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Abstract—This paper presents a novel artificial neural network
(ANN) model estimating vehicle-level radiated magnetic emissions of
an electric car as a function of the corresponding driving pattern.
Real world electromagnetic interference (EMI) experiments have
been realized in a semi-anechoic chamber using Renault Twizy.
Time-domain electromagnetic interference (TDEMI) measurement
techniques have been employed to record the radiated disturbances
in the 150 kHz–30 MHz range. Interesting emissions have been found
in the range 150 kHz–3.8MHz approximately. The instantaneous
vehicle speed and acceleration have been chosen to represent the
vehicle operational modes. A comparative study of the prediction
performance between different static and dynamic neural networks has
been done. Results showed that a Multilayer Perceptron (MLP) model
trained with extreme learning machines (ELM) has achieved the best
prediction results. The proposed model has been used to estimate the
radiated magnetic field levels of an urban trip carried out with a Think
City electric car.

1. INTRODUCTION

Vehicular emissions can be divided into three major classes: acoustic
(audible) noise, exhaust emissions, i.e., gases as well as particles, and
electromagnetic disturbances, i.e., conducted & radiated emissions.
Several works have correlated the driving profile with exhaust
emissions estimated from emission models or measured on a chassis
dynamometer [1–8]. The influence of the driver behavior on the real
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world exhaust emissions has been analyzed using onboard exhaust
measurement system in [9, 10]. The Electronics department at the
University of Alcala (UAH) has developed an onboard measurement
equipment to register the driver activity, vehicle state and road
conditions as well as the corresponding exhaust emissions in real
traffic conditions [11]. This was the starting point of a research line
concerning the electromagnetic emissions of electric vehicles.

Electric drive vehicles have already been geared-up into mass
production for energy conservation and environment protection
purposes. EMI issues in this type of vehicles could become more severe
than ever. Power converters usually operate at high frequencies and
switch on high voltages as well as currents generating high level low
frequency EMI. For example, both conducted and radiated magnetic
field emissions due to a hybrid car have already exceeded the limits
established by CISPR 25 [12]. Moreover, the results from the emissions
tests carried out on 7 different electrically powered vehicles, with one
exception, have exceeded the emission limits specified by 95/54/EC,
CISPR 12, and 97/24/EC standards [13].

Real traffic electromagnetic radiated emissions due to vehicles
have not been evaluated. Moreover, recent studies on automotive
electromagnetic compatibility (EMC) have not adequately addressed
the question of whether the driving regime affects the on-road radiated
disturbances levels and frequency content. Furthermore, currently
available automotive EMC standards, e.g., CISPR 12, SAE J551,
2004/104/EC, don’t discuss the impact of the driving profile on
the corresponding real world radiated interferences. Some EMC
standards or directives, e.g., category 507 in the 4th edition of AECTP
500 [14], require measuring the radiated fields with the vehicle under
test running at some constant speeds, i.e., steady state conditions.
But, there are not standards requiring measurements during dynamic
conditions like: idle (stationary), start-up, steady state cruise (high
constant speed), various levels of acceleration/deceleration, normal
braking, regenerative braking, and charging. Besides, there are
no models capable of accurately correlating the vehicular radiated
electromagnetic fields in real world with the driving characteristics.
Recent studies have shown that the frequency content and intensity
of the magnetic fields inside electric [15] and hybrid [16] vehicles are
continuously changing with driving modes.

The problem is that measuring real traffic vehicular radiated fields
in a direct way is a very complicated task because of the large size
of antennas in low frequency ranges. Furthermore, such antenna
would receive a lot of radiated waves from various interfering sources
like: other vehicles, WiFi, GPS, Bluetooth, television broadcast, radio
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broadcast, mobile networks, satellite networks, and power lines. In
previous articles [17, 18], authors have already proposed a procedure
of three steps to solve this problem as shown in Figure 1. In this
paper, the same methodology has been applied on a Renault Twizy
and a Think City.

Figure 1. Procedure for estimating real traffic vehicular radiated
emissions in terms of the driving profile.

