously on
the boundary data (with the Ĉ2 topology) and has two velocity
discontinuities inside each trajectory of the solution segment, points
(b1, f2) (green) and (b2, f1) (blue) of Fig. 1.

Proof: In Eq. (29), Ga,Gb and Gc are O(1) symmetric 3 × 3
matrices, just like in Theorem I. Explained as an initial-value problem
illustrated by violet arrows in Fig. 1, after the non-singular near-
diagonal 12 × 12 symmetric matrix on the left-hand-side of Eq. (29)
is inverted (for small λ), integration of ODE (29) should start from
x11(0) = xO1 , x21(0) = xO+

1
, x12(0) = xf1 , x22(0) = xf2 .

The initial near-circular velocities and the initial positions (f1, f2)
are not known unless for circular boundary segments. Otherwise, for
near-circular segments these must be chosen such that at the end-point
(x12,x22) = (L−2 ,L2) and the running light-cone-ray (x11,x21) is ray
(b2,b1) of the backwards sewing chain of L−2 .

The remaining central segments (b1, f2) (green) and (b2, f1) (blue)
of Fig. 1 are done in the manner of Theorem I, generating velocity
discontinuities at f1, f2, b1 and b2, which must satisfy Weierstrass-
Erdmann conditions, one over each orbital corner of each principal
sewing chain. Counting the end-point velocity discontinuities at O+

1

and L−2 , the generic case has six velocity discontinuities even for C2

boundaries.
The above theorems suggest that the variational problem makes

sense at least in the neighbourhood of circular orbits [20]. Notice
that Eq. (29) is a non-autonomous ODE because the advanced and
retarded arguments depend explicitly on the running time t1 via the
light-cone condition (1). The well-posedness of the general boundary-
value problem is an open problem.

Last, the former theorems predicted a critical distance r2
12 ' 1

m1m2

below which the matrices can no longer be inverted and the equations
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of motion are differential-algebraic [12]. It is interesting to notice that
the critical magnitude is of the order of the nuclear magnitude.

4. GENERALIZED WHEELER-FEYNMAN
ELECTRODYNAMICS

Notice that Aj is defined by Eq. (17) only on points of the finite
segment of trajectory i illustrated in Fig. 1. To extend Aj to a field
Aj(t,x) we need tj− < t < tj+ for some tj− and tj+ belonging to
the finite segment of trajectory j illustrated in Fig. 1. For example,
for j = 2 the light-cone distances defined by Eq. (14) evaluate to
r2−(t,x) = t − t2− and r2+(t,x) = t2+ − t, which implies that
r2− + r2+ = t2+ − t2− < tL2 − tO−1

(see Fig. 1). An analogous
consideration shows that one can extend A1 to a field only when x
is within a finite distance of the segment of trajectory 1 illustrated in
Fig. 1. The region of common extension is the intersection B of the
former two bounded regions of space-time.

Inside B, the electromagnetic fields of both particles are naturally
extended with the Liénard-Wiechert formulas (11) and (13), just like
in Wheeler-Feynman electrodynamics [1, 2]. Notice that the extended
fields are undefined for points in the light-cone relation with corner
points because then the past/future velocities and accelerations of the
other charge are not defined.

The above considerations suggest a generalized Wheeler-Feynman
electrodynamics restricted to the bounded region of space-time B [1, 2],
using the finite segments of trajectories provided by the critical points
of the variational principle of Section 2 [3, 4]. In the same way as in
Wheeler-Feynman electrodynamics [1, 2], formulas (11) and (13), which
are borrowed from the equations of motion (8) along trajectories, are
used to extend the fields inside B, modulo some sets of zero volume in
light-cone with the breaking points.

If a trajectory has a discontinuity at point PD ≡ (tD, D), its
extended fields at time t are undefined on the critical sphere SD of
radius rD ≡ |t − tD| (the set of points either in the past or in the
future light-cone of PD). The experimentally verified integral laws of
classical electrodynamics are recovered in the following way. Gauss’s
law involving the surface integral of the electric field at time t holds
if/when (i) the Gaussian surface G is inside B and (ii) the critical
spheres emanating from each discontinuity point inside G intersect G
on sets of zero measure. Any surface Saccept. ∈ B intersecting SD along
a set of zero measure is acceptable, e.g., the surface of a cube.

The proof of Gauss’s law is exactly that of Wheeler and
Feynman [1, 2] using the following functional-theoretic density
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argument [16]. A piecewise C2 continuous trajectory T∞ with a finite
number of velocity discontinuities can be recovered as the limit of a
sequence Tn of C2 trajectories, whose extended fields satisfy Gauss’s
integral law for Saccept. ∈ B. The surface integral survives the limit
if the former conditions (i) and (ii) hold. As in Wheeler-Feynman
electrodynamics [1, 2], the surface integral of the electric field over
Saccept. is equal to the charge inside Saccept., while the surface integral of
the magnetic field over Saccept. vanishes (as usual in electrodynamics).

Last, for the special case when variational trajectories plus
boundary segments form C2 segments, also the differential form of
Maxwell’s equations holds inside B, as proved in the manner of [1, 2].

Extension of electromagnetic fields to almost everywhere in R×R3

(time×space) requires extremal trajectories defined in t ∈ [−∞,∞],
henceforth globally defined. As long as trajectories have a finite number
of corners per finite segment, formulas (11) and (13) define extended
fields almost everywhere but for a finite number of surfaces in B, which
are sets of zero measure (volume).

The same generalizations carry over for Ampere’s integral law and
Faraday’s induction law in integral form [6], as obtained by restricting
the proofs of Wheeler and Feynman [1, 2] to curves and surfaces of B
having finitely measured intersections with the relevant critical spheres
SD. Results following from laws in differential form do not carry over
from Maxwell’s electrodynamics to variational electrodynamics. For
example, Poynting’s theorem is valid only in regions where extended
fields are C2 [4].

Extended fields of trajectories with an infinite number of corners
per finite segment would require a Lebesgue integral to define the
action, and are not studied here. Generalizations of the integral laws
of classical electrodynamics using Sobolev’s trace theorems [16], and a
variational principle using Lebesgue-integrable action functionals, are
open problems.

An invariant manifold M of the variational two-body problem is a
pair of continuous and piecewise smooth trajectories such that for any
pair of boundary segments in M, the extremum of the corresponding
boundary-value problem is a segment of M, as illustrated in Fig. 3.
Unlike the case of an ODE, trajectories of M can have corners and one
can not continue trajectories with a time integration (neither forward
nor backwards). The infinite-dimensional problem at hand is to find a
whole function, just like solving a partial differential equation (PDE)
with boundary conditions.

