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Abstract—We investigate the design of Concentric Circular Antenna
Arrays (CCAAs) with λ/2 uniform inter-element spacing, non-uniform
radial separation, and non-uniform excitation across different rings,
from the perspective of Multi-objective Optimization (MO). Unlike
the existing single-objective design approaches that try to minimize
a weighted sum of the design objectives like Side Lobe Level (SLL)
and principal lobe Beam-Width (BW), we treat these two objectives
individually and use Multiobjective Evolutionary Algorithm based on
Decomposition (MOEA/D) with Differential Evolution (DE), called
MOEA/D-DE, to achieve the best tradeoff between the two objectives.
Unlike the single-objective approaches, the MO approach provides
greater flexibility in the design by yielding a set of equivalent final (non-
dominated) solutions, from which the user can choose one that attains
a suitable trade-off margin as per requirements. We illustrate that the
best compromise solution attained by MOEA/D-DE can comfortably
outperform state-of-the-art variants of single-objective algorithms like
Particle Swarm Optimization (PSO) and Differential Evolution. In
addition, we compared the results obtained by MOEA/D-DE with
those obtained by one of the most widely used MO algorithm called
NSGA-2 and a multi-objective DE variant, on the basis of the R-
indicator, hypervolume indicator, and quality of the best trade-
off solutions obtained. Our simulation results clearly indicate the
superiority of the design based on MOEA/D-DE.
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1. INTRODUCTION

Circular or ring-shaped arrays consist of a number of radiating
elements arranged on a circle. They offer the advantage of an
all-azimuth scan capability along with the invariance of the beam-
pattern [1–3]. If several circular arrays with different radii share
the same center then the resulting planar array is a Concentric
Circular Antenna Array (CCAA). CCAAs offer several advantages
over other array configurations including the flexibility in array pattern
synthesis and design both in narrowband and broadband beamforming
applications [3–7].

CCAAs provide nearly invariant azimuth angle coverage for
Direction of Arrival (DOA) applications [8, 9]. Recently there has
been a surge of interest in the design of CCAAs with the derivative-
free nature-inspired metaheuristics like Particle Swarm Optimization
(PSO) [10]. Mandal et al. [11] applied a Craziness-based PSO
(CRPSO) and CRPSO with Wavelet Mutation (CRPSOWM) to the
process of optimal designing three-ring concentric circular antenna
arrays (CCAAs) focused on Sidelobe Level (SLL) reduction. Mandal et
al. [12] investigated the SLL reductions without and with central
element feeding in various designs of three-ring concentric circular
antenna arrays (CCAA) using PSO with Constriction Factor Approach
(PSOCFA). Pathak et al. [13] employed a modified PSO algorithm
for thinning large multiple concentric circular ring arrays of uniformly
excited isotropic antennas to generate a pencil beam in the vertical
plane with minimum relative side lobe level.

Existing approaches, such as [11, 12], combine separate objectives
(which are often conflicting) through a weighted linear sum into a
single aggregated objective function. The weighted sum method is,
however, very often subjective, and the solution is sensitive to the
values (more precisely, the relative values) of the weights specified.
It is hard, if not impossible, to find a universal set of weights, that
click on different instantiations of the same problem. Motivated by
the inherent multi-objective nature of the CCAA design problems and
the overwhelming growth in the field of Multi-Objective Evolutionary
Algorithms (MOEAs), we started to look for the most recently
developed MOEAs that could solve the concentric array synthesis
problem much more efficiently as compared to the conventional single-
objective approaches. Our search finally converged to a decomposition-
based MOEA, called MOEA/D-DE [14, 15], that ranked first among
13 state-of-the-art MOEAs in the unconstrained MOEA competition
held under the IEEE Congress on Evolutionary Computation (CEC)
2009 [16]. MOEA/D-DE uses Differential Evolution (DE) [17, 18] as its
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main search strategy and decomposes an MO problem into a number
of scalar optimization sub-problems to optimize them simultaneously.
Each sub-problem is optimized by only using information from its
several neighboring sub-problems and this feature considerably reduces
the computational complexity of the algorithm.

In this paper, we present a multi-objective formulation for the
design of ring symmetric excited CCAA with non-uniform radial
separation and use MOEA/D-DE to obtain an optimal design. We
consider the primary lobe beamwidth and SLL as the two objectives.
Thus the primary design variables at our disposal are:
a) Number of elements in the first ring (N1).
b) Number of rings in the CCAA (M).

