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Abstract—This paper introduces a simple but effective scattering
mechanism identification scheme for analyzing mixed scattering
mechanisms obtained by model-based decomposition. Using the
normalized scattering vector, each pixel is represented by a point in
a standard 2-simplex in R3. Seven scattering category centers are
represented by the three vertices, the three midpoints of sides and
the centroid of the 2-simplex. The scattering category partitioning
problem is then solved by minimizing the Euclidean distance between
the image pixels and these category centers. The proposed scattering
mechanism identification scheme is finally used for data analyzing and
unsupervised classification. Experiments on AIRSAR and E-SAR L-
band PolSAR images demonstrate the effectiveness of the proposed
method.

1. INTRODUCTION

Polarimetric synthesis aperture radar (PolSAR) imagery has long
been used as an appropriate and effective data source for many
applications [1–3]. Unsupervised classification is a very important
step in the processing of PolSAR data. In the past decades many
classification methods have been proposed [4–12]. Some of these
approaches use the inherent characteristic of PolSAR data and
implement the classification with physical scattering mechanisms,
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see [4, 8, 9, 13–16]. One advantage of this kind of methods is providing
information for scattering class identification [17, 18]. The polarimetric
decomposition techniques used for scattering mechanism analysis can
be roughly categorized into two groups:
• Methods based on the Cloude-Pottier target decomposition

theory [19]. Denote H as the entropy, α as the average alpha
angle and A as the anisotropy. In order to identify the scattering
mechanisms, Cloude and Pottier [13] proposed to partition the
H-α plane into eight zones, and further refine the results by
utilizing the anisotropy A [15]. Ferro-Famil et al. [8] also presented
a canonical scheme for the identification of scattering mechanisms
by segmenting the “H-A” plane.

• Model-based decomposition, e.g., the three-component decompo-
sition (also known as Freeman decomposition) [20]. Using the
Freeman decomposition, Lee et al. [9] proposed a classification
method for preserving scattering characteristics, which divides
pixels into three basic scattering categories, i.e., surface, volume
and double bounce scattering. To further analyze the mixture ar-
eas where scattering mechanisms exist, Yang et al. [21] used a more
precise scheme to partition the scattering category by introducing
the scattering power entropy and anisotropy.
In the classification algorithms mentioned above, scattering

mechanism identification plays an important role. Although Cloude’s
eigenvalue-based decomposition always yields a unique solution
mathematically, how to interpret the results in terms of known
scattering mechanisms is not clear yet [22, 23]. The model-
based decompositions attempt to fit the PolSAR data with a
three-component [20, 24–27] or four-component [28–30] scattering
mechanism model, which has physical meanings, and usually lead to
straightforward representations.

In [9], the scattering mechanism identification is achieved by
using the dominance of the backscattering power obtained by Freeman
decomposition. It is worth noticing that there are actually a large
number of pixels whose dominant scattering mechanisms are not
clearly defined, and further analysis of these pixels with hybrid
scattering mechanisms is necessary. Lee et al. [9] extended the
scheme by dividing these pixels into a mixed scattering category with
predefined threshold. However, more detailed scattering mechanism
identification is desirable. Considering all the possible combinations
of the scattering mechanisms, and inspired by the work of Cloude
and Pottier [13], Yang et al. [21] presented a seven-scattering-category
scheme by partitioning the plane of the scattering power entropy and
the anisotropy. Zhang et al. [31] addressed this problem by combining
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the model-based decomposition and the rule-based segmentation for
estimating the relative strength. The schemes in [21, 31] are elaborate,
but their performances depended on some ad-hoc thresholds which
are empirically selected. This paper attempts to solve the scattering
mechanism identification problem in a more direct way.