For a many-body system, physically interesting are globally
bounded invariant manifolds. Given that all trajectories are spatially
bounded, one can show that all advanced and retarded normals
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Figure 3. Illustration of a continuous and piecewise smooth invariant
manifold, along with two different sets of boundary segments (blue
triangles and red triangles).

coincide at a far distance, i.e., nj+ → n and nj− → n, ∀j [4]. The
extended far-electric field thus becomes

E(t,x) =
1
2

∑

j

(Ej+(t,x) + Ej−(t,x)), (30)

while Eq. (13) with nj+ = nj− ≡ n yields the extended far-magnetic
field (i.e., for |x| → ∞)

B(t,x) =
1
2
n×

∑

j

(Ej−(t,x)−Ej+(t,x)). (31)

The many-body system (e.g., a multi-electron atom) is isolated
from its far surroundings when an extra distant charge can travel
undisturbed at a far distance with an arbitrary velocity vi. The
necessary isolating condition is that the electric and magnetic extended
far fields on the right-hand-side of force law (8) should vanish almost
everywhere at a far-distance, i.e., the semi-sum (30) and semi-
difference (31) should vanish asymptotically. The vector product
with n in Eq. (31) amounts to no extra freedom because far-fields
are transversal. The former isolating condition is essentially Wheeler
and Feynman’s absorber condition [1, 2] generalized to continuous and
piecewise smooth globally bounded extrema.

Last, about the n-charge problem: The corresponding action
functional (2) has n terms of type Ti and n(n−1) interactions between
pairs, V ±

ij . Just like in Wheeler-Feynman electrodynamics [1, 2],
charges contribute linearly to the extended fields with a term that falls
at the most with (1/r). The contribution to the Weierstrass-Erdmann
condition (19) also falls at the most with (1/r), wherever defined in
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space-time. It is therefore a good approximation to disregard universal
perturbations of distant charges.

5. CIRCULAR ORBITS

The electromagnetic two-body problem has globally defined circular
orbit solutions [20]. The stability of circular orbits is studied in [21–
23] and the quantization of circular orbits is discussed in [24, 25].
Circular orbits with large radii are discussed below using the notation
of Ref. [23].

The constant angular velocity and distance in light-cone are
denoted by Ω and rb, respectively, and the angle θ ≡ Ωrb that particles
turn in the light-cone time is henceforth called the delay angle. The
family of subluminal circular orbits [20] is parametrized by θ, and for
quantum Bohr orbits it turns out that θ . 10−2 [26, 27]. Along orbits of
a small delay angle the Kepler formulas yield the leading order angular
velocity and distance in light-cone, respectively

Ω = µθ3 + O(θ5), (32)

rb =
θ

Ω
=

1
µθ2

, (33)

where reduced mass and total mass are defined by µ ≡ m1m2/M and
M ≡ m1 + m2. It is important to keep these limiting dependencies
in mind, and for hydrogen µ ' (1836/1837) ' 1. Adopting the same
notation of Ref. [23], we express each particle’s circular orbit’s radius
by numbers 0 ≤ bi < 1 as

ri ≡ birb, (34)

which define scalar velocities

vi = Ωri = θbi, (35)

for i = 1, 2.
The speed of light limit c ≡ 1 imposes that max(θb1, θb2) ≤ 1.

In the limit of a small mass-ratio, (µ/M) → 0, one has θ ∈ (0, 1],
the upper limit θ = 1 corresponding to the particle of smaller mass
(m1) traveling at the speed of light. As illustrated in Fig. 4 and
in Ref. [20], the circular radii and the distance in light-cone form a
triangle of largest side rb, yielding a trigonometric constraint

b2
1 + b2

2 + 2b1b2 cos(θ) = 1, (36)

equivalent to Eq. (31) of Ref. [20]. Using the ratio of Eqs. (32) and (33)
of Ref. [20] to eliminate Ω, together with constraint (36), we find the
solution b1 = (1 + µθ2

2M )m2
M + O(θ4) and b2 = (1 + µθ2

2M )m1
M + O(θ4).
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Figure 4. Schild circular orbit with particles in diametrical opposition
at the same time of the inertial frame (x-axis, dotted straight line is
t = 0). Indicated are the advanced/retarded positions of particle 1
along the outer circle, and the (equal) angle(s) θ travelled during the
past/future light-cone time intervals. Light-cone distance rb in the
past light-cone of particle 2 is the red line making an angle ψ2 with
the horizontal line. Arbitrary units.

Last, the angular momentum in units of electronic charge squared
over speed of light (e2/c),

lz =
1 + b1b2θ

2 cos(θ)
θ + b1b2θ2 sin(θ)

' 1
θ
, (37)

is an important quantity of the circular orbit to keep in
mind [20, 22, 24]. Atomic orbits have lz of the order of one over the
fine-structure constant, ~c/e2 = 137.036, a fundamental magnitude of
atomic physics. Delay angles and angular momenta of Bohr orbits are
respectively θ ' (e2/~c)/q and lz ' (~c/e2)q, for each nonzero integer
q [26, 28].

6. LINEARIZATION ABOUT CIRCULAR ORBITS

In order to linearize the equations of motion about circular orbits, we
re-write the Lorentz-force Eq. (8) as

miai√
1− v2

i

= ei[Ej − (vi ·Ej)vi + vi ×Bj ], (38)

by evaluating the derivative on the left-hand side of Eq. (8) and
subtracting the scalar product with vi, where again i = 1, 2 and
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j ≡ 3− i. The magnetic term (last term on the right-hand side of (38))
is a transversal force proportional to the electric field by (13), and
further proportional to the velocity modulus |vi|, which is small for
small θ (see Eq. (35)).

For small delay angles, the electric force, first term on the right-
hand-side of Eq. (38), is responsible for the significant contributions to
the linearized equations along a circular orbit. The electric field (11)
of charge j ≡ 3 − i acting on charge i decomposes in two terms: (i)
the near-electric field proportional to 1/r2

j±, a magnitude of µ2θ4 by
use of (33), times a unit vector (almost) along the particle separation
at the same time, n(t); and (ii) the far-electric field proportional to
1/rj±, a magnitude of µθ2 by use of (33), times a vector along the
circular orbit.