The contribution of the present work is two-fold. Firstly, to the
best of our knowledge, this is the first work that deals with the design
of CCAA as a multi-objective optimization problem and attempts to
achieve the best trade-off between two important objectives like BW
and SLL. Our approach is of course motivated by the recently reported
success of evolutionary multi-objective optimization techniques to the
design of linear arrays [19, 20], time-modulated antenna arrays [21],
and monopulse arrays [22].

Secondly, we carry out a parametric study to show how the
solutions depend on two crucial parameters — N1 and M . For each
pair of N1 and M we get a set of Pareto optimal solutions that lie on a
trade-off curve drawn in the bi-objective function space. We compare
the change in the quality of the solutions obtained for varying N1 and
M by tabulating the best compromise solutions. This gives a valuable
insight to the antenna designer on how to determine N1 and M for
a particular design requirement. This can be a valuable tool to help
determine N1 and M such that particular design requirements are met.
Many works in literature have dealt with optimal design of CCAA but
they have not sufficiently dealt with the design aspects of the problem
or proposed a way to determine the parameters to help design CCAA.

Since unlike single-objective optimization techniques (that finish
with a single best solution) the MOEAs return a set of non-dominated
solutions (the Pareto optimal set, to be briefly outlined in Section 2),
we used a fuzzy membership function based approach [23, 24] to
identify the best compromise solutions over each case. To evaluate
the performance of the proposed design method, we compare
the best trade-off solutions returned by MOEA/D-DE with those
obtained with state-of-the-art single-objective algorithms like CLPSO
(Comprehensive Learning based PSO) [25], DEGL (DE with Global
and Local Neighborhoods) [26] and also with the performance of an
UCCAA designed following the method of Dessouky et al. [7]. The
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results of MOEA/D-DE are also compared with those of two other well-
known multi-objective algorithms like Non-Dominated Sorting Genetic
Algorithm (NSGA-II) [27] and Multi-Objective DE (MODE) [28]
that optimize the same two design objectives, on the basis of the
hypervolume indicator and the R-indicator (IR2) [29] metrics. Our
simulation experiments indicate the superiority of the multi-objective
optimization methodology over the conventional approaches to the
design of CCAAs.

2. THE MOEA/D-DE ALGORITHM — AN OUTLINE

Due to the multiple criteria-based nature of most real-world prob-
lems, Multi-objective Optimization (MO) problems are ubiquitous,
particularly throughout engineering applications. As the name indi-
cates, multi-objective optimization problems involve multiple objec-
tives, which should be optimized simultaneously and that often are in
conflict with each other. This results in a group of alternative solutions
which must be considered equivalent in the absence of information con-
cerning the relevance of the others. The concepts of dominance and
Pareto-optimality may be presented more formally in the following
way [30, 31].

2.1. General MO Problems

Definition 1: Consider without loss of generality the following
multi-objective optimization problem with D decision variables x
(parameters) and n objectives y:

Minimize: ~Y = f
(

~X
)

= (f1(x1, . . . , xD), . . . , fn (x1, . . . , xD)) (1)

where ~X = [x1, . . . , xD]T ∈ P and ~Y = [y1, . . . , yn]T ∈ O and ~X

is called decision (parameter) vector, P is the parameter space, ~Y is
the objective vector, and O is the objective space. A decision vector
~A ∈ P is said to dominate another decision vector ~B ∈ P (also written
as ~A ≺ ~B for minimization) if and only if:

∀i∈{1, . . . , n}: fi

(
~A
)
≤fi

(
~B
)

∧∃j∈{1, . . . ., n}: fj

(
~A
)
<fj

(
~B
)

(2)

Based on this convention, we can define non-dominated, Pareto-
optimal solutions as follows:

Definition 2: Let ~A ∈ P be an arbitrary decision vector.
(a) The decision vector ~A is said to be non-dominated regarding

the set P ′ ⊆ P if and only if there is no vector in P ′ which can dominate
~A.
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(b) The decision (parameter) vector ~A is called Pareto-optimal if
and only if ~A is non-dominated regarding the whole parameter space
P.