We propose a simple but effective scheme for scattering mechanism
identification. The vectors of the scattering powers obtained by
the three-component decompositions are first normalized. Since
elements for each normalized scattering vector are summed to one,
pixels are represented by points in the standard 2-simplex in R3.
Vertices of the standard 2-simplex can be interpreted as pure
scattering category centers. The scattering mechanism identification
is thus achieved by classifying points on the standard 2-simplex via
minimizing the Euclidean distance. The decision boundaries can
be easily determined and no threshold is needed. This scheme
also provides a visualization approach for analyzing the scattering
characteristics of the three-component decomposition in different
scenes. We test the proposed scheme on the classic Freeman-Durden
decomposition [20], and the newly proposed adaptive model-based
decomposition [26]. Experiments on data analysis and unsupervised
classification with AIRSAR and E-SAR L-band PolSAR images
demonstrate the effectiveness of the proposed method.

The rest of paper is organized as follows: Section 2 first presents
the proposed scheme for the scattering mechanism identification,
Section 3 then shows and analyzes the experimental results. In
Section 4 the extensions and limitations of the proposed method are
discussed, and finally conclusions are made in Section 5.

2. SCATTERING MECHANISM IDENTIFICATION

2.1. Model-based Three-component Decomposition

There are many polarimetric decomposition methods for scattering
mechanism analysis, among which those “model-based” decomposi-
tions [22] of the covariance matrix or the coherency matrix attract
much attentions, as they provide better physical understanding for the
results. The Freeman decomposition (shorten as FMD) is a widely
used model-based decomposition for its simplicity and stability. This
decomposition expresses the measured covariance matrix as the sum of
three physical scattering components: the surface, volume and double-
bounce components.

〈[C]〉 = fv 〈[Cvol]〉+ fd[Cdouble ] + fs[Csurface ]. (1)
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The contribution of each scattering mechanism can be estimated
according to the span

Span = |SHH |2 + 2|SHV |2 + |SVV |2 = PS + PV + PD. (2)

where PS , PV and PD correspond to the power contributions of each
scattering mechanism respectively.

Freeman decomposition assumes reflection symmetric for measure
covariance and may result in many pixels with negative powers. The
nonnegative eigenvalue decomposition (NNED) model [25] can avoid
negative powers and is further extended to adaptive model-based
decomposition (shorten as AMD) [26] by using a general volume
component [32]. The covariance matrix can be written as

〈[C]〉 = fv 〈[Cvol (θ0, σ)]〉+ fd[Cdouble ] + fs[Csurface ] + [Cremainder ]. (3)

The general volume term 〈[Cvol(θ0, σ)]〉 is parameterized by the mean
orientation angle θ0 and the degree of randomness σ. The last term
[Cremainder ] may include additional cross-polarized power that can
represent terrain effects and rough surface scattering. It also can be
used for determining the best fit parameters.

2.2. Scattering Mechanism Identification

In Lee’s preserving scattering characteristic classification algorithm [9],
pixels were divided into three basic canonical scattering categories by
the dominance in backscattering power of PS , PV and PD for surface
(“Odd”), volume (“Vol”) and double-bounce (“Dbl”) scattering.
Considering the situations in which many pixels have two or three
nearly equal scattering powers and the dominant scattering mechanism
is not clearly defined, Lee defined an additional “mixed” category by

max(PS , PV , PD)
PS + PV + PD

≤ Ct. (4)

Ct is a predetermined parameter, normally between 0.4 ∼ 0.8.
However, it is still difficult to distinguish different mixed scattering
mechanisms, since there exist four different types: “Odd + Vol”,
“Odd+Dbl”, “Vol+ Dbl” and “Odd+ Vol+ Dbl”.