It is important to ponder upon the magnitude of each electric
contribution: the far-electric field is almost transversal to the particle
separation at the same time, n(t), such that projection along n(t)
involves the (small) factor of cos(−θ + π/2) ' θ. Separating the
contributions of near-fields and far-fields, the right-hand-side of (38)
has the combined magnitude

Fi ∝ O(θ4) + |aj |O(θ3). (39)

In Eq. (39), the near-field contribution is O(θ4) while the far-field
contribution is |aj |O(θ3), which is smaller along circular orbits since
|aj | ∝ 1/r2

b = O(θ4). The force along circular orbits is approximately
described by the near field only because the far-field (11) is further
proportional to the O(θ4) acceleration of circular orbits. Upon
linearization about the circular orbit, this dominance changes: the
linearized equations accept solutions of arbitrarily large accelerations,
and the most important contribution to the linearized version of
Eq. (38) is precisely the contribution of the far-field term.

Next we derive the linearized equations along the orbital plane
using the notation of Ref. [23]. We introduce complex gyroscopic
coordinates where the circular orbit is a fixed point of the equations of
motion, i.e.,

xj + iyj ≡ rb exp(−iΩt)[bj + lj + iuj ], (40)

where (lj , uj) are respectively the longitudinal and transversal
gyroscopic coordinates. The circular orbit [20] is the fixed point
(lj , uj) = (0, 0) for j = 1, 2. Again, while small-delay-angle circular
orbits have O(θ4) accelerations, the linearized acceleration corrections,
δaj , can be arbitrarily large [23]. The dominant linear correction
for the accelerations (the stiff limit of Ref. [23]) is obtained using
(38) with only the first term on the right-hand side and far-field Ej±
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approximated by

Ej± ' 1
rb

nj± × (nj± × δaj±) =
1
rb

(nj± · δaj±)nj± − 1
rb

δaj±, (41)

where ± indicate evaluation at the unperturbed deviating times
t ± (θ/Ω) (because we want the linear term only). The gyroscopic
representation of the rotating normals in light-cone are complex
numbers of unit modulus, i.e., exp(−iΩt) exp(iψj), where

exp(iψ1) ≡ b1 + b2 exp (iθ),
exp(iψ2) ≡ b2 + b1 exp (iθ). (42)

Equation (36) can be used to show that the modulus of each complex
number on the right-hand-side of (42) is unitary. Angles ψ1 and ψ2

further satisfy ψ1 +ψ2 = θ, and for small θ the bi given below Eq. (36)
yield ψ1 ' m1

M θ and ψ2 ' m2
M θ. In Fig. 4, ψ2 is the angle between the

(rotating) red line and the x-axis (dashed line).
The linearized planar equations of motion are obtained substitut-

ing (40) into (38) with only its first right-hand-side term given by the
semi-sum of retarded and advanced fields (41). The real and complex
parts of the linearized equations of motion keeping only the largest
derivatives of the gyroscopic coordinates yields

m1rb l̈1 = −C11

(
l̈2+ + l̈2−

)

2
− S11

(ü2+ − ü2−)
2

,

m2rb l̈2 = −C21

(
l̈1+ + l̈1−

)

2
− S21

(ü1+ − ü1−)
2

,

m1rbü1 = −C31
(ü2+ + ü2−)

2
− S31

(
l̈2+ − l̈2−

)

2
,

m2rbü2 = −C41
(ü1+ + ü1−)

2
− S41

(
l̈1+ − l̈1−

)

2
,

(43)

where Cj1 and Sj1 are 4× 1 matrices defined by

C ≡ −




cos θ − cosψ2 cos θ
cos θ − cosψ1 cos θ
cos θ + sinψ2 sin θ
cos θ + sinψ1 sin θ


 ≡ (coshλ)−1D, (44)

and

S ≡ −




sin θ − sinψ2 cos θ
sin θ − sinψ1 cos θ
(1− cosψ2) sin θ
(1− cosψ1) sin θ


 ≡ (sinhλ)−1E. (45)
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In Eqs. (44) and (45), 4× 1 matrices D and E are defined to be used
below.

Equation (43) is a linear NDDE with exponential solutions

lj = Lj exp(λΩt/θ),
uj = Uj exp(λΩt/θ), (46)

where j = 1, 2 and (L1, L2, U1, U2) is a non-trivial solution of



m1rb D11 0 E11

D12 m2rb E12 0
0 E13 m1rb D13

E14 0 D14 m2rb







L1

L2

U1

U2


 = 0. (47)

A nontrivial solution of Eq. (47) requires the vanishing of its 4×4
determinant,

Fxy = 1− µθ4

M
cosh2(λ) = 0, (48)

where powers of θ2 coshλ with coefficients of O(θ4) were discarded,
henceforth and in Ref. [23] called the stiff-limit. The roots of Eq. (48)
exist in symplectic sets of four, i.e., (λ,−λ, λ∗,−λ∗). For atomic
hydrogen, θ−1 ∼ 137.036 and (µ/M) ' (1/1836), such that Eq. (48)
requires λ to have a positive real part |<(λ)| ≡ σ = ln(

√
4M
µθ4 ) ' 14.29.

The imaginary part of λ is any integer multiple of πi. The general
solution of Eq. (48) modulo the symplectic symmetry is

λ = σ + πqi, (49)

where i ≡ √−1 and q ∈ Z.
Solution (49) was called a ping-pong mode in Ref. [23] because

its phase advances by πq in one light-cone time rb, a phase speed of
πqΩ/θ = µθ2πq = πq/rb = (Ω/θ)=(λ). The only O(1) off-diagonal
terms of matrix (47) are D13 and D14, others being O(θ) or higher
order. The nontrivial eigenvector solution is approximately

(L1, L2, U1, U2) ∝
(

µθ

M
,
µθ

M
, 1,

√
µ

M

)
. (50)

For m2 À m1, normal-mode solution (46) oscillates (almost) along
the circular orbit because Eq. (50) yields Ui À Li, thus defining a
quasi-transversal mode. The largest longitudinal component, Li, is
attained for positronium at moderate θ. Solution (49) defines a nonzero
real part for λ that causes amplitudes to blow up at either t → ±∞,
implying that besides the Schild circular orbits [20], no other near-
circular orbit can be simultaneously C2 and globally bounded.
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The inclusion of O(1/λ) and O(1/λ2) linear terms to the planar
motion is outlined in Ref. [23]. The linearized motion perpendicular
to the orbital plane is studied analogously. As explained in [23], the
z-oscillations are transversal modes that decouple from the planar
transversal oscillations (43) at linear order. The determinant of the
linearized 2×2 system in the limit |λ| → ∞ is again (48), an asymptotic
degeneracy. The degeneracy is raised by O(1/λ2) corrections to (47)
and (48) introduced by the linear terms with lower derivatives [23].