2.2. The MOEA/D-DE Algorithm

Multi-objective evolutionary algorithm based on decomposition was
first introduced by Zhang and Li in 2007 [32] and extended with
DE-based reproduction operators in [14, 15]. Instead of using non-
domination sorting for different objectives, the MOEA/D algorithm
decomposes a multi-objective optimization problem into a number of
single objective optimization sub-problems by using weights vectors λ
and optimizes them simultaneously. Each sub-problem is optimized
by sharing information between its neighboring sub-problems with
similar weight values. MOEA/D uses Tchebycheff decomposition
approach [33] to convert the problem of approximating the PF into
a number of scalar optimization problems. Let ~λ1, . . . , ~λNp be a set of
evenly spread weight vectors and ~Y ∗ = (y∗1, y∗2, . . . , y∗M ) be a reference
point, i.e., for minimization problem, y∗i = min{fi( ~X)| ~X ∈ Ω} for each
i = 1, 2, . . . , M . Then the problem of approximation of the PF can
be decomposed into Nscalar optimization subproblems by Tchebycheff
approach and the objective function of the j-th subproblem is:

gte
(

~X|~λj , ~Y ∗
)

= max
1≤i≤M

{
λj

i |fi(x)− y∗i |
}

, (3)

where ~λj = (λj
1
, . . . , λj

M
)T , j = 1, . . . , Np is a weight vector,

i.e., λj
i ≥ 0 for all i = 1, 2, . . . , m and

m∑
i=1

λj
i = 1. MOEA/D

minimizes all these N objective functions simultaneously in a single
run. Neighborhood relations among these single objective subproblems
are defined based on the distances among their weight vectors. Each
subproblem is then optimized by using information mainly from its
neighboring subproblems. In MOEA/D, the concept of neighborhood,
based on similarity between weight vectors with respect to Euclidean
distances, is used to update the solution. The neighborhood of the i-
th subproblem consists of all the subproblems with the weight vectors
from the neighborhood of ~λi. At each generation, the MOEA/D
maintains following variables:

1. A population A population ~Xi, . . . , ~XNp with size Np, where ~Xi

is the current solution to the i-th subproblem.
2. The fitness values of each population corresponding to a specific

subproblem.
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Figure 1. Flowchart of MOEA/D-DE algorithm.
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3. The reference point ~Y ∗ = (y∗1, y
∗
2, . . . , y

∗
M ), where y∗i is the best

value found so far for objective i.
4. An external population (EP), which is used to store non-

dominated solutions found during the search.
The flowchart of the MOEA/D-DE algorithm is presented in Figure 1.

For MOEA/D-DE, the best compromise solution was chosen from
the PF using the method described in [23, 24]. The ith objective
function fi is represented by a membership function µi defined as:

µi =





1, fi ≤ fmin
i

fmax
i −fi

fmax
i −fmin

i
, fmin

i < fi < fmax
i

0, fi ≥ fmax
i





(4)

where fmin
i and fmax

i are the minimum and maximum value of the
ith objective solution among all non-dominated solutions, respectively.
For each non-dominated solution q, the normalized membership
function µq is calculated as:

µq =

Nobj∑
i=1

µq
i

Ns∑
k=1

Nobj∑
i=1

µk
i

, (5)

where Ns is the number of non-dominated solution. The best
compromise is the one having the maximum value of µq.

A detailed flowchart illustrating the dynamics of the MOEA/D-
DE is given in Figure 1.

3. MULTI-OBJECTIVE FORMULATION OF CCAA
DESIGN PROBLEM

CCAA consists of antenna elements arranged in multiple concentric
circular rings which differ in radius and number of elements. This
leads to different radiation patterns for different configurations and
parameters of CCAA.

Figure 2 shows the configuration of multiple concentric circular
arrays in XY plane which consists of M concentric circular rings. The
mth ring has a radius rm and Nm number of isotropic elements where
m = 1, 2, . . . , M . Since here we are considering a CCAA where the
elements are considered to be equally spaced along a common circle.
The far field pattern in free space is given by:

E (θ, φ) = 1 +
M∑

m=1

Nm∑

n=1

Im · exp (jkrm sin θ cos(φ− φmn)) (6)
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Figure 2. Concentric circular antenna array (CCAA).