In this work, we developed a simple but effective scattering
mechanism identification scheme for model based decomposition. We
first define a three-dimensional normalized vector p for each pixel

p = [ps, pv, pd]. (5)

where ps, pv and pd are normalized by their total scattering
contribution, and represent the relative magnitude of the three power
values PS , PV and PD. We call p the normalized scattering vector.
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In this case, each pixel is on the standard 2-simplex in R3 due to
ps + pv + pd = 1. The standard 2-simplex in R3 is defined as

ps + pv + pd = 1. ps ≥ 0, pv ≥ 0, pd ≥ 0. (6)

The standard 2-simplex in R3 is showed in Fig. 1(a). The coordinates
of the three vertices A, B and C are (1, 0, 0), (0, 1, 0) and (0, 0, 1),
respectively. Each of the three vertices represents a pure basic
scattering mechanism. If a pixel is very close to one of the vertices,
then it shows dominant scattering mechanism associated to that
vertex, otherwise, its dominant scattering mechanism cannot be clearly
defined. Therefore we can call these vertices the “scattering category
center points” (SCCPs). By this means, the three basic scattering
categories partition scheme of Lee et al. [9] can be regarded as a
minimum euclidean distance classification in the standard 2-simplex.
For the case of Lee’s four categories scheme, it is equivalent to add a
fourth category, whose SCCP is D (1/3, 1/3, 1/3). This SCCP is the
centroid of the 2-simplex which means that the contributions of the
three canonical scattering are equal. The boundary of mixed category
is determined by the threshold Ct. When we increase Ct, the area
of the mixed category in the 2-simplex will increase too, which means
more pixels may be classified into this category. The decision boundary
is shown in Fig. 1(b) for Ct = 0.5.
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Figure 1. Mapping the scattering mechanisms of pixels into points
in a 2-simplex plane. (a) The 2-simplex in R3. (b) The decision
boundaries for four scattering categories when Ct is 0.5.

To illustrate the type of mixed scattering mechanisms, we select
an region from AIRSAR L-band PolSAR image over San Francisco.
The normalized scattering vectors were calculated after applying FMD.
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Figure 2. (a) Scatter diagram of selected areas (as marked in
Fig. 3(b)) on standard 2-simplex. (b) Decision boundaries of proposed
seven scattering categories identification scheme.

Scatter diagram of the normalized scattering vectors in standard 2-
simplex is shown in Fig. 2(a). The solid dark lines are the boundaries
for three categories and the red dashed lines are the boundaries for
four categories. From Fig. 2(a), we can find that there are many pixels
appear in the center area of the 2-simplex, whose dominant scattering
mechanism cannot be clearly defined. This can be obviously mitigated
when we add a mixed scattering category.

Inspired by the analyzing of the relative relationship between the
three eigenvalue of Cloude decomposition, Yang et al. [21] considered a
seven scattering categories partition scheme by introducing scattering
power entropy Hp and Ap anisotropy for the Freeman decomposition.

Hp = −
3∑

i=1

Pi log3 Pi, Ap =
b− c

b + c
. (7)

and

P1 =
PS

PS+PV +PD
, P2 =

PD

PD+PS+PV
, P3 =

PV

PS+PV +PD
. (8)

where 〈a, b, c〉 = sort(PS , PV , PD), sort is an ordering function, and a,
b, c is the ranking result from the biggest to the smallest. In terms of
Hp and Ap, all pixels can be divided into seven categories, which are
shown in Table 1, and more details can be found in [21]. then pixels
with mixed mechanism are divided into four categories: “Odd +Vol”,
“Odd+Dbl”, “Vol+Dbl” and “Odd +Vol+ Dbl”. However, the
entropy and anisotropy may be ambiguous for measuring the relative
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relationship of the scattering power, the decision boundaries of the Hp

and Ap plane should be determined very carefully.
In fact, the four mixed categories can be easily determined in the

standard 2-simplex. For example, the fourth category “Odd+ Vol”
means that the two scattering mechanisms: surface and volume are
dominant, moreover PS and PV are very close. The extreme case is
that PS = PV = 0.5 × Span, which corresponds to the center point
D (0.5, 0.5, 0) of the side between A (1, 0, 0) and B (0, 1, 0) in the 2-
simplex. Similarly, the “Odd + Dbl” category corresponds to the point
E (0.5, 0, 0.5) and the “Vol+ Dbl” category corresponds to the point
F (0, 0.5, 0.5), the last category “Odd + Vol+ Dbl” corresponds to the
centroid point G (1/3, 1/3, 1/3) of the 2-simplex. Thus the points
A ∼ G are the SCCPs for the seven categories scheme. The decision
boundary can be determined by calculating the euclidean distance
between the image pixels and these SCCPs, as shown in Fig. 2(b).