The determinant for planar modes is calculated in Ref. [23] up to
O( 1

λ4 ) terms (see Eq. (41) of Ref. [23] with Γ = −1/2), i.e.,

Fxy = 1− µθ4

M

(
1 +

7
λ2

+
5
λ4

)
cosh2(λ)

+
µθ4

M

(
1
λ

+
5
λ3

)
sinh(2λ) = 0, (51)

where we have disregarded O( θ2

λ2 ) terms not proportional to the large
hyperbolic functions. The determinant for perpendicular oscillations
and up to O( 1

λ4 ) terms is Eq. (B17) of Appendix B in Ref. [23] with
Γ = −1/2, i.e.,

Fz = 1− µθ4

M

(
1− 1

λ2
+

1
λ4

)
cosh2(λ)

+
µθ4

M

(
1
λ
− 1

λ3

)
sinh(2λ) = 0, (52)

again disregarding O(θ2) terms that are not multiplied by the large
hyperbolic functions. Notice the symplectic symmetry that roots of
Eqs. (51) and (52) are still in sets of four, (λ,−λ, λ∗,−λ∗). The first
correction at O( 1

λ) is the same for the roots of both of Eqs. (51)
and (52). The corrections at O( 1

λ2 ) separate Eq. (51) from (52),
unfolding the asymptotic degeneracy of planar and perpendicular
transversal modes at |λ| → ∞.

7. BOUNDARY LAYER

Atomic gases containing Avogadro’s number of atoms pose a many-
body problem where each atom suffers perturbations from all other
atoms. In the following we attempt to validate our theory by
exploring an isolating mechanism to allow a sensible modelling of
nature. Electromagnetic isolation requires globally bounded orbits
with vanishing far fields, in order to decouple individual atoms from
experimental boundaries and/or other atoms. Circular orbits are
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not good candidates because these create non-vanishing far-fields.
In Ref. [4] it is shown that globally bounded two-body orbits with
vanishing far-fields must involve velocity discontinuities.

The non-zero real part of growth-rate Eq. (49) suggests that there
are no other near-circular C2 solutions besides circular orbits, and the
linearized modes blow up at either t → ±∞. This unless a corner
point invalidates the linearization. Therefore, we are led again to seek
globally bounded extrema with corner points.

Figure 5 illustrates a pair of boundary segments containing
boundary-layer regions of fast motion along the light-cone separation,
segments abc and fed, henceforth spikes. As explained in Ref. [8],
a neutral differential delay equation (NDDE) can propagate the
discontinuity to the next segment (see method of steps and examples
of NDDE’s versus ODE’s in Ref. [8]). In other words, spikes along the
orbit are created by spikes inside the boundary segments illustrated in
red in Fig. 5.

a
c

h

g
d f

b

e

d

Figure 5. Illustrated are (i) elsewhere boundary segment (red) of
particle 1 with a spike along the advanced light-cone (ab) to corner
point (b); and (ii) elsewhere boundary segment 2 with a spike to corner
point (e) (red line). At points (a) and (c), perturbed orbit 1 (red
and blue solid lines) have a corner to/from the 180-degree corners (b)
and (e). Boundary layer magnitudes are exaggerated for illustrative
purposes. Arbitrary units.

We set about the task to construct a periodic broken extremum
using a boundary-layer perturbation that assumes regular segments
separated by boundary layer regions (spiky segments) each containing
one or more corner points, as illustrated in Fig. 5. Along both
trajectories, boundary layers have an angular width αθ ¿ θ. Outside
boundary layers we can linearize because trajectories are C2 and



172 De Luca

deviating arguments fall on C2 segments as well. Inside boundary
layers we do not linearize but rather use a variational approximation
using head-on collisional trajectory segments, and apply the necessary
condition (19) at rebouncing corners.

The roots of Eqs. (51) and (52) near each root (49) of the limiting
Eq. (48) are, respectively,

λxy(θ, q) ≡ σxy + πqi + iεxy, (53)
λz(θ, q) ≡ σz + πqi + iεz, (54)

where q is an arbitrary integer, εxy(θ, q) = −εxy(θ,−q) and
εz(θ, q) = −εz(θ,−q) (by the symplectic symmetry). An O(µθ4/M)
approximation for positive σ is obtained by setting 4 cosh2(λ) ≈
2 sinh(2λ) ≈ exp(2λ) into Eqs. (51) and (52), thus defining polynomials

Fxy(λ) = 1− µθ4

4M
exp(2λ)

(
1− 2

λ
+

7
λ2
− 10

λ3
+

5
λ4

)

≡ 1− µθ4

4M
exp(2λ)pxy

(
1
λ

)
= 0, (55)

and

Fz(λ) = 1− µθ4

4M
exp(2λ)

(
1− 2

λ
− 1

λ2
+

2
λ3

+
1
λ4

)

≡ 1− µθ4

4M
exp(2λ)pz

(
1
λ

)
= 0. (56)

It follows from Eqs. (51) and (53) that

exp(4iεxy) =
pxy( 1

λ∗xy
)

pxy

(
1

λxy

) , (57)

while Eqs. (52) and (54) yield

exp(4iεz) =
pz( 1

λ∗z
)

pz( 1
λz

)
. (58)

Disregarding the contribution of εxy and εz and replacing λxy =
λz = σ + πqi into the right-hand-sides of (57) and (58) yields, to the
first order in (1/λ)

εxy ' εz = =
(

1
λ

)
=

−πq

(σ2 + π2q2)
. (59)

We henceforth use a positive integer q, so that the energetic mismatches
εxy and εz predicted by Eq. (59) are negative O( 1

λ) numbers.
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Another order can be gained expanding the right-hand-side of (57)
in a Taylor series on the deviation εxy about λq = σ + πqi, which
generates only terms at O(1/λ3), so that up to O(1/λ2) Eq. (57) yields

εxy(q) =
−πq

(σ2 + π2q2)
+

5πqσ

(σ2 + π2q2)2
, (60)

εxy negative and monotonically increasing for q ≥ 6. Analogously,
the right-hand-side of (58) evaluated at λq = σ + πqi yields εz up to
O(1/λ2)