Driving behavior has an effect on the output power of the
motor and consequently its emissions. Driving dynamics and the
corresponding radiated electromagnetic waves due to a certain vehicle
under test should be registered simultaneously to study the relationship
between them. The driving style can be described by a lot of variables
such as: vehicle velocity, engine speed, linear acceleration, frontal
inclination, regime engine, following distance, relative lane position,
steering wheel angle, yaw angle, positions of pedals, use of accessories,
and road grades (i.e., uphill or downhill) [19]. On-road measurement of
some of these parameters is a straightforward task through the onboard
diagnostic electronic system of the vehicle itself. Neural models have
been developed to estimate the pedals activity in terms of the engine
RPM, vehicle velocity, linear acceleration, and the frontal inclination
in [20]. Moreover, a neural classifier has been proposed to determine
the gear position as a function of the vehicle speed and the engine RPM
in [21]. Some studies have used the vehicle velocity and acceleration
to describe the operational modes of the vehicle [7, 8, 10, 22]. Whilst,
other researchers have chosen the velocity as well as the product of
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velocity and acceleration to characterize the driving regimes [2]. In
this paper, the vehicle instantaneous speed and acceleration have been
considered to represent the driving characteristics.

ANNs have been exploited in different EMC problems such as
detection and identification of vehicles based on their unintended
radiated emissions [23], target discrimination [24, 25], calculation
of multilayer magnetic shielding [26], estimating PCB configuration
from EMI measurements [27], modeling of the integrated circuits
immunity to conducted electromagnetic disturbances [28], recognition
and identification of radiated EMI for shielding apertures [29],
prediction of electromagnetic field in metallic enclosures [30], adaptive
beamforming [31, 32], PAD modeling [33], cross talk on PCB &
radar cross-section of cylinders with apertures [34], and detection of
dielectric cylinders buried in a lossy half-space [35]. The computational
capabilities of ANNs have been already utilized to estimate exhaust
concentrations as a function of traffic and meteorological variables
in [36]. Unlike the computational electromagnetic (CEM) tools, ANNs
can provide time varying inputs and deal with the problem as a black
box.

TDEMI measurement systems provide some capabilities that
could never be achieved using their traditional frequency domain
counterpart like: improvement of impulsive emissions measurements
and reduction of the measurement time. Nevertheless, there are two
problems of the current time domain EMI measurement approaches:
the limited dynamic range as well as the limited depth of memory to
store a sufficient set of time domain data [37, 38]. The measurement
methodology followed in this paper is based on time domain
methodology using digital oscilloscope to save the overall measurement
time.

Most researchers interested in the measurement and analysis of
electromagnetic emissions from electric driven vehicles concentrated on
the magnetic field data [15, 39–43]. Furthermore, recent measurements
of electromagnetic emissions from a hybrid vehicle showed that the
level of the electric radiated disturbances has been below the limits
established by the CISPR 25 [12]. This is why in this paper, only
the magnetic field data has been employed for training and testing the
neural networks.

The contribution of this paper is to introduce a novel neural
black-box model estimating the real time vehicle-level radiated EMI
from an electric car in terms of the corresponding driving profile.
The objective of that proposal is to quantify the change in real
traffic radiated disturbances due to a corresponding perturbation in
the driving dynamics. This can lead to suggesting traffic control
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guidelines minimizing the vehicular radiated electromagnetic fields.
For example, model-based traffic control determining the dynamic
speed limits to reduce fuel consumption and exhaust emissions has
been presented in [44]. Besides, such a model can be used for
the comparison of EMI emissions from trips with different driving
parameters. Furthermore, such type of models can be integrated into
traffic network simulators to better understand the impact of traffic
policies, including introduction of intelligent transport systems (ITS),
on the electromagnetic environment.

The rest of the paper is organized as follows: Section 2 illustrates
the measurement procedure followed in this work. Afterword, neural
model development details are described in Section 3. Then, the
experimental results are discussed in the fourth section. Finally, the
conclusions and future works are included in the last section.

2. METHODOLOGY

The arrangement of the measurement system used in this article is
outlined in Figure 2. Tests have been done inside a semi-anechoic
chamber in the 150 kHz–30MHZ range. Electric as well as magnetic
fields have been measured. The antennas have been put at a distance
of 1 meter behind the car under test; because in this case the motor
was in the rear part of the car. A loop antenna has been used to
measure magnetic radiated EMI signals as shown in Figure 3. Anti-
aliasing filters weren’t needed because the bandwidth of the antenna
was 150 kHz–30 MHz.

