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Abstract—Mechanical distortions of phased array antennas make
transmit pattern distort. The transmit pattern cannot be simply
calibrated by compensating the position error of each element since
the effect of the mechanical distortions is angle-dependent. To solve
this problem, we treat the element position errors measurement as
prior knowledge and propose a knowledge-aided (potentially cognitive)
transmit pattern design method. When the mechanical distortions
occur, the cognitive transmit pattern can still place pattern nulls in the
directions of interferences while preserving the main beam response of
the target of interest. The proposed method is validated by simulation
results.

1. INTRODUCTION

In contrast to conventional optimum/adaptive radar in which only the
receiver is optimized [14], more and more scientists and researchers
shift their focus to jointly optimize the transmitter and receiver,
i.e., cognitive radar [1, 17]. Radar performance improvement can be
achieved through optimum design on transmitter [2–13]. Therefore, a
key component of a cognitive radar system is the method by which
the transmitted signal is adapted in response to information regarding
the radar environment [21–23]. Guerci [15] proposed an ideal cognitive
sidelobe nulling on transmit method, which places transmit antenna
pattern nulls in the directions of interferences while preserving the
desired main beam response.

However, there are many non-ideal factors in practice [18–20]. For
example, for forward looking airborne radar, phased array antennas
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are generally placed in the wingspan of airplane. Launching vibration
or thermal variation leads to mechanical distortions of wingspan, and
correspondingly the element position moves [16]. Such element position
errors cause transmit and receive pattern distortion, which significantly
degrade the estimate and detection performance of the target of
interest. The element position errors introduced by mechanical
distortions are dependent on angle, which make the compensation of
the amplitude-phase errors of each antenna impossible. Therefore, the
ideal cognitive transmit pattern is no longer practicable for mechanical
distortions. To solve this problem, we treat the element position
error measurements as prior knowledge and propose a knowledge-
aided (potentially cognitive) transmit pattern design method. The
cognitive transmit pattern can still simultaneously place pattern nulls
in the directions of interferences while preserving the desired main
beam response for mechanical distortions. As to the measurements
of phased array antenna position error, we can obtain them through
placing several tags in the surface of the antenna. Each tag transmits
the dedicated signal for position measurement to the plane measure
system. Then the passive system receives the dedicated signal to
calculate each element position after distortion. The knowledge-aided
transmit antenna pattern design is based on maximization of signal-
to-interference ratio (SIR).

The paper is organized as follows. In Section 2, we introduce the
position error model and analyze the effect of element position errors.
In Section 3, we propose a cognitive transmit antenna pattern design
method which is adapted to the element position errors. In Section 4,
we present the simulation results to validate the proposed method.
Finally, the conclusion is given in Section 5.

2. PROBLEM FORMULATION

Consider a narrowband M elements uniform linear array (ULA)
with half wavelength interelement spacing. Due to the mechanical
distortions, the ULA element position moves. The mth element
positions before and after mechanic distortion are simultaneously
displayed in Fig. 1.

The mth element position moves from (xm, ym) to (x̂m, ŷm) as
illustrated in Fig. 1, where the black square and red circle represent
the initial position and the position after distortion, respectively, and
θ is the incident direction. According to geometrical relationship in
Fig. 1, we have {

∆xm = x̂m − xm

∆ym = ŷm − ym
(1)
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Figure 1. The mth element position change due to the mechanical
distortions.

where m = 1, 2, . . . , M . Due to the mechanical distortions, the wave
path changes for incident direction θ. Correspondingly, the change in
wave path is

∆dm(θ) = ∆ym cos θ + ∆xm sin θ (2)

Obviously, it is a function of angle of arrival (AoA). For all M elements
of ULA, the change in phase can be written as

∆(θ) = [ej2π∆d1(θ)/λ, ej2π∆d2(θ)/λ, . . . , ej2π∆dM (θ)/λ] (3)

where λ is wavelength. Therefore, the mechanical distortions make the
array steering vector append with a phase term:

Γ(θ) = diag[∆(θ)] =




ej2π∆d1/λ 0 . . . 0
0 ej2π∆d2/λ . . . 0
...

...
. . .

