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Abstract—Space time adaptive processing (STAP) is a signal
processing technique for detecting slowly moving targets using airborne
radars. The traditional STAP algorithm uses a lot of training cells
to estimate the space-time covariance matrix, which occupies large
computer memory and is time-consuming. Recently, a number of
compressed sensing based STAP algorithms are proposed to detect
moving target in strong clutter situation. However, the coherence
of the sensing matrix is not low due to the high resolution of the
DOA (direction of arrival)-Doppler plane, which does not guarantee
a good reconstruction of the sparse vector with large probability.
Consequently, the direct estimation of the target amplitude may be
unreliable using sparse representation when locating a moving target
from the surrounding strong clutter. In this study, a novel method
named similar sensing matrix pursuit is proposed to reconstruct the
sparse radar scene directly based on the test cell, which reduces the
computing complexity efficiently. The proposed method can efficiently
cope with the deterministic sensing matrix with high coherence. The
proposed method can estimate the weak elements (targets) as well as
the prominent elements (clutter) in the DOA-Doppler plane accurately,
and distinguish the targets from clutter successfully.

1. INTRODUCTION

A great deal of compressed sensing based methods have been applied
to radar systems [1–9], which recover the target scene from fewer
measurements than traditional methods. In [1], it is demonstrated
that the compressed sensing can eliminate the need for matched filter
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at the receiver and has the potential to reduce the required sampling
rate. [2] presents an adaptive clutter suppression method for airborne
random pulse repetition interval radar by using prior knowledge of
clutter boundary in Doppler spectrum. [3] focuses on monostatic
chaotic multiple-input-multiple-output (MIMO) radar systems and
analyze theoretically and numerically the performance of sparsity-
exploiting algorithms for the parameter estimation of targets at Low-
SNR. In the context of synthetic aperture radar (SAR), [4–9] present
compressed sensing based data acquisition and imaging algorithms.

STAP is a signal processing technique that was originally
developed for detecting slowly moving targets using airborne
radars [10–13]. It represents the simultaneous adaptive application
of both Doppler filtering and spatial beamforming [14, 15], and allows
the suppression of clutter that neither technique could individually
address. While much of the early work in STAP focuses on
the simplest case of side-looking uniform linear arrays (ULAs)
operating monostatically, STAP techniques have also been applied
to bistatic systems, conformal arrays, space-based systems, and other
applications [16]. However, the traditional STAP algorithm uses a lot
of training cells to estimate the space-time covariance matrix, which
occupies large computer memory and is time-consuming.

In recent years, a number of compressed sensing based methods are
proposed to detect unknown moving targets in strong clutter situation
directly on the space-time data, which reduces the measurement data
efficiently [17–20]. In [17], the entire radar scene, DOA-Doppler plane,
is reconstructed using a compressed sensing based approach. In [18]
the problem of clutter is addressed by applying a mask to the signal
in the DOA-Doppler plane before penalizing. However, it is based
on the assumption of known clutter ridge location. The work in [19]
is a combination of the traditional STAP algorithm and compressed
sensing. In [20], a new direct data domain approach using sparse
representation (D3SR) is proposed to estimate the high-resolution
space-time spectrum with only the test cell. However, the method
assumes that the area where the targets locate is known in prior.

The classical model of compressed sensing, y = Φx + e, is
adopted in the above work. The measurement vector y represents
the received echo signal snapshot from fixed range cell, and x is the
collection of the strength of the original transmitted signals (including
targets, clutter or both) from the whole DOA-Doppler plane. e
denotes the measurement noise. The sensing matrix Φ is comprised
of Spatial-Doppler steering vectors in column, which is deterministic
in nature. All the above work assumes that the sparse vector x could
be reconstructed based on the sensing matrix Φ perfectly. However,
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the coherence of the sensing matrix is not low due to the high
resolution of the DOA-Doppler plane, which does not guarantee a good
reconstruction of the sparse vector with large probability according
to [21–26]. The simulation results in Section 3.5 in this paper show that
large reconstruction error exists when relying on the original sensing
matrix Φ.

In this study, a novel method named similar sensing matrix
pursuit, is proposed to reconstruct the K-sparse signal based on the
original deterministic sensing matrix. The proposed method consists
of two parts: the off-line work and the online work. The goal of
the off-line work is to construct a similar compacted sensing matrix
with low coherence, which contains as much as possible information
from the original sensing matrix. The online work begins when the
measurements arrive, which consists of a rough estimation process and
a refined estimation process. In the rough estimation process, an SP
algorithm is used to find a rough estimate of the true support set, which
contains the indices of the columns that contribute to the original
sparse vector. Three kinds of structures of the estimated support
set are considered, and three individual refined estimation processes
are carried out under these three conditions respectively. From the
simulation results, it can be seen that the proposed method obtains
much better performance when coping with deterministic sensing
matrix with high coherence compared with the SP and BP algorithms.

In this paper, we consider the application of detecting unknown
moving targets in strong clutter situation using airborne radar system.
Since the airborne radar scenario has a high CSR (clutter-signal-
ratio, > 20 dB), the prominent elements of the spectral distribution
focus along the clutter ridge in the DOA-Doppler plane. Therefore,
it is reasonable to assume that the received data of the test cell is
sparse in the DOA-Doppler plane [20]. The proposed similar sensing
matrix pursuit method is then used to reconstruct the sparse signal
representing the radar scene. From the simulation results, it can be
seen that both the prominent elements (clutter) and the weak elements
(targets) are recovered accurately in the reconstructed DOA-Doppler
plane, and consequently the targets are distinguished from the clutter
successfully. This is due to the reason that the proposed similar sensing
matrix pursuit method can cope with the deterministic sensing matrix
with high coherence efficiently.