Table 1. Seven scattering categories with Hp and Ap.

Low Hp,
arbitrary Ap

High Hp,
high Ap

High Hp,
low Ap

Main scattering
mechanism

Odd Vol+ Odd
Odd +Vol+DblDbl Odd +Vol

Vol Odd+ Dbl

Table 2. Seven scattering categories and their SCCPs.

zone 1
Surface scattering

dominant area. (“Odd”.)
A (1, 0, 0)

zone 2
Volume/canopy scattering

dominant area. (“Vol”.)
B (0, 1, 0)

zone 3
Double-bounce scattering

dominant area. (“Dbl”.)
C (0, 0, 1)

zone 4
Surface and volume hybrid

scattering area. (“Odd+Vol”)
D (0.5, 0.5, 0)

zone 5
Surface and double-bounce

hybrid scattering area. (“Odd+Dbl”)
E (0.5, 0, 0.5)

zone 6
Volume and double-bounce hybrid

scattering area. (“Vol+Dbl”)
F (0, 0.5, 0.5)

zone 7
Triple hybrid scattering area.

(“Odd+ Vol+ Dbl”.)
G (1/3, 1/3, 1/3)
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The seven zones with different scattering mechanisms and their
SCCPs are summarized in Table 2.

The zones 1 ∼ 3 represent the three basic canonical scattering
mechanisms, and others represent mixed scattering mechanisms. By
using the normalized scattering vector p, each pixel is represented
by a point on a standard 2-simplex in R3. The mathematical
and physical meaning of this expression is very intuitive. It also
provides visualization for analyzing scattering mechanism of the three-
component decomposition. By rending the scatter diagram in the 2-
simplex, the distribution of the scattering mechanism can be observed
directly when the points appear in different zones.

3. EXPERIMENTAL RESULTS

In this section, we investigated the performance of the proposed
scattering mechanism identification scheme on real PolSAR data.
NASA/JPL L-band AIRSAR data of San Francisco was used in our
experiments. The image has 1024×900 pixels and the spatial resolution
is about 10 m × 10m. Speckle filtering (5 × 5 Boxcar filter) was
applied to obtain sufficient averaging. The corresponding optical image
was shown in Fig. 3. The two typical three-component model-based
decompositions: FMD and AMD were used for testing. Figs. 4(a)
and (b) show the polarization pseudo-color synthesized images of the
two decompositions with |PS |, |PV | and |PD| for blue, green and red.

3.1. Data Analyzing and Visualization

To further analyze the mixed scattering mechanisms, six sample regions
marked in Fig. 3 are selected, each sample region has 20 × 20 pixels.

Details of the selected areas

1

4

6

2

53

Figure 3. The corresponding optical image of San Francisco data
from Google earth c©.
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(a) (b)

Figure 4. NASA/JPL AIRSAR PolSAR image of San Francisco.
(a) FMD polarization pseudo-color synthesized image. (b) AMD
polarization pseudo-color synthesized image. (|PS |-blue, |PV |-green
and |PD|-red).
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Figure 5. Scatter diagram of the normalized scattering vectors on
2-simplex plane. (a) Scatter diagram of FMD. (b) Scatter diagram of
AMD.

These sample regions consist of three different land covers. Region 1
and 2 are vegetation areas, region 3 and 4 are ocean surface, region 5
and 6 contain different built-up areas. After applying model-based
decompositions, the normalized scattering p is calculated for each
pixel. Then, each pixel is represented by a point on 2-simplex. The
scatter diagrams of the sample regions using FMD and AMD are shown
in Figs. 5(a) and (b), respectively.