...
0 0 . . . ej2π∆dM/λ


 (4)

where Γ(θ) is a M × M diagonal matrix which is angle-dependent.
Hence, mechanical distortions make transmit steering vector change
from

aT (θ) =
[
1, e−j2πfs(θ), . . . , e−j2π(M−1)fs(θ)

]T
(5)

to
âT (θ) = Γ(θ)aT (θ) (6)

where (·)T represents transpose, and fs(θ) is spatial angle frequency.
Taking forward looking airborne phased array radar as an example,
spatial angle frequency is given by

fs(θ) =
d sin θ cosϕ

λ
(7)
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where d is the interelement spacing of the ULA, and θ and ϕ
stand for azimuth and elevation, respectively, where θ ∈ [−90◦, 90◦].
Equation (6) implies that the transmit pattern cannot be calibrated by
simple compensating the amplitude and phase of each element position
error. Assume that the target of interest and the strong interferences
are at the same range bin, which means that they have the same
elevation, namely, ϕ = ϕ0. For θ = (θ1, θ2, . . . , θNc), the transmit
array manifold correspondingly changes from

A = [aT (θ1),aT (θ2), . . . ,aT (θNc)] ∈ CM×Nc (8)

to

Â = [Γ(θ1)aT (θ1),Γ(θ2)aT (θ2), . . . ,Γ(θNc)aT (θNc)] ∈ CM×Nc (9)

Assume ωopt ∈ CM×1 is the transmit optimum weight vector generated
by [15], then the transmit antenna pattern for mechanical distortions
of phased array antenna is given by

P̂ = ωH
optÂ (10)

where (·)H represents conjugate transpose. The corresponding change
in transmit antenna pattern is

∆P = P̂−P = ωH
opt(Â−A)

= ωH
opt[(Γ(θ1)−I)aT (θ1),(Γ(θ2)−I)aT (θ2), . . . ,(Γ(θNc)−I)aT (θNc)]

=

[
M−1∑

m=0

ω∗opt(m)
(
ej2π∆dm(θ1)/λ − 1

)
e−j2πmfs(θ1), . . . ,

M−1∑

m=0

ω∗opt(m)
(
ej2π∆dm(θNc)/λ − 1

)
e−j2πmfs(θNc)

]
(11)

where (·)∗ represents conjugate. For the direction of target of interest
θt and the K direction of interferences θk, k = 1, 2, . . . , K, the changes
in transmit antenna patterns ∆P(θt) and ∆P(θk) are, respectively,

{
∆P(θt) 6= 0
∆P(θk) 6= 0, i = 1, 2, . . . , K

(12)

Equation (12) implies that the desired main beam response and the
nulls in the direction of interferences cannot be maintained due to
the phase term ej2π∆dm(θ)/λ. Therefore, the transmit antenna pattern
obtained by Equation (10) cannot achieve the desired result. To solve
this problem, we propose a simple cognitive transmit pattern design
method, which is adapted in response to the element position errors.
The detail of the design method is given in the following section.
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3. COGNITIVE TRANSMIT PATTERN DESIGN

Consider an airborne radar equipped phased array antennas. The
number of transmitting antennas and number of receiving antennas
are M and N , respectively. Assume that the transmit weight vector
is ω̂ to distinguish from ω produced by [15]. For convenience, we
still take forward looking array as an example. For the direction of
the target of interest θt, the transmit and receive steering vectors are,
respectively,

at
T (θt) =

[
1, e−j2πdET sin θtcos ϕ0/λ, . . . , e−j2π(M−1)dET sin θtcos ϕ0/λ

]T

at
R(θt) =

[
1, e−j2πdER sin θtcos ϕ0/λ, . . . , e−j2π(N−1)dER sin θtcos ϕ0/λ

]T
(13)

where dET and dER are the interelement spacing of the transmit and
receive arrays, respectively. The transmit and receive steering vectors
due to mechanical distortions are modified to, respectively,

ât
T = Γ(θt)at

T (θt)

ât
R = Γ(θt)at

R(θt)
(14)

The pulse compression output of the target component of the echo
signal can be written as

xs = ât
R(θt)

(
ât

T (θt)
)H

ω̂ = Γ(θt)at
R(θt)

[
at

T (θt)
]H [Γ(θt)]Hω̂ (15)

If we see the target of interest as a system, then the transmit weight
vector ω̂ and the pulse compression result xs can be viewed as the
system input and output, respectively. Then according to Equation
(15), the transfer matrix Ht of the system is

Ht = Γ(θt)at
R(θt)

[
at

T (θt)
]H [Γ(θt)]H (16)