The main contribution of this paper consists of the following three
aspects: First, a novel method named similar sensing matrix pursuit
is proposed to cope with the deterministic sensing matrix with large
coherence. Secondly, a novel compressed sensing based method is
utilized to detect multiple moving targets in strong clutter situation
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directly on the space-time data and we need to know neither the clutter
ridge location nor the target area. Thirdly, the proposed method uses
only the data from the test cell, which reduces the computation burden
efficiently.

The paper is organized as follows: Section 2 introduces a general
space-time model for airborne radar system, which is represented
in a compressed sensing framework. Our main contribution, the
similar sensing matrix pursuit method, is introduced in Section 3, and
the compressed sensing based multiple targets detection algorithm is
introduced in Section 4. The simulation results are listed in Section 5,
and the paper is summarized in Section 6.

2. A GENERAL SPACE-TIME MODEL AND ITS
SPARSE REPRESENTATION

In this paper, we consider an airborne radar system which transmits
K coherent pulse trains and samples the returns on ULAs consisting
of N elements. For each pulse, it collects Q temporal samples from
each element receiver, where each time sample corresponds to a range
cell. The collection of samples for the qth range cell is represented by
an N ×K data matrix F (snapshot) with elements f(n, k) as,

F =




f(1, 1) f(1, 2) . . . f(1,K)
f(2, 1) f(2, 2) . . . f(2,K)

. . . . . . . . .
f(N, 1) f(N, 2) . . . f(N, K)


 . (1)

A test cell is assumed to be comprised of target and clutter
components. First, assuming D targets are observed in the far-field,
the ith target is at a DOA angle of θt

i with Doppler frequency f t
di

. We
can obtain an NK × 1 complex vector yt as,

yt = ΣD
i=1β

(
θt
i , f

t
di

) [
sS

(
θt
i

)⊗ sT
(
f t

di

)]
, (2)

where β(θt
i , f t

di
) is the reflection coefficient of the ith target, ‘⊗’

represents the Kronecker product of two vectors. The spatial steering
vector sS(θt

i) and the Doppler filtering steering vector sT(f t
di
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represented by

sS
(
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i

)
=

[
1, ej 2πd

λ
sin θt

i , . . . , ej(N−1) 2πd
λ

sin θt
i

]T
(3)

and,

sT
(
f t

di

)
=

[
1, e

j
2πft

di
fr , . . . , e

j(K−1)
2πft

di
fr

]T

, (4)
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where d is the distance between the elements of the arrays, and λ and
fr denote wavelength and pulse repetition frequency, respectively.

Besides the target components, there also exists clutter component
yc, which can be considered as a collection of independent scatters as,

yc = ΣNc
i=1β

(
θc
i , f

c
di

) [
sS (θc

i )⊗ sT
(
f c

di

)]
, (5)

where Nc is the number of clutter scatters. θc
i and f c

di
are the DOA

angle and Doppler frequency for the ith clutter scatter respectively,
and β(θc

i , f c
di

) is the reflection coefficient. sS(θc
i ) and sT(f c

di
) represent

the spatial steering vector and the Doppler filtering steering vector
respectively.

Using the above modeling, the NK × 1 complex vector of the test
cell can be modeled as

ytest = yt + yc + e, (6)

where e is an NK × 1 complex Gaussian noise vector.
In this paper, compressed sensing is used to estimate the spectral

distributions of the targets and clutter scatters in the DOA-Doppler
plane. To do so, the DOA-Doppler plane is divided into V × L
square grids, where V and L denote the number of rows (for Doppler
frequency) and columns (for DOA angle), respectively. Each grid is
with the same size ∆θ × ∆fd. Grid (i, j) represents a DOA angle of
θi (θ0 + (i − 1)∆θ) and a Doppler frequency of fdj (fd0 + (i − 1)∆fd),
where θ0 and fd0 represent the initial DOA angle and initial Doppler
frequency. All the grids in the DOA-Doppler plane are mapped into a
2-D vector xtest with the jth column put at the end of the (j − 1)th
column.

Since the airborne radar scene has a high CSR (> 20 dB), the
significant elements of the spectral distribution focus along the clutter
ridge in the DOA-Doppler plane. Therefore, it is reasonable to assume
that the received data of the test cell is sparse in the DOA-Doppler
plane [20]. A small number of grids are occupied by the targets and
clutter scatters in the DOA-Doppler plane, and xtest is a sparse vector.

Based on the above derivation, a system for the test cell is built
in a compressed sensing framework as in (7),

ytest = Φxtest + e. (7)

Φ is a sensing matrix with dimension NK × VL, which is defined as
Φ = [ϕ1 ϕ2 . . . ϕVL] in columns. The ((i− 1) ·L + j)th column of Φ
is defined as follows,

ϕ(i−1)·L+j = sS(θi)⊗ sT(fdj ). (8)

The sensing matrix Φ is with high coherence since V and D are set
large values to obtain a high resolution of the DOA-Doppler plane.
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Though in (7) the radar vectors and matrices are complex valued in
contrary to the original compressed sensing environment, it is easy to
transfer it to real variables according to [28, 29].