Normalized power pattern P (θ, φ) in dB can be expressed as:

P (θ, φ) = 10 log10

[ |E (θ, φ)|
|E (θ, φ)|max

]2

(7)

where,
rm = radius of mth ring = Nmdm/2π.
dm = inter-element arc spacing of mth circle
φmn = 2πn/Nm = angular position of nth element of mth ring.
φ = azimuth angle, k = wave number = 2π/λ.
Im = excitation amplitude of the elements in mth ring. In

this design all the elements in a particular ring are given the same
excitation.

For non-uniform radial separation [37],

rm+1 = rm +
λ

2
+ ∆mλ, where 0 ≤ ∆m ≤ 1. (8)

However we desire to keep the inter-element spacing at λ/2. The
number of equally spaced elements in mth ring is:

Nm =
2πrm

λ/2
. (9)

The number of elements in the first ring needs to be fixed by
the antenna designer. Simultaneously r1 can be determined. The
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two objectives are primary lobe BW and SLL. Next we provide a
mathematical formulation for the two objectives.

The far field pattern E(θ, φ) can actually be considered as a
function of θ only because it is symmetrical with respect to φ. Hence for
further analysis we will consider E(θ). The SLL is taken as the decibel
level of the sidelobe. To calculate the sidelobe level we calculate where
the array factor reaches local maxima, and the maximum value of all
the local maxima gives us the SLL value.

Let ζ = {θ ∈ ψ|E(θ) > E(θ −∆θ)ΛE(θ) > E(θ + ∆θ)Λθ 6= 0◦}
be the set of angles where local maxima of E(θ) occur. We exclude
θ = 0◦ because at this angle we have the maximum radiation due to
the principal lobe. Also Let Φ = {θ ∈ ψ|E(θ) < E(θ −∆θ)ΛE(θ) <
E(θ + ∆θ)} be the set of angles where local minima of E(θ) is reached.
Let the local minimum closest to 0◦ be α. Therefore α = min(Φ).
Because of the symmetric property of array pattern the primary lobe
beamwidth is 2α.

Now we are at a position to define the two objective functions.

f1 = max

[
10 log10

(
E (ζ)
E (0◦)

)2
]

(10a)

f2 = 2 ·min (Φ) . (10b)

Both the objectives need to be minimized. However the dynamic-
range ratio of the source excitation is needed to be a minimum [34].
We impose a constraint on dynamic range ratio in the following form:

Imax/Imin ≤ 4 (11)

The antenna designer can change the constraint according to his own
choice. Future research can also be based on minimizing dynamic-
range ratio as a separate objective as well. In this paper we deal with
CCAAs with non-uniform radial spacing and non-uniform excitation
across different rings. Thus we have the control over the excitation
amplitudes Im and additional radial separation ∆m. Thus, while
optimizing Im we restrict the normalized excitation amplitudes to be
in the range (1, 0.25), so that the dynamic range ratio is at most 4 and
the constraint is automatically maintained.

4. STUDY OF TRADE-OFF CURVES FOR CCAA
DESIGN

The general well accepted figures of merit of an array pattern are
primary lobe BW and SLL. We want an array pattern to have thin
primary lobe and extremely low sidelobes compared to the primary
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lobe. In other words we need to minimize both the objective functions
for BW and SLL. In this section we investigate how the figures of
merit of the array pattern designed depend on the parameters of the
CCAA. To study how exactly the array pattern varies with the number
of rings (M) and number of elements in the 1st ring (N1) we will
consider two cases. In the first case we will keep N1 constant and
increase the number of rings and detect the best compromise solutions
obtained with MOEA/D-DE. In the second case we keep the number of
rings constant and investigate the nature of the trade-off curves (best
approximated PFs) for different values N1. Next we keep N1 constant
at a certain value and study the trade-off curves for different number of
rings. The control parameters for MOEA/D-DE are set in accordance
with [15] and the setup is summarized in Table 3. In what follows we
report the best results obtained from a set of 50 independent runs of
the algorithm, where each run was continued up to 3 × 105 Function
Evaluations (FEs). This is maintained also for the other algorithms in
Section 5.

4.1. Case 1: Number of Rings is Constant

Here we fix the number of rings M = 3 and show the resulting trade-
off curves obtained with MOEA/D-DE for N1 = 2, 3, 4, 5, 6, 7 in
Figure 3. In Table 1 we show the best compromise values of the
two objectives obtained with MOEA/D-DE for different values of N1.
Table 1 indicates that with increase of N1, BW decreases. But the SLL
does not change uniformly. Thus, there is no significant improvement
in the quality of the solution with larger N1. However greater N1

does imply greater number of elements in the first ring. Hence a

Sidelobe level (SLL) in dB

Figure 3. Trade-off curves for
Case 1.