From Fig. 5 we can see the scattering behaviors of the sample
regions under different decomposition directly. For example, region 1
and 2 are both vegetation areas, but one comes from forest in
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mountain areas and the other comes from dense trees in the urban
area. For FMD, the pixels in region 1 cover zone 2 (“Vol”) and
zone 4 (“Odd+ Vol”), while pixels in region 2 mainly fall in the volume
scattering dominant zone. The pixels in these two regions under AMD
show more complex scattering mechanisms. The pixels in region 1
cover zone 4 (“Odd +Vol”), and the pixels in region 2 cover all volume
related zones. The two ocean surface regions are consistent for the two
decompositions: all pixels fall into a small region in zone 1 (“Odd”). As
we know the urban areas are one of the most complicated terrain types,
which are composed of various natural and artificial objects. For FMD,
the pixels of region 5 fall into the volume and double-bounce scattering
hybrid area-zone 6 (“Vol+Dlb”) and zone 7 (“Odd+ Vol+ Dbl”),
the triple hybrid area. However, the pixels of region 6 all fall into
the volume dominant zone 2 (“Vol”). For AMD, some of the pixels
coming from region 5 fall into zone 3 (“Dbl”), showing double-bounce
dominant scattering mechanism. The pixels of region 6 cover 4 different
hybrid scattering zones. The differences showed by pixels in region 5
and 6 due to the fact that the buildings of region 5 and region 6 have
different orientations. In addition, more pixels in the volume scattering
dominant areas using AMD show hybrid scattering mechanism.

Odd+Vol+Dbl 

Odd Vol Dbl 

Odd+Vol 

FMD

Odd+Dbl Vol+Dbl 

AMD Odd Dbl Vol 

Odd+Vol Odd+Vol+Dbl Vol+Dbl Odd+Dbl 

(a)

(b)

-40 dB

-40 dB

0 dB

0 dB

Figure 6. The powers of pixels in different scattering categories for
the selected areas. (a) The results under FMD and (b) the results
under AMD.
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A bigger area marked in Figs. 4(a) and (b) is selected to
demonstrate the complex scattering mechanisms contained in natural
scenes. Figs. 6(a)∼(b) show the results using FMD and AMD
respectively. We show the pixels belonging to each scattering category
by their power values. The power values are normalized by the
maximum of each category in dB. These images reveal the scattering
types and the ranges of the scattering powers. For FMD, the forest
areas mainly show volume scattering dominant mechanisms, these
pixels show very close scattering powers. There are also several strong
scatters, whose powers are very high. The urban areas mainly consist of
pixels with volume and double-bounce hybrid scattering (“Vol+Dbl”)
and the triple hybrid scattering (“Odd +Vol+Dbl”). For AMD, we
can find the pixels in volume scattering dominant category have higher
powers than FMD, because the AMD with general volume term obtains
a better fitting to the measurements. In the forest areas, unlike the case
in FMD, many pixels show volume hybrid scattering (“Vol+ Dbl” and
“Odd+Vol+ Dbl”). In the urban area, there are more pixels showing
double-bounce scattering. The two decompositions achieve consistent
result for describing the sports ground in the left bottom, this area
show surface and double bounce scattering (“Odd +Dbl”).

As we can see, for complicated natural scenes, the proposed seven
scattering categories identification scheme provides a discriminative
approach for analyzing hybrid scattering mechanism.

3.2. Classification

To further illustrate the effectiveness of the proposed scheme,
we consider incorporating our scattering mechanism identification
scheme with unsupervised classification. The seven basic categories
partitioning scheme can be used as the initial segmentation. We use a
similar classification scheme that proposed in [21] for illustration. Here
we introduced the algorithm briefly.