For simplicity, (7) is rewritten in a classical format in compressed
sensing with subscripts removed.

y = Φx + e. (9)

3. THE PROPOSED SIMILAR SENSING MATRIX
PURSUIT ALGORITHM

In the recently proposed compressed sensing based STAP algo-
rithms [17–20], it is assumed that the sparse vector x could be re-
constructed perfectly based on the sensing matrix Φ. However, the
coherence of the sensing matrix is not low due to the high resolution of
the DOA-Doppler plane, which does not guarantee a good reconstruc-
tion of the sparse vector with large probability according to [21–26].
Consequently, the direct estimation of the target amplitude may be
unreliable using sparse representation when locating a moving target
from the surrounding strong clutter. In [20], only the prominent el-
ements (clutter) are extracted from the sparse radar scene, and an
additional adaptive filter is used to suppress the clutter to identify
the target. The simulation results in Section 3.5 also show that large
reconstruction error exists when relying on the sensing matrix Φ.

In this study, a novel method named similar sensing matrix pursuit
is proposed to reconstruct the sparse vector x representing the sparse
radar scene. The proposed method can efficiently cope with the
deterministic sensing matrix Φ with high coherence. As a result, the
proposed method can estimate the weak elements (targets) as well as
the prominent elements (clutter) accurately, and distinguish the targets
from clutter successfully in the DOA-Doppler plane.

This section mainly introduces the proposed similar sensing
matrix pursuit algorithm. First, the key component of the proposed
algorithm, the similar compacted sensing matrix is introduced in
Section 3.1, and the whole algorithm is introduced in Section 3.2.
The convergence analysis and complexity analysis of the proposed
algorithm are provided in Sections 3.3 and 3.4, respectively. Finally, a
simple example is provided to compare the reconstruction performance
of the proposed method with the basis pursuit (BP) and SP algorithms,
which are commonly adopted by compressed sensing based works.
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3.1. Construction of the Similar Compacted Sensing Matrix

The construction process of the similar compacted sensing matrix is
based on the similarity analysis of the original sensing matrix. In
this paper, similarity is defined as the absolute and normalized inner
product between any two different columns in the original sensing
matrix Φ, as

λ(ϕi,ϕj) =

∣∣ϕT
i ϕj

∣∣
||ϕi|| · ||ϕj || , 1 ≤ i, j ≤ N and i 6= j. (10)

It can be seen that coherence is the largest similarity among the
columns of a matrix. Equation (10) represents a fundamental quantity
in compressed sensing [21–26]. Here it is named as similarity to
introduce the proposed algorithm properly. It can be seen that any
two columns with large similarity value are coherent with each other,
and vice versa. Therefore, the similarity can be used to distinguish the
coherent columns from the incoherent columns of the original sensing
matrix.

A different way to understand similarity and coherence are by
considering the Gram matrix G which is defined as [23],

G = Φ̃TΦ̃, (11)

where Φ̃T is the normalized sensing matrix obtained from the original
sensing matrix with each column normalized. The off-diagonal entries
in G are the similarity values defined in (10). The coherence is the
off-diagonal entry with the largest magnitude.

A threshold T1 is set properly to distinguish the highly coherent
columns from the incoherent columns as follows. For each calculated
similarity value, {λ(ϕi, ϕj), i = 1, . . . , N, j = 1, . . . , N, i 6= j}, if
λ(ϕi, ϕj) is larger than T1, the columns i and j are added to the set of
highly coherent columns. The remaining columns that do not belong to
the set of highly coherent columns form the set of incoherent columns.
Fig. 1 shows the classification results in a similarity plane, where the
incoherent columns and the highly coherent columns are indicated by
black circles and black squares respectively. In the similarity plane, the
distance between any two columns (ϕi, ϕj) is defined as the similarity
distance dsimilar, which is inversely proportional to the similarity value
λ(ϕi, ϕj), as

dsimilar(ϕi, ϕj) = Ks/λ(ϕi, ϕj), (12)

where Ks is a constant. Therefore the closer the two columns locate in
the similarity plane, the more similar they are (with larger similarity).

Figure 1 also shows that any two highly coherent columns may
not be close to each other (coherent with each other) in the similarity
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Figure 1. Classification results in a similarity plane.

plane. The highly coherent columns are then further divided into a
set of similar column groups (indicated by large circles in Fig. 1) to
ensure that the highly coherent columns in a similar column group are
similar with each other. Moreover, the similar column groups are with
the following property.

3.1.1. Property 1

For any two similar column groups, which are defined as Γ1 =
{α1, . . . , αN} and Γ2 = {β1, . . . , βM}, the similarity between any
two columns from these two different similar column groups, e.g.,
αi ∈ Γ1 and βj ∈ Γ2, is no larger than T1, as

λ(αi, βj) ≤ T1, αi ∈ Γ1 and βj ∈ Γ2, (13)

while the similarity between any two columns in a single similar column
group (e.g., Γ1) is larger than a threshold T2, as

λ(αi, αj) > T2, αi, αj ∈ Γ1 and i 6= j. (14)

Property 1 stipulates that any column in one specific similar
column group is highly coherent with other columns inside the same
group, while incoherent with any column outside the group (including
the highly coherent columns in other similar column groups, and
incoherent columns). This is reflected from Fig. 1 that any column in
one large circle (similar column group) is very close to other columns
inside the circle, while far apart from any column outside the circle.
Therefore, any column in one specific similar column group represents
the characteristics of other columns in the same group. In this paper,
we consider reducing the original sensing matrix to a similar compacted
sensing matrix by drawing a column from each similar column group,
while keeping the incoherent columns unchanged in the new sensing
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matrix. The newly built similar compacted sensing matrix contains as
much as possible information from the original sensing matrix. And
at the same time, it is with low coherence, which guarantees perfect
reconstruction of a sparse vector with large probability. Next, the
construction process of the similar compacted sensing matrix is briefly
introduced.