Electric car under test

Wheel Speed Sensor
Oscilloscope 2

Oscilloscope 1

LabVIEW-based software

Figure 2. Schematic diagram of the measurement setup.

EMI signals have been sampled at 125 MHz, the sweep duration, or
the capture time, was 100µs, and time between sweeps, i.e., sweeping
time, was 1 second. The relationship between sweeping, sampling
and capture times has been explained in [17]. It’s noteworthy that
authors are not interested in absolute values of radiated emissions.
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Figure 3. ROHDE & SCHWARZ loop antenna used in the
measurements.

The key point in this work is to quantify the relative change of radiated
disturbances as a response to changes in the driving variables.

The driving profile has been registered by measuring the wheel
rotational speed. The vehicle has been jacked up some centimeters
from the ground by means of wood supports. A rely as can be seen in
Figure 4(a) has been used to design the speed measurement system.
More details of the wheel speed measurement circuit are illustrated in
Figure 4(b). The velocity of the car has been changed manually. Six
magnets have been fixed along the circumference of one of the rear
wheels with a separation of 60 degrees approximately. This electronic

 

Rely 

Wood 
support

Rely support 

Magnets 

(a) (b)

Figure 4. Wheel speed measurement system. (a) Magnetic sensor
(rely). (b) Speed measurement circuit.
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system has been fixed near the wheel such that the rely conducts when
a magnet passes. The wheel speed signal has been sampled by another
oscilloscope at a rate of 10 kHz. The sweep duration was 500 ms, and
time between sweeps was also 1 second. These values for the speed
measurement system have been chosen by trial and error.

A labVIEW software application has been designed to synchronize
and save the sweeps of the EMI and speed signals. At the end of each
experiment, two matrices are available in the database of the PC: EMI
matrix and speed matrix. The rows represent the time-domain sweeps
and the columns represent the samples within sweeps.

With respect to the EMI signals matrix: samples of electric or
magnetic field are measured in Volts. In order to take into account
the errors due to the antenna factor and the cable losses, Fast Fourier
Transform (FFT) is applied to each sweep to convert it from time to
frequency domain. To calculate the field intensity in dBuV/m, Eq. (1)
should be considered where V is the FFT point to be corrected, F is
the antenna factor and L is the cable losses. It has been found that the
magnetic radiated emissions are concentrated in the 150 kHz–3.8 MHz
frequency range. Thus; sweep average value has been easily calculated
by averaging the sweep instantaneous field values in that range.

E (dBuV/m) = 20 ∗ log(V ) + 120 + F (dB/m) + L (dB) (1)

On the other hand, the speed matrix contains samples of the
digital signal resulting from the sensor. To calculate the sweep
instantaneous speed, Eq. (2) should be considered where D is the wheel
diameter in meters, C is the number of pulses per sweep, N is the
number of pulses per turn, in this case 6, and T is the sweep duration
in Seconds. With the acquired instantaneous speed data, instantaneous
acceleration has been calculated by forward finite difference method.

speed (km/h) =
C

N

1
T

πD

1000
3600 (2)

3. ANN MODEL DEVELOPMENT

ANNs have been widely used in various applications in recent years.
Since the basic back-propagation learning algorithm is too slow for
most practical applications, there have been extensive research efforts
to accelerate its convergence. In this work, different gradient-descent
variations of the backpropagation algorithm have been considered
like Levenberg-Marquardt (LM) [45], Scaled Conjugate Gradient
(SCG) [46], One Step Secant (OSS) [47], and Quasi-Newton BFGS [48].

ELM is considered a recently emerging learning algorithm that
overcomes some challenges faced by the conventional backpropagation
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training such as: slow learning speed, trivial human intervene, local
minima, and poor computational scalability [49]. ELM is designed
for single hidden layer feedforward neural network topology. The
ELM-trained networks have been proven to satisfy the universal
approximation property [50]. This learning algorithm has been
exploited to train the MLP neural network in this paper.