N1 SLL (dB) BW (degrees)
2 −21.35 34.31
3 −22.13 34.52
4 −22.21 34.13
5 −22.15 33.11
6 −21.76 31.91
7 −22.35 29.50

Table 1. Best compromise table
(Case 1).
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disadvantage is that with greater number of elements, the design-cost
increases.

4.2. Case 2: Number of Elements in 1st Ring Constant

Here we keep N1 as constant and vary number of rings (M). In
other words we take N1 = 5 and show trade-off curves for M = 3,
4, 5, 6 and 7 in Figure 4. Table 2 is similar in spirit to Table 1,
but this time the best compromise solutions are obtained for varying
M . As we increase the number of rings the SLL decreases steadily
but there is phenomenal decrease in beamwidth. Thus, we see that
to produce narrow beamwidth radiation patterns we need a greater
number of rings. Unlike the previous study where we were increasing
N1, increasing M produces radical improvement in the radiation
pattern.

Figure 4. Trade-off curves for
Case 2.

M MSLL (dB) BW (degrees)
3 −22.15 33.11
4 −23.57 24.68
5 −24.10 17.46
6 −26.18 15.05
7 −26.68 13.85

Table 2. Best compromise table
(Case 2).

We see that for M = 3, the best compromise solution shows
beamwidth equal to 33.11¤ and for M = 7 the best compromise
solution has a beamwidth of just 13.85¤. Thus, while the beamwidth
decreases by 19.26¤, the SLL falls only by 4.53 dB. Once again as
in the previous study, increasing the number of rings leads to greater
number of antenna elements. Hence the antenna designer needs to find
a compromise between design cost and quality of radiation pattern.

This parametric study, aided by an MO algorithm, will provide
an idea on how to go about deciding the values of N1 and M so that
specific design requirements are met. The designer can perform similar
simulations and get approximated PFs for different values of N1 and M .
He can find the approximated PF having a solution closest to the point
corresponding to the design requirements. N1 and M corresponding
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to that trade-off curve can be taken as the design parameters of the
CCAA.

5. COMPARATIVE STUDY WITH OTHER DESIGN
METHODS

Over the CCAA design instances, we also compare the performance
of MOEA/D-DE with that of two single-objective optimization
techniques, namely CLPSO [25] and DEGL [26] that are the state-of-
the-art variants of DE and PSO, which have been widely used in past
for various electromagnetic optimization tasks, e.g., see [35, 36]. For
single-objective optimization techniques, we use a weighted linear sum
of the objective functions given in (10a) and (10b). We also compared
MOEA/D-DE results with two other MO algorithms: NSGA-2 [28]
and MODE [32]. Guidelines for selecting the parameters for all the
algorithms are taken from their respective literatures. For MODE, as
control parameters we took F = 0.45, Cr = 0.8, and NP = 100. For
the NSGA-2 algorithm, we took crossover probability = 0.9, mutation
probability = 1/N (N being the total number of antenna elements in
the array), distribution index for crossover = 20, distribution index for
mutation = 20. The detailed parametric setup for MOEA/D-DE and
the two single-objective optimization algorithms have been shown in
Table 3. For comparing the performance of the MO algorithms, we

Table 3. Parametric set-up for MOEA/D-DE, CLPSO, and DEGL
(rd is the difference between the maximum and minimum values of the
d-th decision variable).

MOEA/D-DE CLPSO DEGL

Param. Val. Param. Val. Param. Val.

Pop size 150
Swarm

size
150 Pop size 150

Crossover

Probability

CR

0.9 C1 1.494

Crossover

Probability

CR

0.9

F 0.8 C2 1.494 F 0.8

distribution

index η
20

Inertial

Weight

w

linearly

decreased

from 0.9

to 0.2

Neighbor-hood

size

15% of

Pop size

mutation

rate pm

1/N νd,max 0.9∗rd weight factor fixed, 0.5
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used the following performance indices:
(1) R indicator (IR2) [29]: It can be expressed as

IR2 =
∑

λ∈Λ u∗ (λ,A)− u∗ (λ,R)
|Λ| , (12)

where R is a reference set, u∗ is the maximum value reached by the
utility function u with weight vector λ on an approximation set A, i.e.,
u∗ = maxy∈A uλ(y). We choose the augmented Tchebycheff function
as the utility function.