3.1.2. Construction of the Similar Compacted Sensing Matrix

The set of highly coherent columns and the set of incoherent columns
are denoted by Shc = {ι1, ι2, . . . , ιNhc} and Sic = {ζ1, ζ2, . . . , ζNic},
respectively. Nhc is the number of highly coherent columns, and Nic

is the number of incoherent columns with Nhc + Nic = N . The set of
highly coherent columns Shc is further divided into D similar column
groups, {Γ1, Γ2, . . . , Γi, . . . , ΓD}. We assume that M < D < N .
Each similar column group contains more than one highly coherent
columns, e.g., Γi = {γi

1, . . . , γi
NΓi

}, where NΓi indicates the number

of columns in Γi. Each similar column group is condensed to a single
column. Here we just select a column from each similar column
group randomly considering that the columns in one group are highly
coherent and very similar to each other. We obtain a similar compacted
sensing matrix by combining the condensed columns and the incoherent
columns, as Ψ = [γ1

C , γ2
C , . . . , γi

C , . . . , γD
C , ζ1, ζ2, . . . , ζNic ], where

γi
C denotes a condensed column from Γi. We have the following

propositions for the similar compacted sensing matrix.

3.1.3. Proposition 1

The coherence of the similar compacted sensing matrix is less than or
equal to T1.

Proof: According to Property 1, the similarity between any two
condensed columns is no larger than T1. Moreover, from the division
process of the coherent columns and the incoherent columns, the
similarity between any two incoherent columns, or between a condensed
column and a incoherent column, is no larger than T1. As a result, the
similarity between any two columns of the similar compacted sensing
matrix is no larger than T1. Therefore, the coherence of the similar
compacted sensing matrix, which is the largest similarity, is less than
or equal to T1.
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3.1.4. Proposition 2

[26, 30] Let the signal x be a K-sparse vector and write y = Φx + e.
Denote γ = ||e||2. Suppose that K ≤ (1/µ(Φ)+1)/4 and ε ≥ γ in (15).

x̂ = arg min
x∈RN

||x||1 subject to ||y −Φx||2 ≤ ε (15)

Then the output x̂ of (15) has error bounded by

||x− x̂||2 ≤ γ + ε√
1− µ(Φ)(4K − 1)

, (16)

where µ(Φ) denotes the coherence of the sensing matrix Φ. The output
x̂ of the OMP algorithm with halting criterion ||r||2 ≤ γ has error
bounded by

||x− x̂||2 ≤ γ√
1− µ(Φ)(4K − 1)

, (17)

provided that γ ≤ A(1 − µ(Φ)(2K − 1))/2 for OMP, with A being a
positive lower bound on the magnitude of the nonzero entries of x.

3.1.5. Proposition 3: Setting of the Threshold T1

In order to guarantee a perfect reconstruction of the sparse vector
with large probability, the threshold T1 should satisfy (18) according
to Propositions 1 and 2.

T1 ≤ 1/(4K − 1) (18)

In this paper the threshold T1 is set as T1 = 1/(4K−1). However,
small T1 will result in a large number of highly coherent columns.
While the restrict selection of T1 is true from a worst-case standpoint,
it turns out that the coherence as defined previously does not do justice
to the actual behavior of sparse representations and pursuit algorithms’
performance. Thus, if we relax our expectations and allow a small
fraction of failed reconstructions, then values of substantially beyond
the above bound are still leading to successful compressed sensing [31].
In this work, the threshold T1 is set as 0.4 in the simulation settings.
Meanwhile, the threshold T2 should be set large enough to ensure that
the columns in a similar column group are highly coherent (similar)
with each other. Here the threshold T2 is set as T2 = 0.9.

3.2. The Similar Sensing Matrix Pursuit Algorithm

In this paper, a new algorithm named similar sensing matrix pursuit,
is used to cope with the problem induced by the highly coherent
columns. Firstly, the original sensing matrix is transformed to a similar
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compacted sensing matrix based on similarity analysis. The similar
compacted sensing matrix is with low coherence, which guarantees a
perfect reconstruction of the sparse vector with large probability. An
OMP-type method (SP algorithm) is then used to find a rough estimate
of the true support set based on the similar compacted sensing matrix
and the measurement vector, which contains the indices of the columns
contributing to the original sparse vector. The contributing columns
may include the incoherent columns and the condensed columns. Since
a condensed column is selected from a similar column group randomly,
we can only obtain the indices of the contributing similar column
groups. From the rough estimation process, we can not decide the real
contributing columns in the contributing similar column groups. Next,
a refined estimation process is adopted to provide equal opportunities
to all the columns in the contributing similar column groups. All
the combinations of the columns in the contributing similar column
groups and the contributing incoherent columns are listed, with each
combination forming a candidate support set. Accordingly, we can
obtain a candidate estimate of the original sparse vector using least
square algorithm based on each candidate support set [23, 27]. Finally,
we can find the estimated sparse vector matching the residual best.

The proposed method consists of off-line work and online work.
The off-line work majors in the construction of the similar compacted
sensing matrix. The online work consists of a rough estimation process
and a refined estimation process. The main sparse reconstruction work
is carried out in the rough estimation process, where the SP algorithm
is used to find a rough estimate of the true support set. And the
refined estimation process is a combinational searching work among
the candidate support sets for the one matching the true support set
best.