εz(q) =
−πq

(σ2 + π2q2)
− 3πqσ

(σ2 + π2q2)2
, (61)

again negative and monotonically increasing for q ≥ 6.
Let us assume a corner along orbit 1 at t = 0, illustrated by the

dashed line in Fig. 5. We define the first regular layer αrb < t < rb−αrb

as the first and last zeros of the (exponentially increasing and fast
oscillating) perturbation inside the first light-cone time zone. Using
a linear combination of the symplectic quartet of linearized modes,
and (40) and (50) with l1 ∝ L1 = µθ

M and u1 ∝ U1 = 1, the orbital
perturbation constructed to vanish at layer edges is

(
δxj

δyj

)
=

(
µθA
M
A

) cosh(σxyt
rb

)

cosh(σxy

2 )
sin

(
[πq + εxy(q)− θ](t− αrb)

rb

)
. (62)

From (a) to (h) the velocity of the perturbed orbits oscillate fast,
and at points (a) and (h) the perturbation of trajectory 1 crosses the
unperturbed orbit 1 (the perturbations are not illustrated in Fig. 5).
In Eq. (62), σxy and εxy are given by (53) and we must have A < rb

πq , to
avoid a superluminal velocity at layer edges. Along the regular region
the phase of the sine function in (62) advances by almost πq, and the
condition of vanishing at t = rb − αrb yields α = (εxy−θ)

2πq .
The variational approximation for the boundary-layer motion is

illustrated in Fig. 5, with corners along a given orbit all equivalent
by a θ-rotation. The central spike starts along trajectory 1 with a
ninety-degree corner, point (a), and respective corner in light-cone
along trajectory 2, point (d). Next is a straight-line segment of a
collisional trajectory (ab) terminated by an almost 180-degree corner
((b) and (e)), then a straight-line climb (bc) to the last ninety-degree
corner ((c) and (f)), resuming motion along the next regular layer.

Corners are nontrivial solutions of condition (19), and 180-degree
corners, (points (b) and (e) in Fig. 5), are simpler to analyse:
for a nontrivial corner, condition (19) requires the other particle
to have a velocity discontinuity at least at one of the light-cones.
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For simplification, we study resonant minimizers where velocities are
discontinuous at both light-cones and further specialized to 180-degree
corners that are spikes along the local radial direction ρ̂j to each
circular orbit, ρ̂j± · vl

j± = −ρ̂j± · vr
j±. Moreover, we consider only

periodic minimizers such that all corners are equivalent by a rotation
of θ, i.e., satisfy the discrete-rotation-symmetry nj+ · vl

j+ = nj− · vl
j−

and nj+ · vr
j+ = nj− · vr

j−.
For planar motion, condition (19) yields four equations, one along

each Cartesian direction and for i = 1, 2. For the assumed radial
spikes the vectorial components of (19) perpendicular to each ρ̂i vanish,
yielding a 2× 2 linear homogeneous system for the ρ̂j ·∆vj = 2|vj |,(

(E1 + 1
rD2

) − cos θ
rD2

− cos θ
rD1

(E2 + 1
rD1

)

)(|v1|
|v2|

)
= 0. (63)

The vanishing determinant of a nontrivial solution to Eq. (63) in the
limit cos(θ) → 1 can be expressed as

Det = E1E2 +
1
r̄
(
E1

D1
+

E2

D2
) = 0, (64)

where D1 ≡ (1− (n1 · v1)2) and D2 ≡ (1− (n2 · v2)2) are evaluated at
the corner and r̄ is the distance from point (b) to point (e) in Fig. 5.
Since the Di are positive, inspection of (64) shows that at least one
energy must be negative for a nontrivial solution.

The energies defined by (18) for radial spikes at large separations
are the following functions of time

E1 =
m1√
1− v2

1

− 1
r̄D2

, (65)

E2 =
m2√
1− v2

2

− 1
r̄D1

. (66)

Nonlinear Eqs. (64), (65) and (66) can be solved for r̄, yielding

r̄2 =
1

m1m2

√
1− v2

1

D1

√
1− v2

2

D2

=
1

m1m2

√
1− v2

1

(1− (n1 · v1)2)

√
1− v2

2

(1− (n2 · v2)2)
, (67)

proving that a separation in light-cone r̄ of the order of the (large)
circular radius rb = 1/µθ2 requires that |nj · vj | → 1 at least for one
particle, which in turn requires a quasi-luminal velocity. Again, partial
energies are not constants of motion and may assume the needed spiky
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negative values only for a split second during the boundary-layer time
(the exponential blow-up time is Ω

2π
rb
σ ' θ

2πσ circular periods).
Assuming m2 À m1 = 1, and a trajectory with a large separation

rb = 1/µθ2, if r̄ in Eq. (67) is to be near the large circular radius
r1 ≈ rb = 1

µθ2 of trajectory 1, then the (ab) straight-line spiky segment
of Fig. 5 must be (almost) along the light-cone direction such that
D1 ≡ (1 − (n1 · v1)2) can be small at the corner and the value of E2

negative (possibly negative only for the split second of the spike). The
former conditions are achieved simply by letting the electron have a
large radial velocity at point (b) of Fig. 5.

Notice that (67) solves the fully nonlinear condition (19) without
any approximation; the 180-degree corners function as stepping-stones
when one particle reaches the critical quasi-luminal velocity necessary
for the formation of corners at-a-far-distance. Corner creation at a far
distance is a rebouncing mechanism alternative to charges falling into
each other.

Last, we discuss if and how ninety-degree corners satisfy the
extremum condition, to complete the justification of the minimizer
of Fig. 5 (points (a) and (c) in Fig. 5). We recall that
perturbation (62) naturally blows up after each one-light-cone time,
generating synchronized and periodic velocity bursts lasting for the
very small boundary-layer times, enough to trigger the spikes. The
ratio of the small boundary-layer time to the period is a good estimate
of the (small) probability of finding a large velocity.