(2) Hypervolume difference to a reference set (IH̄) [29]: The
hypervolume indicator IH measures the hypervolume of the objective
space that is weakly dominated by an approximation set A, and is
to be maximized. Here we consider the hypervolume difference to a
reference set R.

We will refer to this indicator as IH̄ , which is defined as IH̄ =
IH(R) − IH(A) where smaller values correspond to higher quality as
opposed to the original hypervolume IH .

For comparison purpose, we shall consider the following two cases.

5.1. Case 1: N1 = 8, M = 4

The approximated PFs as well as the best compromise solutions
obtained by MOEA/D-DE are compared with those achieved with two
other MO algorithms — NSGA2 and MODE. The trade-off curves
between two design objectives have been shown in Figure 5. The
corresponding R-indicator and hypervolume indicator values (best,
worst, mean, and standard deviation) are provided in Table 4.
These values clearly reveal that the best approximation of the PF

Sidelobe level (SLL) in dB

Figure 5. Trade-off curves ob-
tained with three MO algorithms
(Case 1).

Figure 6. Array pattern for
N1 = 8 and M = 4.
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Table 4. Best, worst, mean, and standard deviations of the
performance metrics for comparing the MO algorithms (Case 1).

Performance Metric Value type MOEA/D-DE NSGA-2 MODE

R-indicator

Best 3.2e− 07 2.1e− 06 3.9e− 05

Worst 1.9e− 05 7.7e− 04 8.3e− 04

Mean 4.7e− 06 8.9e− 05 1.5e− 04

Std. Dev. 6.0e− 06 3.5e− 05 1.4e− 04

Hypervolume-indicator

Best 5.0e− 06 1.9e− 05 7.3e− 05

Worst 4.5e− 05 2.1e− 03 8.2e− 03

Mean 9.1e− 06 7.1e− 04 2.8e− 03

Std. Dev. 2.1e− 06 7.6e− 05 6.8e− 04

is obtained for MOEA/D-DE. Array patterns corresponding to the
best compromise solution obtained with five algorithms (MOEA/D-
DE, NSGA-2, MODE, CLPSO, and DEGL) are shown in Figure 6. The
design objective values achieved by these five algorithms are tabulated
in Table 5. In Table 5 we also show the design objectives obtained in
case of a uniformly spaced and uniformly excited CCAA (marked as
UCCAA). Figure 6 and Table 5 clearly indicate that the best array
pattern as well as optimal values of the design objectives (for given N1

and M) can be attained by using MOEA/D-DE.

Table 5. Design objectives achieved.

Objectives MOEA/D-DE DEGL CLPSO NSGA2 MODE UCCAA

BW

(Degrees)
22.06 22.10 23.38 22.14 22.10 28.83

SLL −25.31 −20.67 −24.70 −24.05 −22.57 −15.55

5.2. Case 2: N1 = 4, M = 7

For this design instance the best approximated PFs generated by three
MO algorithms are shown in Figure 7. The corresponding R-indicator
and hypervolume indicator values (best, worst, mean, and standard
deviation) are provided in Table 6. These values clearly reveal that the
best approximation of the PF is obtained for MOEA/D-DE. The array
patterns corresponding to the best compromise solution achieved with
MOEA/D-DE, MODE, and CLPSO for this case are shown in Figure 8.
In the same figure we also provide the array patterns obtained with
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Sidelobe level (SLL) in dB

Figure 7. Trade-off curves ob-
tained with three MO algorithm
(Case 2).

Figure 8. Array pattern for
N1 = 4 and M = 7.

Table 6. Best, worst, mean, and standard deviations of the
performance metrics for comparing the MO algorithms (Case 2).

Performance Metric Value type MOEA/D-DE NSGA-2 MODE

R-indicator

Best 5.7e− 08 2.9e− 06 7.7e− 06

Worst 2.5e− 05 7.1e− 04 3.8e− 03

Mean 5.9e− 06 6.5e− 05 2.8e− 04

Std. Dev. 1.3e− 06 7.4e− 05 3.6e− 04

Hypervolume-indicator

Best 2.5e− 06 2.0e− 05 8.8e− 06

Worst 7.2e− 05 5.9e− 04 9.1e− 04

Mean 1.1e− 05 2.8e− 05 3.5e− 04

Std. Dev. 8.7e− 06 4.7e− 05 9.5e− 05

Table 7. Design objectives achieved.