Couple of reasons can lead to the failure of a given ANN. Firstly;
improper initialization can cause the model parameters to fail to
converge to the proper values. On the other hand, an insufficient
number of hidden neurons can lead to the inability of the given model
to implement the desired function. In this work, to avoid the first
possibility, each neural model was trained and tested 10 times. The
network architecture with the lowest root mean square error (RMSE)
on the testing data set has been chosen. The RMSE has been calculated
according to Eq. (3) where N is the size of the testing dataset, P is the
vector of predicted values by the model, O is the vector of observed
or measured values by the measurement system. With respect to the
second reason, there is no theory yet to explain how to choose the
optimal number of hidden neurons to approximate any given function.
If the hidden neurons are too few, a high training error and high
generalization error would result due to under-fitting. On the contrary,
if the hidden neurons are too many, there would be a low training
error, but there would still be a high generalization error due to over-
fitting. In most situations, the best way to determine the optimum
size of the hidden layer is to train several networks and estimate the
generalization error of each [51, 52]. In this paper, the network growing
technique [51] is applied by sequentially adding hidden neurons from
1 to 10 comparing the testing RMSE.

RMSE =

[
1
N

N∑

i=1

(Pi −Oi)2
]1/2

(3)

In general, two types of neural models based on number of inputs
have been tested. All models have only one output that’s the level
of radiated emissions in dBuV/m. The first type of models has only
single input: the speed while the other type of models has two inputs:
speed and acceleration. Static and dynamic neural architectures have
been employed in this paper. Static topologies include the linear layer,
MLP, cascade [53], and double hidden layer networks. The linear layer
contained always one neuron and has been trained with the least mean
square (LMS) algorithm [52]. The cascade feedforward structure is
the same as the MLP with an extra connection form the inputs to the
output layer. Dynamic models include: focused time delay network
(FTDN), Distributed time delay network (DTDN), layer recurrent



Progress In Electromagnetics Research, Vol. 139, 2013 679

or Elman network (LRN), and nonlinear autoregressive with external
input (NARX) network. The FTDN structure contains delay elements
at the input of the hidden layer. The DTDN topology contains delay
elements at the input of both the hidden and output layer. All the
networks except for the linear layer use log-sig hidden layer (s) and
linear output layer.

Table 1 demonstrates the best results obtained from testing all the
neural network topologies. It also points out that the relation between
the instantaneous vehicle operational variables and the corresponding
radiated EMI levels is nonlinear because of the failure of the linear layer
to model this relationship. Moreover, the effectiveness and robustness
of the ELM algorithm can be noticed comparing the training times
needed to achieve similar performance. Thorough analysis of the
results given in this table suggests that two models can be candidates
to be used for estimating the radiated emissions in terms of the driving
characteristics: the single input NARX model and the double inputs
MLP model. This result is logical because the problem of interest
is a dynamic one. That’s the current level of the radiated emissions
depends on the corresponding value of the speed as well as its history.
Consequently, if only the speed signal is considered as an input, a
dynamic model will give the best estimation results. However, if both
the speed and its derivative are considered, a static model will give the
best results. Authors prefer to choose the double-input ELM-trained
MLP model because of its short training time relative to the single-

Table 1. Testing results of the different neural models.

Inputs  
Network 

Type 
Topology 

Learning 

Function  

Delays (Input 

/ Feedback)  

Neurons 

(h  /h  )  
RMSE 

Training 

Time 

Speed 

Static 

Linear layer LMS 

 

1 8.7245 40 m 

MLP ELM 3 4.822 5 h 35 m 

Double layer SCG 2 2 4.8361 2 d 20 h  

Cascade BFGS 2 4.8290 2 h 6 m 

Dynamic 

FTDN LM 1 5 4.8499 1 h 7 m 

DTDN LM 1 1 3 4.8503 5 d 1 h 17 m 

LRN SCG 1 2 4.8434 1 d 7 h 

NARX BFGS 2 1 2 4.7934 5 h 56 m 

Speed & 

Acceleration 

Static 

Linear layer LMS 

 

1 8.8006 45 m 

MLP ELM 9 4.7425 1 h 40 m 

Double layer OSS 2 6 4.8388 19 h 

Cascade SCG 2 4.8996 8 h 

Dynamic 

FTDN LM 1 4 4.8463 1 h 28 m 

DTDN OSS 1 1 2 4.8574 1 d 15 h 

LRN OSS 1 2 4.8481 1 d 22 h 

NARX SCG 2 2 2 4.8625 20 h 35 m 

 

 

1 2
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input NARX model as can be seen in the latest column of Table 1.
Figure 5 shows the schematic diagram of the best model.