(1) Apply three-component model-based decomposition for each pixel,
and compute scattering powers, PS , PD and PV . After that the
normalized scattering vectors are calculated.

(2) Divide all pixels into seven categories as defined in Section 2.
The euclidean distances between pixels and the seven SCCPs are
calculated and the pixels are assigned to the categories with the
minimum distance.

(3) Dividing the pixels of each category into 15 clusters, then we have
a total of 105 initial clusters. Within each category, the initial
clusters are merged to a given desirable number of classes Nd based
on the between-cluster Wishart distance [9]. We determine the
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final number of classes in the ith category simply by its proportion
to the total pixels.

(4) Iteratively apply the Wishart classifier for three to five times to
refine the results.

3.2.1. Results of AIRSAR San Francisco Data

The initial seven categories segmentations corresponding to the two
decompositions are shown in Figs. 7(a)∼(b). From these images, we
can find the seven scattering categories identification scheme revealed
rich contents of the scene. For the traditional FMD, the volume
scattering contributions may be overestimated, therefore the pixels
in the vegetation areas and the right urban areas in Fig. 7(a) are
almost all classified into the second scattering category, which is volume
scattering dominant. While in Fig. 7(b), the vegetation areas show
hybrid scattering mechanisms, some pixels are assigned to the fourth
category (“Odd +Vol”) and some are assigned to the sixth category
(“Vol+ Dbl”). Unlike the FMD that few pixels are assigned to the
seventh category (“Odd + Vol+ Dbl”), many pixels in urban areas

C1 C8

C16C1

C1 C7
(a) (b) (c)

(d) (e) (f)

Figure 7. Classification results on AIRSAR San Francisco data.
(a) Seven classes initial segmentation using FMD. (b) Seven classes
initial segmentation using AMD. (c) The initial segmentation using H-
alpha decomposition. (d)∼(f) Final classification results after iterated
clustering corresponding to (a)∼(c).
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show triple hybrid scattering mechanisms for AMD. The same case
appears for the third category (“Dbl”), there are more pixels in urban
areas show double-bounce scattering dominant For AMD.

After the initial seven scattering categories segmentation, pixels
in each category were divided into many small clusters and then were
merged to a given desirable number of classes. The total number of
classes was 16. When merging was completed, the iterated Wishart
classifier was applied for refinement. The final classification results
for the three decompositions are shown in Figs. 7(d)∼(e). For better
comparison, we rearranged the labels by the average powers of each
classes from low to high. We use cold colors for classes with low
average powers and warm colors for classes with high powers. For
the two model-based decompositions, the final results both show good
performance. The details of the ocean surface are well distinguished.
The street patterns associated with city blocks are clear and the
vegetation areas show rich texture information.

We also compared the results with the H/A/α-Wishart
classification algorithm, which finally segments the image into 16
classes. Fig. 7(c) shows the 8-classes segmentation map by partitioning
the H-α plane. Though the H/A/α decomposition is roll-invariant,
the buildings around region 6 which do not aligned in the along track
direction are still misclassified as forest areas.

3.2.2. Results of DLR E-SAR Data

The experimental L-band PolSAR data was collected by DLR E-SAR
system from the Oberpfaffenhofen area of Germany. The image size

(b)(a)

Figure 8. E-SAR PolSAR data set over Oberpfaffenhofen. (a) Colored
image with Pauli matrix components. (b) The corresponding optical
image from Google earth c©.
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(b)

(c) (d)

C1 C7
(a)

C16C1

Figure 9. Classification results on E-SAR Oberpfaffenhofen data.
(a)∼(b) Seven classes initial segment by the proposed scattering
mechanism identification after applying FMD and AMD. (c)∼(d) The
final classification results after iterated clustering corresponding to the
initial segmentations shown in (a)∼(b).

is 1300 × 1200 and filtered by a 3 × 3 boxcar filter. Fig. 8(a) shows
the colored image with Pauli matrix components and Fig. 8(b) shows
the corresponding optical image. The classification results for the
two model-based decompositions are shown in Fig. 9, with the initial
classification maps.