Objectives MOEA/D-DE DEGL CLPSO NSGA2 MODE UCCAA

BW

(Degrees)
12.64 13.84 12.67 12.70 12.70 19.68

SLL −25.58 −22.70 −22.49 −25.06 −23.81 −17.51

single-objective optimization algorithms: CLPSO and DEGL. Mean
values of the design objectives are given in Table 7. The experimental
results indicate that MOEA/D-DE achieves best design objectives for
the second instance as well.



200 Biswas et al.

6. COMPARATIVE STUDY WITH NON-UNIFORM
EXCITATION

Many recent works in the field of CCAAs have been based on non-
uniform excitation method (elements of the same ring being non-
uniformly excited). We compare the results obtained with non-uniform
excitation method against our proposed method (where excitation
across different rings is non-uniform but for elements in the same
ring, it is uniform). For both the methods the same algorithm, i.e.,
MOEA/D-DE is used. Due to space restriction we have showed the
results corresponding to the best compromise solution only for a single
case corresponding to N1 = 4 and M = 7. This is Case 2 in Section 5.
For non-uniform excitation method, the 3D pattern is not symmetric.
Hence we would need to consider the entire 3D pattern to find the
principal lobe BW in solid angles and the SLL.

The 3D plot in the u-v plane is given in Figure 10 and the XZ
view of the same is shown in Figure 9. From the results given in

Table 8. Design objectives achieved.

Objectives
Non-uniform

ring excitation and
non-uniform spacing

Non-uniform excitation

Beamwidth
(Steradians)

0.038 0.177

SLL (dB) −25.58 −18.36

Figure 9. XZ View of 3D pattern.
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Figure 10. 3D plot for non-uniform excitation method.

Table 8 we see that the non uniform excitation method performed in
an inferior manner as compared to our proposed method. Moreover
with non-uniform excitation method the design complexity is huge.

7. CONCLUSIONS

We proposed a new multi-objective optimization framework for the
design of CCAAs with non-uniform radial spacing and non-uniform
excitation across different rings. We optimize the element excitations
such that the SLL and BW are simultaneously minimized till an
optimal trade-off is reached. Previous works considered a weighted
sum approach to handle the two objectives, but the conflicting nature
of the objectives (as is evident from the shape of the approximated
PFs) makes it necessary to adopt an MO approach. If a weighted sum
approach were used we would get only one solution corresponding to
a single point on the Pareto Front, which again may not be the best
trade-off solution. Location of this solution on the actual PF is in
general very much sensitive to the choice of the weights for the two
objectives. If the objective that is easier to optimize for a particular
algorithm is given larger weight then the other objective will not be
sufficiently minimized. However in an MO approach, the objectives
are minimized with a view to attaining the best compromise between
them. MO algorithms give us a set of Pareto-optimal solutions and
this in turn allows greater freedom to the antenna designer to choose
a solution that best fits to his design requirement.

An antenna designer needs to satisfy certain design criteria in a
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cost-effective way. He also needs to fix the number of elements in the
first ring and the number of rings in the CCAA. Having fixed those
parameters he needs to determine the element excitations such that
his design requirements are satisfied. In this article we provided a
parametric study, aided by MOEAs, to show how the best compromise
solutions depend on N1 and M . We illustrated how the solutions
improve with increase in N1 and M . We believe that this parametric
study will provide a valuable insight to the designer of CCAAs.

We undertook simulations on the CCAA design instances with
a very powerful MOEA called MOEA/D-DE. We illustrated that
the best compromise solution returned by MOEA/D-DE is able to
comfortably outperform the best results obtained with well-known
MOEAs like MODE and NSGA-2 as well as state-of the-art single-
objective optimization algorithms: DEGL and CLPSO over two
significant design instances. Our research indicates that powerful
MOEAs can be applied to obtain better results over many problems
in electromagnetics, where there are two or more conflicting design
objectives that are to be achieved simultaneously. A few examples
of such problems are Ultra wideband TEM horn antenna design, wire
antenna geometry design, thinned planar circular arrays, radio network
optimization etc..
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