Next, we analyze the interference component. For the direction of
kth interference θk, the transmit and receive steering vectors are,
respectively,

aIk
T (θk)=

[
1, e−j2πdET sin θkcos ϕ0/λ, . . . , e−j2π(M−1)dET sin θkcos ϕ0/λ

]T

aIk
R (θk)=

[
1, e−j2πdER sin θkcos ϕ0/λ, . . . , e−j2π(N−1)dER sin θkcos ϕ0/λ

]T
,

k = 1, 2, . . . , K

(17)

Element position errors modify the kth interference’s transmit and
receive steering vectors from Equation (17) to

âIk
T (θk) = Γ(θk)a

Ik
T (θk)

âIk
R (θk) = Γ(θk)a

Ik
R (θk)

(18)
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After pulse compression, the kth interference output is

xIk
= âIk

R (θk)
(
âIk

T (θk)
)H

ω̂ = Γ(θk)a
Ik
R (θk)

[
aIk

T (θk)
]H

[Γ(θk)]
H ω̂ (19)

Then, the K interferences’ output is given by

xI =
K∑

k=1

αkâ
Ik
R (θk)

(
âIk

T (θk)
)H

ω̂

=
K∑

k=1

αkΓ(θk)a
Ik
R (θk)

[
aIk

T (θk)
]H

[Γ(θk)]
H ω̂ (20)

where αk represents a complex scale factor associated with the kth
interference. Similarly, we see the K interferences as a system and
view the transmit weight vector ω̂ and the pulse compression output
xI as the input and output of the system, respectively. Then according
to Equation (20), the transfer matrix HI of the interference system is

HI =
K∑

k=1

αkΓ(θk)a
Ik
R (θk)

[
aIk

T (θk)
]H

[Γ(θk)]H (21)

Then, the corresponding signal-to-interferer ratio (SIR) at the input
to the receiver is given by

SIR=
xH

s xs

xH
I xI

=
ω̂HHt(Ht)Hω̂

ω̂HHI(HI)Hω̂
(22)

Resorting to the SIR criterion, the cognitive transmit pattern design
can be formulated as the following optimization problem:

max
ω̂

ω̂HHt(Ht)Hω̂

ω̂HHI(HI)Hω̂
(23)

This is the well-known generalized Rayleigh quotient. The solution of
ω̂ is the principal component of the matrix (HI(HI)H)−1Ht(Ht)H , and
the maximum of the objective function is the corresponding eigenvector
of the largest eigenvalue of (HI(HI)H)−1Ht(Ht)H , which is denoted
as ω̂opt.

Solving Equation (23) for optimum eigenvector yields the transmit
pattern that maximizes the SIR:

Pc = ω̂H
optÂ (24)

The transmit pattern Pc has the capability of placing the nulls in
the directions of interferers, while preserving the desired main beam
response for mechanical distortions of phased array antennas. The next
section will validate the proposed method by simulation results.
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4. SIMULATION RESULTS

In this section, we use the MATLAB software to simulate. The
simulation process is generalized as follows: 1) Generate element
positions after mechanical distortions according to the prior knowledge
of element position errors. 2) Solve the Equation (23) and
obtain the corresponding eigenvector of the largest eigenvalue of
(HI(HI)H)−1Ht(Ht)H as the optimum weights ω̂opt. 3) Generate the
cognitive transmit pattern according to Equation (24).

First of all, we consider a forward looking array airborne radar
system, which is a narrowband M = 17 element ULA with half-
wavelength interelement spacing and assume that the same ULA is
used for both transmission and reception, namely, dET = dER = λ/2.
At this point, the phased array antennas were placed in the wingspan
of the airplane. When launching vibration or thermal variation
occurs, the wingspan distorts. The element positions before and after
mechanical distortions are simultaneously displayed in Fig. 2.
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Figure 2. The distortion of wingspan for forward looking array.

For forward looking array, the simulation will be classified into two
cases to perform. One is only interference, and the other is multiple
interferences.

