
Progress In Electromagnetics Research B, Vol. 52, 207–236, 2013

COMPACT-LIKE PULSE SIGNALS IN A NEW NONLIN-
EAR ELECTRICAL TRANSMISSION LINE
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Abstract—A nonlinear electrical transmission line with an intersite
circuit element acting as a nonlinear resistance is introduced and
investigated. In the continuum limit, the dynamics of localized
signals is described by a nonlinear evolution equation belonging to the
family of nonlinear diffusive Burgers’ equations. This equation admits
compact pulse solutions and shares some symmetry properties with
the Rosenau-Hyman K(2, 2) equation. An exact discrete compactly-
supported signal voltage is found for the network and the dissipative
effects on the pulse motion analytically studied. Numerical simulations
confirm the validity of analytical results and the robustness of these
compact pulse signals which may have important applications in signal
processing systems.

1. INTRODUCTION

Dispersive nonlinear systems have received a renewal of attraction
since the pioneering work by Rosenau and Hyman [1] introducing the
concept of solitary waves with compact support and compactons. In
fact, as pointed out by these authors, unlike standard solitary waves
which in spite of being localized, extend indefinitely [2], compact
solitary waves have a finite extension, that is, they vanish identically
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outside a finite region in space, and this results from the delicate
balance between nonlinear dispersion and standard nonlinearity of
the system. After this pioneering work, many studies appeared
with the goal to a deeper understanding of the mechanism at the
basis of this phenomenon and demonstrated that compact waves
may also emerge in a variety of physical contexts and that, its
mathematical characterization is universal and given via a sub-linear
substrate potential or on-site force, a nonlinear diffusion, a sub-linear
convective, to cite just a few. The common mathematical thread of
these diverse phenomena is the degeneracy of differential equations
describing their properties at certain points and the corresponding
failure of the uniqueless theorem at these. In this respect, one
can quote the compactification of nonlinear patterns and waves by
Rosenau and Kashdan [3], Weierstrass criterion and compact solitary
waves by Destrade et al. [4], compact solitary waves in linearly elastic
chain with non-smooth on-site potential by Gaeta et al. [5], and on
compactification of patterns by a singular convection or stress by
Rosenau [6].

In order to put forward this new concept on one hand and to
improve the understanding of some physical phenomena on the other,
many other works appearing in the literature deal with the theory
and the possible relevance of compact solitary waves for applications.
For example, Kivshar [7] reported that intrinsic localized modes in
purely anharmonic lattices may exhibit compactons like properties
while Kevrekidis et al. [8] demonstrated that discrete compactons
cannot travel. Similarly, Dusuel et al. [9] demonstrated that the same
phenomelogy can also appear in nonlinear Klein-Gordon systems with
anharmonic coupling, and then obtained the experimental evidence of
the existence of the static kink compactons in a real system made
up by identical pendulums connected by anharmonic springs. We
may also mention the analysis of patterns on liquid surfaces [10],
the nonlinear dynamics of surface internal waves in a stratified ocean
under the Earth’s rotation [11], the modelling of DNA opening with
1D Hamiltonian lattice [12], the dynamics of a chain of autonomous,
self-sustained, dispersively coupled oscillators [13, 14], the motion
of melt in the Earth [15, 16]; all these studies were performed by
means of the compacton concept, to cite just a few. In systems
where the compactification of wave results from the non-smoothing
of the on-site potential, some different features absent in the original
system characterized by the nonlinear dispersion arise, namely, the
possibility of a wave with compact support to propagate with arbitrary
velocity [3, 5].