For the most general co-planar corner problem, condition (19)
yields a 4× 4 homogeneous system with linear matrix having diagonal
elements equal to Ei plus terms of the order of 1/(r̄Dj), while the
off-diagonal terms are proportional to 1/(r̄Di), a generic form shared
by matrix (63). Again, the fully nonlinear necessary condition for
a 90-degree turn at large separations is the vanishing of the 4 × 4
determinant, which requires the vanishing of one of the Ei, which in
turn requires a large denominator and a quasi-luminal velocity. A
condition analogous to (67) results from a fully nonlinear analysis if
velocities are to increase along the circular orbit right before corner
(a) of Fig. 5. Again, the exponential blow-up of Eq. (62) eventually
reaches that necessary quasi-luminal velocity at layer edge if A ' rb

πq .
The physical intuition about the spikes of Fig. 5 is that the

synchronised velocity bursts create large-amplitude electromagnetic
fields at the other particle. These fields represent photons carrying
momentum along the direction n of particle separation, and the
mechanism of continuous absorption of momentum from transversal
electromagnetic waves is discussed in textbooks [6]. What is necessary
to explain within variational electrodynamics is the mechanism
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to switch from the circular trajectory to a quasi-luminal head-on
collisional trajectory at a discontinuous rate above threshold, a collapse
caused by the bursting attractions between particles. At a far-
distance the spiky behaviour goes unnoticed because the synchronised
longitudinal chase has a vanishing net current and produces weak Biot-
Savart fields.

Weierstrass-Erdmann conditions were used in Ref. [29] to model
double-slit interference caused by interaction-at-a-distance with the
velocity discontinuities of the bounded trajectories of material electrons
inside the grating. Our Eqs. (16) and (18) are exactly Eqs. (16)
and (17) of Ref. [29], while the above explained criteria provided by
the vanishing of the partial energies is the content of Eqs. (19) and (20)
of Ref. [29].

8. FINITELY MEASURED NEIGHBOURHOOD OF
BROKEN MINIMIZERS

The tangent dynamics of circular orbits has an infinite number of
unstable transversal modes of arbitrarily large frequencies, as seen
by the linear growth frequencies (53) and (54). This is unlike the
classical Kepler problem, whose tangent dynamics has a finite number
of frequencies of the order of the orbital frequency [31, 32]. Since
linearized modes (53) and (54) are unstable, continuation along the
C2 segment would blow up, and a velocity discontinuity is needed
to break away from the C2 segment. A corner requires stepping-
stone condition (64), and for a small neighbourhood of minimizers
with corners to exist, circular orbits with planar and perpendicular
perturbations require the resonances studied below.

The perpendicular perturbation in the regular region is con-
structed analogously to the planar perturbation (62), using the lin-
earized modes explained in Appendix B of Ref. [23], yielding

δzj = B
cosh(σz

rb
t)

cosh(σz
2 )

sin
(

[πs + εz(s)](t− αrb)
rb

)
, (68)

where s is any integer (possibly different from q) and B is an arbitrary
amplitude smaller than rb

πs to avoid a superluminal velocity at layer
edge. Again, the amplitude of the transversal perturbation (68) is
constructed to vanish along the circular orbit at both edges t = αrb

and t = rb − αrb, to keep the property that corners see other corners
in light-cone (a boundary-layer-adjusted resonance).

Since the phase of oscillation (' πs/rb) is fast, a large orbital
velocity at layer edge results from a small amplitude B ' rb

πs , which is
illustrated in Fig. 5. Layer edge amplitudes of both types of transversal
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modes should vanish while their derivatives reach a quasi-luminal
velocity. Amplitude (62) vanishes at t = rb − αrb if

[πq + εxy(q)− θ](1− 2α) = πq, (69)

other multiples of π being excluded because εxy(q), θ and α are small.
Analogously, amplitude (68) vanishes at t = rb − αrb if

[πs + εz(s)](1− 2α) = πs, (70)

where again other integer multiples of π are impossible because εz(s)
and α are small.

If Eqs. (69) and (70) hold, both edges t = αrb and t = rb−αrb have
the same quasi-luminal |vj | for arbitrary amplitudes near (A,B) =
( rb

πq , rb
πs). For this it is necessary that

θ =
qεxy(q)− sεz(s)

q
, (71)

as obtained eliminating α from Eqs. (69) and (70). If condition (19)
holds at corner (c) of Fig. 5, then by Eq. (71) it automatically holds
at corner (a) of Fig. 5, which carries on to all other corners by the
discrete θ rotational symmetry. Condition (71) is also a probabilistic
condition, i.e., given (71) a whole neighbourhood of orbits with (A,B)
near ( rb

πq , rb
πs) is focused like a caustic into the Kernel of the corner point,

thus allowing a finitely measured neighbourhood of broken extrema.
Figure 6 illustrates the exponentially exploding transversal

perturbations (68) and (62) being focused into the corners at both
layer edges. The perturbations need to be in phase to be focused in and
out of both corners with the same large velocity amplitude required by
Eq. (19) for the 90-degree turn at edges, which imposes resonance (71),
henceforth the external resonance. Condition (19) yields a vanishing
determinant with a nontrivial null-vector generating a linear space
(Kernel), which freedom that can be used to make (19) hold along
slightly different orbits, thus generating periodic orbits passing by
every point inside a finite volume around the resonant orbit.

Next we calculate the magnitudes of the finitely measured
minimizers with q = s. For each q = s, condition (71) determines
a unique θ together with Eqs. (51) and (52), as listed in Table 1. For
comparison, Table 1 also lists the first line of each spectroscopic series,
i.e., the circular lines from quantum level k + 1 to quantum level k.
Historically, the series of hydrogen were named after Lyman, Balmer,
Ritz-Paschen, Brackett, etc.. The frequency over reduced mass of the
first line of each spectroscopic series in atomic units is the second
column of Table 1. We used a Newton method in the complex-λ plane
to solve Eqs. (51), (52) and (71), as used in Ref. [23] with Dirac’s
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δz

δφ
Caustic focuses

Figure 6. The angular perturbation δφ along the circular orbit
is illustrated by the green line. Illustrated is also the transversal
perturbation δz (brown). The resonant caustic focus is created when
δφ and δz perturbations vanish at both ends of each regular segment,
by resonance condition (71). Arbitrary units.

theory. Our calculations for hydrogen used the protonic-to-electronic
mass ratio (m2/m1) = 1836.1526. Table 1 gives frequency over reduced
mass calculated by QM for the first line of the kth spectroscopic series
(atomic units), numerically calculated orbital frequency over reduced
mass (for a suitable integer q(k)), (1373Ω)/µ = 1373θ2(εxy − εz),
angular momentum of unperturbed circular guide, and integer q.

Table 1 is to be compared with Table 1 of Ref. [23], which discusses
Dirac’s electrodynamics with self-interaction. The same surprising
agreement is found in Ref. [23]. Notice that we also skipped the
q = 10 value in Ref. [23], again because the resonance condition is
only necessary.