4.1. Single Interference

In addition to the desired target at θt = 0◦, there is a strong
interference at θ1 = 45◦ (shown as the blue star in Fig. 2). The
competing interference amplitude was set to 40 dB relative to the
desired target, and 0 dB of diagonal loading was added to HI(HI)H

to improve numerical conditioning and allow for its inversion. The
presence of the target and interference could have been detected
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Figure 3. Comparison modified transmit pattern with ideal transmit
pattern for single interference.

previously, and thus their directions known — especially if the
interference was strong which is precisely the one we are concerned
about since its strong sidelobes could potentially mask weaker main
lobe target. With this knowledge, it is desired to minimize any energy
from the interference leaking into main beam detection of the target of
interest by nulling on transmit — that is by placing transmit antenna
pattern nulls in the directions of the unwanted interference. The
optimum transmitting weight vector ωopt obtained by [15] under ideal
conditions can achieve satisfactory results [15]. However, when the
wingspan is distorted according to Fig. 2, ωopt cannot yield the desired
transmit pattern as shown in Fig. 3.

For transmit pattern yielded by ωopt depicted in red dashed line
of Fig. 3, it does not have main beam response in the direction of the
target of interest, nor has it the null in the direction of the strong
interference. From the simulation result, it can be clearly understood
that ωopt cannot yield a desired transmit pattern under the effect of
mechanical distortions. Then we use the proposed method in this paper
to obtain optimum transmit weight vector ω̂opt, which is adapted in
response to element position errors. The modified transmit pattern for
mechanical distortions is also displayed in Fig. 3. Note the presence
of modified transmit pattern null in the direction of the interference
while preserving the main beam response of the target of interest as
desired, as depicted in solid black line of Fig. 3.



Progress In Electromagnetics Research C, Vol. 41, 2013 75

4.2. Multiple Interferences

Assume that there are strong interferences at θ1 = −30◦, θ2 =
10◦, θ3 = 45◦, respectively, which are shown as the blue stars in Fig.
4. The desired target is at θt = 0◦. Element position errors model
and all other parameters are the same as the above single interference
simulation. Likewise, these directions of target and interferences and
the element positions before and after the distortion are the prior
information. The simulation results are shown in Fig. 4.
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Figure 4. Comparison modified transmit pattern with ideal transmit
pattern for multiple interferences.

Obviously, the transmit pattern yielded by ω̂opt outperforms
ωopt since the former simultaneously has nulls in these interference
directions and maximum beam response in the target of interest while
the latter could not.

Next, we consider the sidelooking array case. The derivation in
Section 3 needs to be modified slightly. Specifically, the spatial angle
frequency, namely Equation (7), is modified to

fs(θ) =
d cos θ cosϕ

λ
(25)

where θ ∈ [0◦, 180◦]. Assume that M = 33. At this point, the ULA was
displayed in the fuselage, and the mechanical distortions are illustrated
as in Fig. 5.
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Figure 5. The mechanical distortion for sidelooking array.

For sidelooking array, the simulations are also classified into
two cases to perform, namely, single interference case and multiple
interferences case.

4.3. Single Interference

Except the element position errors information, the desired target
direction and interference direction are also known, namely, θt = 90◦
and θ1 = 165◦, where the interference direction is shown as the blue
star in Fig. 6. The comparison simulation results are illustrated in
Fig. 6. The proposed method is in solid black line and the ideal
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Figure 6. Comparison modified transmit pattern with ideal transmit
pattern for single interference.
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transmit pattern depicted in red dashed line. Obviously, modified
transmit pattern achieved satisfactory result, but the ideal transmit
pattern could not.

4.4. Multiple Interferences

The known prior information includes the direction of the target of
interest θt = 90◦ and the directions of three strong interferences
θ1 = 30◦, θ2 = 100◦, θ3 = 145◦ (shown as the blue stars in Fig. 7).
The element positions before and after the mechanical distortions are
illustrated in Fig. 5. At this point, the simulation results are shown in
Fig. 7.
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Figure 7. Comparison modified transmit pattern with ideal transmit
pattern for multiple interferences.

Note the presence of modified transmit pattern nulls in the
directions of the interferences as desired while preserving the main
beam response of the target of interest, as depicted in solid black line
of Fig. 7. Obviously, for sidelooking array case, modified transmit
pattern achieved satisfactory result, but the ideal transmit pattern
could not.
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5. CONCLUSION

In this paper, a simple cognitive transmit pattern design method has
been proposed for presenting nulls in the direction of interferences
and main beam response in the direction of the target of interest for
mechanical distortions. In contrast to conventional adaptive radar in
which primarily the receiver is optimized, we derived the cognitive
transmit pattern design method which works well in the transmitter.
Although the technique given in this paper was used for transmit
pattern design, it may be extended to airborne space-time transmit
pattern for mechanical distortion.
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