Speed

Radiated 
EMI

Output layer

(1 neuron)

Hidden layer

(9 neurons)

Acceleration

.

.

.

Figure 5. Topology of the selected model.

4. RESULTS

Three types of velocity profiles have been applied to the Renault
Twizy: pulse, steps, and elementary European driving cycle (EEDC)
profiles as depicted in Figures 6 & 7. The EEDC profile is a standard
driving cycle that is usually used with internal combustion vehicles to
evaluate the exhaust emissions and fuel consumption. The aim of the
pulse profile is to analyze the effect of acceleration and deceleration
on the corresponding radiated interferences. The car has been also
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subjected to the steps profile in order to study the influence of the
sharp accelerations and constant speeds on the corresponding radiated
disturbances. Both the steps and pulse profiles can simulate different
interurban driving behaviors up to 50 km/h taking into account that
the maximum speed of the Twizy was 80 km/h. Moreover, the EEDC
profile approximates the standard urban driving characteristics.

Magnetic field data of the EEDC profile has been exploited for
training as shown in Figure 6 while the data of the two other profiles
has been utilized for testing as depicted in Figure 7. Moreover,
this figure also demonstrates the emissions estimated by the model
shown in Figure 5. The model can successfully distinguish between
4 different levels of different speeds as well as it responds reasonably
to moderate and sharp accelerations. Figure 8 shows that although
the testing dataset contained unseen speed values, e.g., more than
35 km/h, during the training phase, the model could accurately predict
the corresponding level of magnetic emissions as can be observed in
Figure 7.

Generally, magnetic emission levels increased with the increase of
the vehicle speed. Maximum levels of magnetic interferences have been
detected during both acceleration in urban driving represented by the
EEDC training dataset and cruising in the testing dataset as can be
concluded from Figure 8. This is because at acceleration and cruising,
vehicles have to deliver more power to accelerate and maintain constant
speed respectively thus generating more radiated emissions. The same
figure also shows that the idling emissions are the lowest as expected;
as a small amount of power is needed to maintain the engine operation.

In order to complete the proposed solution in [17, 18], the urban
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Figure 9. Map image of the trip in Alcala de Henares (Madrid).
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Figure 10. Estimation of the Think City radiated emissions.

trip illustrated in Figure 9 has been realized with a Think City in Alcala
de Henares (Madrid) recording only the on-road car speed by means
of an onboard Differential Global Positioning System (DGPS) device.
Then the instantaneous speed and calculated acceleration values during
the trip have been applied to the proposed model in this paper to
predict the corresponding magnetic radiated emissions as shown in
Figure 10.

5. CONCLUSIONS

The paper describes a proposal for the prediction of vehicular
electromagnetic pollutant emissions in real traffic conditions. First
of all, an ELM-trained MLP ANN has been developed to estimate
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the real time radiated disturbances of electric vehicles in terms of the
instantaneous speed and acceleration. Experiments had been done
registering the speed and radiated emissions of a Renault Twizy using
a TDEMI measurement methodology. The higher levels of magnetic
disturbances have been detected during both cruising in extra-urban
driving and acceleration mode in urban driving. Finally, the validated
model has been employed to predict the on-road radiated interferences
measuring only the driving profile during an urban trip with a Think
City. The main contribution of the paper is the implementation of
an alternative solution for the complex task of directly measuring the
radiated EMI interferences from road electric transport. In this way,
comparative studies and policies can be applied in order to evaluate
and minimize the environmental effect of electric transport, mainly in
urban areas.

As future work, authors are interested on extending this
methodology to other transport units as well as on tackling with
conducted emissions and their relationship with the radiated ones as a
function of the driving variables.
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