The estimated support set may only include the indices of
the contributing condensed columns or the contributing incoherent
columns, besides containing both of them. Three individual refined
estimation processes are carried out under the above three conditions.
Under the first condition, the true nonzero entries of the original
sparse vector drop in a number of similar column groups. All the
combinations of the columns in the contributing similar column groups
are listed with each combination forming a candidate support set.
A candidate estimate of the original sparse vector is obtained based
on each candidate support set. Finally, we can find the estimated
sparse vector matching the residual best. Under the second condition
when the contributing columns include the incoherent columns only,
the nonzero entries are easily identified since the compressed sensing
method can clearly identify the entries corresponding to the incoherent
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columns of the sensing matrix. Finally, the combination of the two
methods from the first and the second condition can be used to estimate
the original sparse vector under the third condition. The detailed
procedure of the proposed algorithm is listed in the following.

3.2.1. Algorithm 1: The Similar Sensing Matrix Pursuit Algorithm

Input: Sensing matrix Φ, measurement vector y
Output: The estimated signal x̂O

(i) Construction of the Similar Compacted Sensing Matrix. The
process is same with that in Section 3.1.

(ii) Rough Estimation. The SP algorithm is used to find a rough
estimate of the true support set based on the measurement vector
y and the similar compacted sensing matrix Ψ. The estimated
support set is represented as, â = {â1, â2, . . . , âK}, where K is
the sparsity level of the original K-sparse vector. The estimated
support set â contains the indices of the condensed columns or
the indices of the incoherent columns, or both, which contribute
to the original sparse vector.

(iii) Refined Estimation. Three individual refined estimation
processes are carried out under the following three conditions.
(a) â contains the indices of the condensed columns only.

(1) The estimated support set â is represented as â =
{â1(γi

C), â2(γj
C), . . . , âK(γl

C)}, where â1(γi
C) indicates

that the first element of â corresponds to γi
C , the index

of the ith condensed column. Accordingly, we can obtain
a set b̂ containing the indices of K similar column
groups corresponding to â, as b̂ = {Γi, Γj , . . . , Γl}.
The indices of all the columns in the selected similar
column groups in b̂ are listed and form a final set f̂ as,
f̂ = {γi

1, . . . , γi
NΓi

, . . . , γj
1, . . . , γj

N
Γj

, . . . , γl
1, . . . , γl

N
Γl
}.

We assume that the total number of the indices in f̂ is
H.

(2) Refined Estimation. List CK
H combinations based on

the column indices in f̂ , and each combination forms a
candidate support set, e.g., the pth candidate support set
is represented as Υp = {Υ1

p(γ
i
1), Υ2

p(γ
j
1), . . . , ΥK

p (γl
1)},

p = 1, 2, . . . , Nco, where Υ1
p(γ

i
1) indicates the first

element of Υp corresponding to γi
1, and Nco indicates the

total number of combinations. The proposed algorithm
then solves a least square problem to approximate the
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nonzero entries of the original sparse vector on each
candidate support set (Υp, p = 1, 2, . . . , Nco), and sets
other entries as zero, resulting in an estimate of the
original sparse vector, x̂p [23, 27]. We can obtain the
estimate x̂p as,

x̂p
Υp = Φ†

Υp y, (19)
x̂p
{1,2,...,N}−Υp = 0, (20)

where † indicates pseudo-inverse operation. The matrix
ΦΥp consists of the columns of Φ with indices i ∈ Υp,
x̂p

Υp is composed of the entries of x̂p indexed by i ∈
Υp, and x̂p

{1,2,...,N}−Υp is composed of the entries of x̂p

indexed by i ∈ {1, 2, . . . , N} −Υp [27].
(3) Final Estimate. Among the obtained estimates

{x̂1, x̂2, . . . , x̂p, . . . , x̂Nco}, find the estimate with the
least residual, x̂min, and set x̂min as the output estimated
signal.

x̂O = x̂min (21)

(b) â contains the indices of the incoherent columns only.
(1) The estimated support set â can be represented as

â = {â1(ζi), â2(ζj), . . . , âK(ζ l)}T , where â1(ζi) indicates
that the first element of â corresponds to ζi, the ith
incoherent column. The estimated support set â equals
the true support set of the original K-sparse vector due
to the incoherence between the contributing incoherent
columns.

(2) Estimation. We can obtain the estimate of the original
sparse vector using least square algorithm [23, 27] based
on the true support set â, as

x̂â = Φ†
â y, (22)

x̂{1,2,...,N}−â = 0. (23)

(3) Final Estimate.
x̂O = x̂ (24)

(c) â contains the indices of both the condensed columns and the
incoherent columns.
(1) The estimated support set â is represented as

â = {â1(γi
C), . . . , âV (γj

C), âV +1(ζk), . . . , âK(ζ l)}, where
{â1(γi

C), . . . , âV (γj
C)} correspond to V selected con-

densed columns, and {âV +1(ζk), . . . , âK(ζ l)} correspond
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to K–V selected incoherent columns. Accordingly, we
can obtain a set b̂ containing the indices of V similar col-
umn groups corresponding to {â1(γi

C), . . . , âV (γj
C)}, as

b̂ = {Γi, . . . , Γj}. The indices of all the columns in the
selected similar column groups in b̂ are listed and form a
final set f̂ as, f̂ = {γi

1, . . . , γi
NΓi

, . . . , γj
1, . . . , γj

N
Γj
}. We

assume that the total number of the indices in f̂ is H.
(2) Refined Estimation. List CV

H combinations based on the
column indices in f̂ , and the pth combination can be
represented as rp = {γi