As mentioned below Eqs. (60) and (61), the energetic mismatches
are monotonically increasing for q ≥ 6, and the frequencies of Table 1
agree within ten percent with the first twelve circular hydrogen lines
starting from q = 7 at k = 1, i.e., q(1) = 7. Since condition (71) is
only necessary (and not sufficient), some values of q may correspond
to unstable orbits. This is analogous to the description by QM [27],
where there are selection rules on top of three conditions involving
integer quantum numbers, and Table 2 includes the lines that were
skipped in Table 1. A theory for the q’s that were skipped is presently
lacking. Inspection of Table 2 shows that for q = 1, 2, 3, 4, 5, 6 condition
(71) predicts θ still in the atomic range, but the angular momentum
spacing is about half of Planck’s constant. Table 2 also includes the
skipped numerical calculations for q = 8 and q = 10.
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Table 1. Numerical calculations for hydrogen with (m2/m1) =
1836.1526. Quantum number k of the circular Bohr transition k+1 →
k, frequency over reduced mass of the circular QM line in atomic units,
wQM ≡ 1

2( 1
k2 − 1

(k+1)2
), orbital frequency over reduced mass in atomic

units, (Ω/µ) = 1373θ2(εxy − εz), angular momentum of unperturbed
orbit in units of e2/c, lz = θ−1, and integer q.

k wQM 1373θ2(εxy − εz) lz = θ−1 q

1 3.750×10−1 3.852×10−1 188.32 7
2 6.944×10−2 8.919×10−2 306.67 9
3 2.430×10−2 2.485×10−2 469.54 11
4 1.125×10−2 1.392×10−2 569.61 12
5 6.111×10−3 8.070×10−3 683.13 13
6 3.685×10−3 4.825×10−3 810.89 14
7 2.406×10−3 2.966×10−3 953.65 15
8 1.640×10−3 1.870×10−3 1112.21 16
9 1.173×10−3 1.206×10−3 1287.27 17
10 8.678×10−4 7.942×10−4 1479.62 18
11 6.600×10−4 5.329×10−4 1690.02 19
12 5.136×10−4 3.639×10−4 1919.20 20

Analogy with Sommerfeld’s quantization suggests there must be
three conditions like (71), involving three integer quantum indices,
reinforcing that our single condition (71) is only necessary and alone
might not determine a stable orbit. Inspection shows that if the values
of Table 2 were included in Table 1, the angular momentum jump from
consecutive lines would be much lesser than about a hundred units of
e2/c, which is suggestive of what the missing conditions should do.

In Table 3 we give the numerical calculations for muonium using
the positive-muon-to-electron mass ratio (m2/m1) = 1836.1526/9.
Table 3 lists the frequency over reduced mass of the first line of
each spectroscopic series as calculated with QM (in atomic units),
orbital frequency in atomic units, (1373Ω)/µ = 1373θ2(εxy − εz), and
angular momentum of unperturbed circular orbit in units of e2/c. The
agreement of the numerical calculations with the atomic magnitudes
and QM is again within a few percent for frequencies.

Last, Table 4 gives the numerical calculations for positronium
using the positron-to-electron mass ratio (m2/m1) = 1: Table 4 lists
the frequency over reduced mass of the first line of each spectroscopic
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Table 2. Numerical calculations for hydrogen with q < 7 and
(m2/m1) = 1836.1526. Orbital frequency over reduced mass in atomic
units, (Ω/µ) = 1373θ2(εxy − εz), angular momentum of unperturbed
circular guide in units of e2/c, lz = θ−1, and integer q.

1373θ2(εxy − εz) lz = θ−1 q

1.506 119.53 1
10.653 62.27 2
9.466 64.77 3
4.664 82.01 4
2.006 108.63 5

8.622×10−1 143.96 6
1.808×10−1 242.32 8

4.6095 ×10−1 382.16 10

Table 3. Numerical calculations for muonium with (m2/m1) =
1836.1526/9. Quantum number k of the circular Bohr transition
k + 1 → k, frequency over reduced mass of the circular QM line in
atomic units, wQM ≡ 1

2( 1
k2 − 1

(k+1)2
), orbital frequency over reduced

mass in atomic units, (Ω/µ) = 1373θ2(εxy− εz), angular momentum of
unperturbed circular guide in units of e2/c, lz = θ−1, and integer q.

k wQM 1373θ2(εxy − εz) lz = θ−1 q

1 3.750×10−1 4.039×10−1 185.63 7
2 6.944×10−2 8.762×10−2 308.94 9
3 2.430×10−2 2.356×10−2 478.65 11
4 1.125×10−2 1.304×10−2 582.96 12
5 6.111×10−3 7.491×10−3 701.31 13
6 3.685×10−3 4.445×10−3 834.53 14
7 2.406×10−3 2.717×10−3 983.41 15
8 1.640×10−3 1.704×10−3 1148.75 16
9 1.173×10−3 1.095×10−3 1331.34 17
10 8.678×10−4 7.187×10−4 1531.19 18
11 6.600×10−4 4.810×10−4 1751.36 19
12 5.136×10−4 3.277×10−4 1990.34 20
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Table 4. Numerical calculations for positronium with (m2/m1) = 1.
Quantum number k of the circular Bohr transition k + 1 → k,
frequency over reduced mass of the circular QM line in atomic units,
wQM ≡ 1

2( 1
k2 − 1

(k+1)2
), orbital frequency over reduced mass in atomic

units, (Ω/µ) = 1373θ2(εxy − εz), angular momentum of unperturbed
orbit in units of e2/c, lz = θ−1, and integer q.

k wQM 1373θ2(εxy − εz) lz = θ−1 q

1 3.750×10−1 3.423×10−1 246.76 8
2 6.944×10−2 7.749×10−2 404.86 10
3 2.430×10−2 2.189×10−2 617.037 12
4 1.125×10−2 1.240×10−2 745.61 13
5 6.111×10−3 7.286×10−3 890.33 14
6 3.685×10−3 4.416×10−3 1052.06 15
7 2.406×10−3 2.753×10−3 1231.64 16
8 1.640×10−3 1.759×10−3 1429.92 17
9 1.173×10−3 1.149×10−3 1647.73 18
10 8.678×10−4 7.667×10−4 1885.88 19
11 6.600×10−4 5.209×10−4 2145.20 20
12 5.136×10−4 3.599×10−4 2426.50 21

series calculated by QM (in atomic units), orbital frequency over
reduced mass in atomic units, and the angular momentum of the
unperturbed circular orbit in units of e2/c.