The initial seven categories segmentation maps (as shown in
Figs. 9(a) and (b)) demonstrate the existence of various complex hybrid
scattering mechanisms. In the final classification results, forest and
cropland are well classified, the areas with surface and surface hybrid
scattering mechanisms are distinguished well for separating airport
runways, grassland and bareland. We can recognize the hangars along
the runway and the metal reflectors in the airport area. The built-up
areas show complex patterns. The building blocks facing to the radar
sight directly induces strong double-bounce reflection, and then they
are coded with the warmest color.
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4. DISCUSSION

The proposed scattering identification scheme aims to solve the
problem of more detailed segmentation for pixels whose dominant
scattering are not clearly defined. Fig. 2(a) illustrated that only one
mixed scattering category is not enough to distinguish the scattering
mechanisms contained in complex scenes. The results showed in Fig. 5
and Fig. 6 demonstrated the ability of the proposed scheme to detailed
segment the mixed scattering mechanisms. Compared to Lee’s [9]
and Yang’s [21] schemes, the proposed schemes is more direct and
the decision criterion is very simple, no predefined threshold is needed.

The proposed scattering mechanism segmentation scheme actually
provides an objective tool for analyzing the results obtained by model-
based decomposition. We mainly illustrate two typical decomposition
algorithms, the FMD and AMD, any other proposed model-based
decomposition algorithms [24, 27] can also be analyzed in a similar
way. The differences revealed in Fig. 5 and Fig. 6 for FMD and AMD
show that the proposed scheme can analyze the result of model-based
decomposition effectively, which can help us understanding different
decomposition algorithms in a more intuitive way.

We also incorporate our scheme with unsupervised classification,
which is a common and classic topic in SAR image processing. The
proposed scheme provides good initial segmentations, as shown in
Figs. 7(a)∼(b) and Figs. 9(a)∼(b). The final results showed in
Figs. 7(d)∼(e) and Figs. 9(c)∼(d), demonstrate the initialization is
feasible and effective. As we can see, the classification results do
not benefit much more from the proposed method, compared to
the result in Fig. 7(f). Since the two algorithms both take an
iterative Wishart classifier to refine the results, when the number
of iterations is large enough, their results will become very similar.
The classification strategy we adopted does not make full use of the
proposed scattering mechanism identification method, developing a
more suitable classification scheme will be a future work.

Our scattering mechanism identification scheme can also be easily
extended to the four-component decomposition [28]. Since there are
four basic scattering terms, the dimensionality of the normalized
scattering vector is four, and it represents a point on standard 3-
simplex in R4. The four vertices then represent four pure scattering
mechanisms: surface, volume, double-bounce and helix scattering.
Considering all the combinations of the four scattering mechanisms,
we can totally define 15 categories and their SCCPs in R4. The
scattering mechanism identification process is similar to the case of
three-component decomposition. However, we should note that, since
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the reflection symmetry is approximately hold for the common cases,
the magnitude of the helix component may be very low compared
with other three terms, how to deal with the pixels with helix-related
scattering needs further investigation.

5. CONCLUSION

We have proposed a simple but effective scattering mechanism
identification scheme for analyzing the mixed scattering mechanisms
obtained by model-based decomposition. By defining the normalized
scattering vectors and the SCCPs, we formulated the scattering
mechanism identification problem to dividing the 2-simplex in R3

by Euclidean distances. Compared to other schemes, the proposed
partitioning scheme was intuitively clear and there was no need
to worry about the threshold problem. The form of scatter
diagram on standard 2-simplex plane also provided a visualization
method for analyzing scattering mechanisms of the model-based
decomposition. Data analyzing and classification combined with
different three-component model-based decomposition on real PolSAR
images demonstrated the effectiveness of the proposed scheme.
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