Another interesting issue for such structures is whether they
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can be supported by signal processing tools such as nonlinear
electrical transmission lines (NLTLs). The development in NLTLs has
demonstrated its capacity to work as signal processing tools [2, 17].
To cite only a few examples, it has been demonstrated that the
nonlinear uniform electrical line can be used: for extremely wide
band signal shaping applications [18], for waveform equalizer in the
compensation scheme for signal distortion caused by optical fibre
polarisation dispersion mode [19], for doubling repetition rate of
incident pulse streams [20] and in the scheme for controlling the
amplitude (amplification) and the delay of ultra-short pulses through
the coupled propagation of the solitonic and dispersive parts, which
is important in that it enables the characterization of high-speed
electronic devices and raises the possibility of establishing future
ultra-high signal processing technology [21]. So, the emergence of
compactons in nonlinear lattices can be a spring towards the important
improvement of practical results concerning the distortion-less signal in
ultrahigh-speed signal processing tools and in electronic devices where
they may be used to codify data. In this spirit, Comte and Marquié [22]
pointed out that the introduction of the nonlinear resistance in the
series branch of the nonlinear transmission line modeling the front
propagation in reaction-diffusion equations can create a nonlinear
diffusion and then the compactification of kink solitary waves.
Similarly, Yemélé and Kenmogné [23, 24] demonstrated that, if the
NLTL is built conveniently, it may also exhibit dynamics compact
envelope dark solitary waves while English et al. [25] demonstrated
that very narrow intrinsic localized modes can also exist in the discrete
NLTL with inter-site nonlinearities with the speed quite sensitive to
the ratio of intensity to on-site nonlinearities.

Our purpose in this paper is to show that compact-like electrical
pulse signals can propagate in the NLTL with well-defined basic
characteristics and in the continuum limit. To this end, the work is
organized as follows: In Section 2, we present the characteristics of the
NLTL under consideration and derive the circuit’s equations governing
the dynamics of signal voltage in the network. In Section 3, we show
that these equations may be reduced to a nonlinear evolution equation
belonging to the family of nonlinear diffusive Burgers’ equations which
admits a pulse solitary wave with compact support as a solution. Next,
exact discrete solution of the network is derived in Section 4. In
Section 5, by means of a simple perturbation theory, we investigate
dissipation effects of the network components on the compact pulse
motion. Numerical investigations and simulations are carried out in
Section 6 in order to check the validity of the analytical predictions.
Finally, Section 7 is devoted to concluding remarks.
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2. MODEL DESCRIPTION

We consider a lumped nonlinear transmission line which consists of
a number of cells connected as illustrated in Figure 1. Each cell
contains in the series branch a linear inductor L shunted by a nonlinear
resistance (NLR) and in the shunt branch the well-known bias-
dependent capacitor C(V ) responsible for the standard nonlinearity
of the network. Its capacitance is assumed to be expanded as a power
series of the local signal voltage Vn, which appears across the nonlinear
capacitor of the nth cell:

dqn

dVn
≡ C(Vb + Vn) = C0 × (1− 2αVn) , (1)

where C0 ≡ C(Vb) is a constant corresponding to the capacitance of the
nonlinear capacitor at the dc bias voltage Vb, and α ≡ −C ′(Vb)/2C(Vb)
is a parameter characterizing the nonlinearity while qn is the electrical
charge stored in the nth capacitor. From Kirchhoff’s laws, the circuit
equations for the line are given by:

Vn−1 − Vn = L
diLn
dt

,

dqn

dt
= in − in+1,

in = iLn + iNLR
n ,

(2)

where iNLR
n and iLn are the currents passing through the NLR and the

linear inductor L, respectively.

Figure 1. Schematic representation of the lumped nonlinear
transmission line under consideration. Each cell contains the nonlinear
capacitor C(V ) in the shunt branch which induces the standard
nonlinearity, the linear inductor L and the Nonlinear Resistance (NLR)
introducing the linear dispersion and nonlinear diffusion, respectively,
in the network.
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In order to build the circuit that can allow the propagation
of compactly supported electrical signals, it is important to choose
the NLR properly which can create the appropriate nonlinearity
responsible for the compactification of pulse signal voltages in the
network. Works on this issue were first made by Comte and
Marquié [22]. If the NLR is replaced by a nonlinear capacitor, it is
then possible to obtain modulated gray and dark compactons [23].
Unfortunately, neither this nonlinear capacitor nor the NLR with cubic
nonlinearity introduced by Comte and Marquié [22] to compactify kink
solitons may be used to create compact electrical pulse signal in the
NLTL. In this paper we consider the NLR with the following current-
voltage characteristics:

iNLR
n = aδVn + b(δVn)2, (3)

where a is a constant parameter describing the linear or first order
conductance while the parameter b stands for the second order
conductance. In the context of the NLTLs, a also describes either
the linear dissipation (a > 0) or the energy pump (a < 0) in the
network, b a parameter that controls the strength of the nonlinearity
while δVn = Vn−1 − Vn is the voltage across the NLR. Let us mention
that the NLR was introduced recently in NLTL for signal processing
applications and more precisely for nonlinear filtering of images [26, 27],
noise removal on coherent information weakly varying in space, signal
amplification and for modulational instability [28, 29]. This NLR may
be made of operational amplifiers, transistors, or multipliers [30]. More
interestingly, the NLR described by Equation (3) may be viewed also
as a second order approximation of the current-voltage characteristics
of the standard diode, in = i0[exp(eδVn/kBT ) − 1], provided a and
b are positive constants. Accordingly, the case a = 0 gives rise to
the well-known current voltage characteristics of the quadratic diode
operating in the forward bias regime. In the following, we first consider
this latter case and the influence of the linear term will be considered
later.

With the above defined characteristics, Equations (1) to (3) can
then be rewritten and combined into the following set of differential
equations governing signal propagation in the network:

d2Vn

dt2
+ ω2

0 (2Vn − Vn−1 − Vn+1)

= α
d2V 2

n

dt2
− γ

d

dt

[
(Vn − Vn+1)

2 − (Vn−1 − Vn)2
]

(4)

with
γ = b/C0, ω2

0 = 1/LC0, (5)
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and for n = 1, 2, . . . , N − 1. In Equation (4), linear dispersion
results from the linear terms in Vn and are proportional to ω0 while
nonlinearities are described by the quadratic terms. The standard
nonlinearity is described by terms proportional to α while terms
proportional to γ account for the nonlinear diffusion as we will see
below and would represent the nonlinear elasticity in mechanical
systems [9, 31, 32]. In Equation (4), the presence of the first derivative
with respect to time in the term proportional to γ, instead of the
second derivative [23], is very important in the formation of pulse
signal voltages with compact support. Note that, in the absence of the
nonlinear diffusion term, that is, γ = 0, the network can support both
KdV pulse solitons, bright and dark solitary waves of the nonlinear
Schrödinger equation [2]. Therefore, γ may be viewed as a parameter
that controls the strength of the nonlinear diffusion in the network.

3. NONLINEAR DIFFUSIVE BURGERS’ EQUATION

Equation (4) constitutes a set of N differential equations which, in
general, cannot be solved exactly. However, in certain parameter
regimes, the system allows signal voltage with long wavelength. In
this regime (the continuum limit), Vn(t) varies slowly from one cell
to another so that the discrete expressions of Equation (4) can be
approximated by a third-order Taylor expansion about Vn(t), that
is: (i) 2Vn − Vn−1 − Vn+1 = −h2(∂2V/∂x2) + O(h5), (ii) Vn−1 −
Vn+1 = −2h(∂V/∂x) − (h3/3)(∂3V/∂x3) + O(h5), and finally (iii)
(Vn − Vn+1)2 − (Vn−1 − Vn)2 = (2Vn − Vn−1 − Vn+1)(Vn−1 − Vn+1) =
2h3(∂V/∂x)(∂2V/∂x2)+O(h5), with x = nh and where h is the lattice
spacing. Hence, the exact Equation (4) can be replaced by a continuum
representation:

∂2V

∂t2
− ω2

0

∂2V

∂x2
− α

∂2V 2

∂t2
+ 2γ

∂

∂t

(
∂V

∂x

∂2V

∂x2

)
= 0, (6)

where, without loss of generality, the lattice spacing h is taken equal
to 1 so that the space variable x is given in units of cells, which is a
more convenient unit for the NLTL.