Notice in Table 4 that for positronium the values of lz = 1/θ
are consistently larger. Using again the fact that condition (71) is
only necessary, Table 4 starts the q, when the angular momentum
spacing is about constant, i.e., at q = 8. For positronium the numerical
calculations find the first root 1/θ = 40.501 only at q = 3, again in the
atomic magnitude. The spectrum agrees with QM within less than a
few percent for the circular lines of the first 12 series.

In the days of Bohr, only twelve lines of the Balmer series could
be observed with vacuum tubes, and about thirty-three from celestial
spectra [26].

Surprizingly, the emission frequencies agree better with QM for
the decays from the twelve deepest quantum levels. As explained
in [23], the cancelation of dipolar far-fields involves quadratic terms
that might require larger amplitudes at large q. Given that the xy
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modes modify the unperturbed z-angular momentum more and more
at larger q, our perturbative results should get worse at larger q.

We have carried the numerical calculations up to q = 43 (not
shown in Table 2) and observed that the angular momentum spacing
increases slowly with q. The agreement of the numerical calculations
with an effective angular momentum separation seems to continue
within thirty percent, suggesting that one can approximate a large
number of eigenvalues near the discrete spectrum of Schroedinger’s
equation.

The agreement with emission lines for k > 13 slowly deteriorates,
suggesting that the corresponding minimizers are becoming far from
planar. A one-to-one comparison with natural spectra should wait
the investigation of broken extrema with spikes filling a tridimensional
region.

The surprising agreement of the numerical calculations with a
universal value for the fine-structure constant is due to the logarithmic
dependence of σ(θ) ≡ ln(

√
4M
µθ4 ) on (µ/M), as explained above Eq. (49).

Formulas (60) and (61) yield an implicit equation for θ, i.e.,

1
θ

=
1

εxy − εz
=

(σ2(θ) + π2q2)2

8πqσ(θ)
. (72)

The roots of (72) are insensitive to changes in (µ/M) over three orders
of magnitude, e.g., for q = 7 and (µ/M) = 1/1837 (hydrogen), Eq. (72)
yields θ ' 190.09, while for q = 7 and (µ/M) = 9/1836 (muonium),
Eq. (72) yields θ ' 187.17, and last for q = 7 and (µ/M) = 1/4
(positronium), Eq. (72) yields θ ' 186.81. The numerically calculated
values of lz ≡ θ−1 fall approximately between the consecutive Bohr
orbits k and k + 1. Tables 1, 3 and 4 show that frequencies of spectral
lines agree even better with the spectroscopic series.

Notice that the orbital frequencies determined by (71) are
expressed as a difference of two spectroscopic terms, just like the
Rydberg-Ritz principle of atomic physics, i.e.,

Ω ≡ µθ3 = (µθεxy(q)− µθεz(s)) /(1/θ), (73)

with spectroscopic terms θεxy(q) and θεz(s) defined by the eigenvalues
of two linear and infinite dimensional eigenvalue problems, i.e.,
Eq. (43) and Eq. (B16) of Appendix B in Ref. [23].

Last, the far-field-vanishing mechanism of Ref. [23] used the
quadratic term of far-field (11) created by the last right-hand-side term
of (12), i.e.,

δE(2)
j± ≡ ±ej

nj± × (vj± × aj±)
rj±

. (74)
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Equation (71) with q = s is equivalent to the necessary condition for
quadratic term (74) to cancel the unperturbed dipolar far-fields by a
resonance between the fast frequencies of modes (53) and (54), i.e.,
Eq. (56) of Ref. [23].

9. DISCUSSIONS AND CONCLUSION

Our hydrogenoid model involves large but finite denominators.
Assuming r̄ ' rb = 1/µθ2, with θ taken from either Tables 1, 3
or 4 and using a protonic velocity much smaller than the near-luminal
electronic velocity (i.e., v2 = O(θ) ' 0 and |n1 · v1| → |v1| ' 1),
Eq. (67) predicts a finite value for the spiky denominator in each case,
1/

√
1− v2

1 = M/µθ4, without need of any renormalization.
The physical (and mathematical) appeal of variational electro-

dynamics comes from postulating the minimization of a finite semi-
bounded functional [3]. According to a theorem of Weierstrass, a semi-
bounded continuous functional assumes its absolute minimum on a
compact set [16, 17], thus creating a well-behaved solution for arbitrary
continuous and piecewise C2 boundary data. In the modern theory of
partial differential equations (PDE), a price to pay is a compactifica-
tion that introduces weak solutions [16], which are the analogues to
our trajectories with corners.

A motivation for Wheeler-Feynman theory [1, 2] was Sommerfeld’s
quantization conditions of Hamiltonian mechanics [24, 25, 28]. Wheeler
and Feynman’s quantization program stalled because of the lack of
a Hamiltonian [33]. Wheeler and Feynman could not have known
in 1945 that a finite-dimensional Hamiltonian does not exist for the
electromagnetic two-body problem, as proved in 1963 with the no-
interaction theorem [18, 19]. In our generalization, partial energies and
momenta appear naturally as eigenvalues of the Weiertrass-Erdmann
condition (19), without resort to a Hamiltonian.

Unlike Dirac’s electrodynamics [30], variational electrodynamics is
not ruled out by the Aharonov-Bohm effect [34]. This experimentally
observed effect is a complete paradox for Dirac’s electrodynamics
of point charges [30]. The origin of the paradox is that along C2

smooth orbits the electromagnetic equations of motion involve only
derivatives of the vector potential, i.e., the Euler-Lagrange equation
of partial Lagrangian (7) yields (8) with a right-hand-side equal to
∇Uj+∂Aj/∂t−vi×(∇×Aj). Instead, along broken extrema, the vector
potential Aj itself appears on Eq. (17), determining an interference-
at-a-distance just like in QM, as discussed in Ref. [29]. This further
indicates that our generalization of Wheeler-Feynman electrodynamics
is experimentally sensible [1, 2].
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Last and again, we stress a key difference from the classical
principle of least action to the variational principle of Section 2.
Namely, the principle of least action is a two-point boundary
problem [11] that can be turned into an initial-value problem by
using initial velocities such that both trajectories arrive precisely at
the prescribed endpoints. On the contrary, the relativistic boundary-
value problem of Section 2 is really a boundary-value problem in the
sense that it can not be turned into an initial-value problem for hidden
variables that are set at the initial time. As seen in Fig. 1, the elsewhere
boundary segment (L−2 , L+

2 ) plays a non-trivial role by interacting with
(and shaping) the finite end-segment of trajectory (b1, L2).
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