1, . . . , γj
1}, p = 1, 2, . . . , Ncb,

where Ncb indicates the total number of combinations.
Each combination together with all the selected inco-
herent columns, {ζk, . . . , ζ l}, forms a candidate sup-
port set. The pth candidate support set is represented
as Υp = {Υ1

p(γ
i
1), . . . , ΥV

p (γj
1), ΥV +1

p (ζk), . . . , ΥK
p (ζ l)},

p = 1, 2, . . . , Ncb. The proposed algorithm then solves a
least square problem to approximate the nonzero entries
of the original sparse vector on each candidate support
set (Υp, p = 1, 2, . . . , Ncb), and sets other entries as
zero, resulting in an estimate of the original sparse vec-
tor, x̂p [23, 27]. We can obtain the estimate x̂p as,

x̂p
Υp = Φ†

Υp y, (25)
x̂p
{1,2,...,N}−Υp = 0. (26)

(3) Final Estimate. Among the obtained estimates
{x̂1, x̂2, . . . , x̂p, . . . , x̂Ncb}, find the estimate with the
least residual, x̂min, and set x̂min as the output estimated
signal.

x̂O = x̂min (27)

3.3. Convergence Analysis

The original sensing matrix is transformed to a similar compacted
sensing matrix by condensing each similar column group to a condensed
column and keeping the incoherent columns unchanged. The obtained
similar compacted sensing matrix is with low coherence, which
guarantees perfect reconstruction of the sparse vector with large
probability according to Propositions 1 and 3. The SP algorithm is
then used to find a rough estimate of the true support set, â, based on
the measurement vector y and the similar compacted sensing matrix Ψ.
The rough estimate of the true support set, â, gives correct positions
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of the nonzero entries corresponding to the contributing columns due
to the incoherence between any two columns of the similar compacted
sensing matrix. The estimated support set â may contain the indices
of the condensed columns or the indices of the incoherent columns, or
both, which contribute to the original sparse vector. Three individual
refined estimation processes are then carried out under these three
conditions. And the convergence analysis are also based on these three
conditions as follows.
(i) â contains the indices of the condensed columns only.

The rough estimate of the true support set, â, gives correct
positions of the nonzero entries corresponding to the contributing
condensed columns according to Propositions 1 and 3. They
are the indices of the similar column groups contributing to the
original sparse vector. In the refined estimation process, the
combinations of all the columns in the contributing similar column
groups are listed out as the candidate support sets, and the true
support set is among them. Based on each candidate support set,
we can obtain an estimate of the original sparse vector using least
square algorithm [23, 27]. And finally we can get the estimated
signal which matches the residual best. The estimated signal is
with the error bounded by (17) according to Proposition 2.

(ii) â contains the indices of the incoherent columns only.
In this condition, the estimated support set â equals the true
support set of the original K-sparse vector due to the incoherence
between the contributing incoherent columns. We can obtain
the estimate of the original sparse vector using least square
algorithm [23, 27] based on the true support set â. The estimated
signal is with the error bounded by (17) according to Proposition
2.

(iii) â contains the indices of both the condensed columns and the
incoherent columns.
The rough estimate of the true support set, â, gives correct
positions of the nonzero entries corresponding to the contributing
condensed columns and the contributing incoherent columns
according to Propositions 1 and 3. So we can find the contributing
similar column groups and the contributing incoherent columns.
The combinations from the columns of the contributing similar
column groups, together with the contributing incoherent columns
form a number of candidate support sets, and the true support
set is among them. Based on each candidate support set, we can
obtain an estimate of the original sparse vector using least square
algorithm [23, 27]. And finally we can get the estimated signal
which matches the residual best. The estimated signal is with the
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error bounded by (17) according to Proposition 2.

3.4. Complexity Analysis

The proposed approach consists of off-line work and online work.
The off-line work transforms the original sensing matrix to a
similar compacted sensing matrix based on similarity analysis. The
computation complexity mainly focuses on the computation of the
similarity between any two columns of the original sensing matrix,
which is of the order of O( (N−1)N

2 M).
The online work begins when the measurements arrive, which

consists of the rough and refined estimation processes. In the rough
estimation process, an SP algorithm is used to find a rough estimate
of the true support set, â, based on the measurement vector y and the
similar compacted sensing matrix Ψ. The computation complexity of
the rough estimation process is same with that of the SP algorithm.

The estimated support set â contains the indices of the condensed
columns or the indices of the incoherent columns, or both, which
contribute to the original sparse vector. Three individual refined
estimation processes are carried out under the above conditions.
And the complexity analysis will be based on these three conditions
respectively.

(i) â contains the indices of the condensed columns only.
In the refined estimation, CK

H combinations of all the columns
in the contributing similar column groups are listed out as the
candidate support sets. Based on each candidate support set, the
nonzero entries of the estimated sparse vector are calculated using
least square algorithm. So the computation cost is of the order of
CK

H ×O(LS), where O(LS) indicates the order of the computation
cost for the least square algorithm.

(ii) â contains the indices of the incoherent columns only.
The rough estimate of the true support set, â, gives correct
positions of the entries corresponding to the incoherent columns,
based on which we can reconstruct the original sparse vector using
the least square algorithm. So the computation cost is of the order
of O(LS).

(iii) â contains the indices of both the condensed columns and the
incoherent columns.
We assume that â contains the indices of V contributing similar
column groups and the indices of K−V incoherent columns. The
combinations from the columns of the contributing similar column
groups, together with the contributing incoherent columns form a
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number of candidate support sets, among which we can find the
true one that matches the residual best. So the computation cost
is of the order of CV

H ×O(LS).

3.5. A Simple Example

In this example, the proposed similar sensing matrix pursuit algorithm
is compared with the SP and BP algorithms in reconstructing both
binary zero-one and Gaussian sparse signals. The length of the sparse
vector (N) and the measurement vector (M) are set as 20 and 10
respectively. A signal sparsity level K is chosen such that K ≤ M/2. A
support set s of size K is selected uniformly at random, and the original
sparse vector is chosen as either Gaussian signal or zero-one signal [27].
In the experiments, the BP algorithm uses the default settings (refer
to SparseLab [32]), and the SP algorithm uses the parameters given
in [27]. Five hundred Monte Carlo simulations are performed for
each fixed value of K (size of the support set). The reconstruction is
considered to be exact when the l2 norm of the difference between the
original signal x and the reconstructed one x̂ is smaller than 10−5, that
is ||x − x̂||2 < 10−5. Figs. 2 and 3 present the reconstruction results
for binary zero-one and Gaussian sparse signals respectively, which
show that the reconstruction performance of the proposed method is
much better than that of the SP and BP methods, with a successful
reconstruction probability beyond 0.9.
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Figure 2. Frequency of exact
reconstruction for the zero-one
signal.
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Figure 3. Frequency of exact
reconstruction for the Gaussian
signal.

4. COMPRESSED SENSING BASED MULTIPLE
TARGET DETECTION ALGORITHM

In recent work related with compressed sensing based STAP [17–
20], the coherence of the sensing matrix is not low due to the
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high resolution of the DOA-Doppler plane, which does not guarantee
a good reconstruction of the sparse vector with large probability.
Consequently, the direct estimation of the target amplitude may be
unreliable using sparse representation when locating a moving target
from the surrounding strong clutter. The weak element (target) is
always submerged in the prominent elements (clutter). In [20], only
the prominent elements are extracted from the sparse radar scene, and
an additional adaptive filter is used to suppress the clutter to identify
the target.

However, in this paper, we can obtain a reconstructed radar
scene with high accuracy based on the test cell using the proposed
similar sensing matrix pursuit algorithm. Both the prominent elements
(clutter) and the weak elements (multiple targets) can be identified
accurately with the proposed method. Consequently, it is not difficult
to distinguish the weak elements from the prominent elements in the
reconstructed radar scene. In the following, a simple algorithm is
proposed to detect multiple targets in the reconstructed radar scene.

Algorithm 2: Compressed Sensing Based Multiple Target
Detection Algorithm

(i) Use the proposed similar sensing matrix pursuit algorithm to
obtain the estimate of the original sparse vector (xtest), x̂test,
based on the original sensing matrix Φ, and the measurement
vector ytest (the snapshot from the test cell). The entries
corresponding to noise in the original sparse vector xtest are set
as zero in x̂test according to the proposed algorithm. The nonzero
elements of the reconstructed sparse vector x̂test contain the
prominent elements (clutter) and the weak elements (the targets).

(ii) Distinguish the weak elements from the prominent elements to
detect multiple targets. For each element of the estimated sparse
vector, x̂test(i), i = 1, . . . , V D,
if |x̂test(i)| > Tclutter

x̂test(i) corresponds to clutter.
else if |x̂test(i)| > 0

x̂test(i) corresponds to a target.
end

Here Tclutter is a threshold set to distinguish the targets from the
clutter. It is assumed that the CSR is sufficient large (> 20 dB). The
clutter scatters are with much higher amplitudes than the targets. The
entries of x̂test can be arranged in descend order according to their
amplitudes as,

|x̂test[1]| > |x̂test[2]| > . . . > |x̂test[k]|
À |x̂test[k + 1]| > . . . > |x̂test[NK ×VL]|, (28)
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where x̂test[1] denotes the entry that with the largest amplitude, and
the similar definitions for x̂test[2], . . . , x̂test[NK × VL]. The sudden
change of the amplitude between x̂test[k] and x̂test[k+1] is caused by the
large difference between the amplitudes of the clutter scatter and target
element. And the value of Tclutter is set proportional to the smallest
amplitude of the clutter scatters, as Tclutter = κ|x̂test[k]|. The constant
κ is drawn from the range of [10−2, 10−1] to ensure that the targets
can be distinguish from the clutter scatters accurately. The proposed
algorithm can identify multiple targets directly from the reconstructed
radar scene (the DOA-Doppler plane), which reduces the computing
complexity efficiently.

5. SIMULATION RESULTS AND ANALYSIS

In this section, the proposed similar sensing matrix pursuit algorithm
is compared with the D3SR method [20], in reconstructing sparse
radar scenarios. Furthermore, the proposed algorithm is also
compared with several classic STAP algorithms, e.g., the sample matrix
inversion (SMI) method [14], the angle-Doppler compensation (ADC)
method [33] and the D3SR method using the improvement factor loss
(IFLoss), which is a common metric in evaluating the performance of
the STAP methods.

An airborne, side-looking radar system consisting of half-
wavelength spaced ULAs is considered in this section. The radar
system is comprised of 16 arrays and the data is organized in CPIs of 16
pulses. The clutter is uniformly distributed between the directions of
−80◦ ∼ 70◦ and is contained in both the training cells and the test cell.
The DOA-Doppler plane is divided into 200× 180 square grids, where
x-axis is for DOA angle and y-axis for Doppler frequency. The initial
DOA angle (θ0), the DOA angle interval (∆θ), the initial Doppler
frequency (fd0) and the Doppler frequency interval (∆fd) equal −90◦,
1◦, −400Hz and 4Hz, respectively.

First, the proposed algorithm is compared with the D3SR method
in reconstructing sparse radar scenarios in two examples. The
environment setting of the first example is shown in Fig. 4, where
two pairs of targets (appeared as four blue dots) are placed near the
clutter ridge (appeared as a red ridge). One pair of targets are with
the same Doppler frequency (−160Hz), and their DOA angles are
−25◦ and −20◦ respectively. The other pair of targets are with the
same DOA angle (16◦), and their Doppler frequencies are 68 Hz and
56Hz respectively. The color represents the amplitude of the reflection
coefficients (in dB). The clutter is with red color, which represents the
range of [−5, 0] dB from the side color bar. The target point is blue,
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Figure 4. True sparse radar
scene: four targets.

Figure 5. Estimated sparse
radar scene using the D3SR
method: four targets.

Figure 6. Estimated sparse
radar scene using the proposed
method: four targets.

Figure 7. True sparse radar
scene: ten randomly distributed
targets.

which represents the range of [−30, −25] dB. Therefore, the simulation
setting is with a high CSR ranging from 20 to 30 dB.

The simulation results are shown in Figs. 4–6. Fig. 4 gives
the actual sparse radar scene. Figs. 5, 6 provide the sparse radar
scenes reconstructed by the D3SR method and the proposed method,
respectively. From Fig. 5, it can be seen that the D3SR method
wrongly recovers the elements near the clutter ridge besides the clutter
scatters in the DOA-Doppler plane, where the targets are submerged
in the wrongly recovered nearby elements. This is due to the reason
that the columns in the original sensing matrix corresponding to the
elements near the clutter are highly coherent (similar) with the columns
corresponding to the clutter scatters. The D3SR method can not
distinguish the highly coherent columns and assigns large values to
their corresponding elements. However, the proposed method can
estimate the weak elements (targets) as well as the prominent elements
(clutter) accurately, and it can distinguish the targets from clutter
successfully in the DOA-Doppler plane (Fig. 6). This verifies that the
proposed similar sensing matrix pursuit method can cope with the
deterministic sensing matrix with high coherence efficiently.

The second example is utilized to compare the reconstruction
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performance of the two methods (the D3SR and the proposed methods)
in estimating targets with different positions under different noise
levels. Ten targets distributes randomly in the DOA-Doppler plane.
The reconstruction error is adopted to evaluate the reconstruction
performance of the two methods, which is defined as

χ =
||xestimate − x||22

||x||22
, (29)

where x and xestimate represent the true and estimated signal
representing the sparse radar scene respectively. For a given signal-
noise-ratio (SNR), we make 100 trails Monte Carlo simulations
(indicated by NMC). In each trail, the locations of ten targets are
randomly distributed in the DOA-Doppler plane. Figs. 7–9 show
the simulation results from one trial with SNR equaling 20 dB. In
Fig. 8, the targets near the clutter ridge are submerged in the wrongly

Figure 8. Estimated sparse
radar scene using the D3SR
method: ten randomly dis-
tributed targets.

Figure 9. Estimated sparse
radar scene using the proposed
method: ten randomly dis-
tributed targets.
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Figure 10. Reconstruction performance (average reconstruction
error) of the proposed method and the D3SR method with varying
SNRs.
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reconstructed nearby elements when using the D3SR method, while
the proposed method can estimate the weak elements (targets) as
well as the prominent elements (clutter) accurately (Fig. 9). Fig. 10
indicates the variation of average reconstruction error (χaverage =
ΣNMC

i=1 χi/NMC) with SNR varying from 0 dB to 30 dB, which shows
that the proposed method is resilient to the measurement noise. The
proposed algorithm can do perfect detection (< 0.1) of ten targets
with measurement noise when the SNR is above 20 dB. For the D3SR
method, large reconstruction error (> 2) exists even when the SNR
exceeds 20 dB.

Moreover, the proposed algorithm is compared with several classic
STAP algorithms, e.g., the SMI method, the ADC method and the
D3SR method, using the improvement factor loss, which is defined
as [34],

IFLoss =
SCRout/SCRin

(SCRout/SCRin)opt
, (30)

where SCRout and SCRin denote the output signal-clutter-ratio (SCR)
and input SCR, respectively. A classic simulation setup in STAP
simulations is adopted, where a moving target is coming with a DOA
angle of 20◦. Different output SCRs are then considered with varying
Doppler frequencies. Fig. 11 gives the IFLoss performance of different
STAP algorithms. Because the SCR improvement is mostly achieved in
the subspace orthogonal to the clutter, all the STAP methods (the SMI,
ADC and D3SR methods) suffer considerable degradation near the
clutter notch, no matter what size the total space (i.e., system DOF)
is. However, the proposed similar sensing matrix pursuit algorithm
detects the target directly based on the reconstructed radar scene, and
it achieves the comparable performance with the optimal filter.
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angle of 20◦ as a function of the Doppler frequency.
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6. CONCLUSION

In this paper, a novel compressed sensing based method, the similar
sensing matrix pursuit, is proposed to detect unknown moving targets
in strong clutter situation directly on the test cell, which largely
reduces the computing complexity. From the simulation results, it
can be seen that the proposed method can estimate the weak elements
(targets) as well as the prominent elements (clutter) accurately, and it
can distinguish the targets from clutter successfully in the sparse radar
scene (the DOA-Doppler plane).
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