To solve this equation, we first show that it can be transformed
into a nonlinear extension of the Burgers’ equation. However,
let us mention that, by applying the well-known Garner-Morikawa
transformation [2] to the discrete Equation (4), that is, taking τ =
ε3/2t, X = ε1/2(n − ω0t) and Vn = εφ(X, τ), the standard nonlinear
KdV equation is retrieved and consequently, we cannot appreciate the
key-role of the NLR in the network. This means that, the above
approximation is not adapted for the derivation of the nonlinear
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evolution equation which takes into account NLR effects on the signal
voltage in the network. This result is understandable since this
transformation rather guarantees the balance between the nonlinearity
and the linear dispersion in the series expansion of the wave amplitude.
In order to take into account the effects of this nonlinear component
in the final approximate equation, we use the following form of the
reductive perturbation method which eliminates linear dispersion and
guarantees the balance between higher and diffusive nonlinearities:

X = ε0(x− vpt), τ = ε1t, V = εφ(X, τ), (7)

where ε is a small parameter measuring the weakness of the amplitude
of the signal voltage, and vp is a constant to be determined. The power
of ε in X is chosen so that even fast variations of the signal voltage with
respect to X (and which characterizes compact structures) are kept in
the resulting equation. Substituting Equation (7) into Equation (6)
and arranging them in a power series of ε, we have a sequence of
equations. First, at the leading order of ε, i.e., ε1, we have:

v2
p

∂2φ

∂X2
− ω2

0

∂2φ

∂X2
= 0, (8)

leading to the following expression for vp: vp = ω0. At the next order,
ε2, it follows that:

2
∂

∂X

(
∂φ

∂τ

)
+ (αvp)

∂2φ2

∂X2
+ 2γ

∂

∂X

(
∂φ

∂X

∂2φ

∂X2

)
= 0. (9)

Integrating once this equation with respect to X, with the assumption
that φ(X, τ) and all its derivatives converge to zero sufficiently rapidly
as X → ±∞, the following equation is obtained:

∂φ

∂τ
+ (αω0/2)

∂φ2

∂X
=

∂

∂X

[
D

(
∂φ

∂X

)(
∂φ

∂X

)]
,

D

(
∂φ

∂X

)
= −γ

2

(
∂φ

∂X

)
,

(10)

where vp = ω0. This equation appears as a particular case of the one-
dimensional K∗(1, 1) Cooper-Shepard-Sodano equation as written in
Rus and Villatoro [33]. Up to now, its physical interpretation is not
yet clear. However, based on equations describing transport properties
of physical systems, namely transport and diffusion equations, it
can be viewed as a nonlinear convective-diffusive equation where
terms proportional to α and γ may describe nonlinear convection
and diffusion, respectively. When γ = 0, Equation (10) reduces to
the well-known inviscid Burgers’ equation which is a prototype of
equations describing shock waves, and has originally been introduced
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as a one-dimensional model of turbulence [34]. The case γ 6= 0 and
D(∂φ/∂X) = const is also known as the Burgers’ equation describing
many physical phenomena, namely the momentum variation of the
viscous fluid, and supports solutions which converge strongly to a
weak solution of the inviscid Burgers’ equation since the diffusion
term simply redistributes energy by dissipation and cannot maintain
stability. However, when the diffusivity D is a spatially varying
function, as it is the case of Equation (10), the diffusion process is
nonlinear and the energy is redistributed via nonlinear interaction and
consequently, can provide a stable propagation of a well-defined wave-
packet. Accordingly, Equation (10) belongs to a family of Burgers’
equations with nonlinear diffusion or nonlinear diffusive Burgers’
(NDB) equations.

Although this NDB Equation (10) is quite different from the well-
known Nonlinear Extended KdV (NEKdV) equation introduced by
Rosenau and coworkers [1, 35–37], that is, the K(2, 2) equation and its
extensions, it bears some similar symmetry properties and conserved
quantities. For example, as the K(2, 2) and Kq(2, w) equations,
Equation (10) is invariant under the transformation

φ → ηφ, t → t/η, η = const, (11)

and possesses a conservation quantity

I1 =
∫

φdX. (12)

This invariance implies that the width of the localized solution of (10)
is fixed and independent of the speed. This means that, there is a
detailed balance between nonlinear “convection” (term proportional to
α) and nonlinear diffusion. Similarly, the invariance of Equation (10)
under the transformation (11) with η = −1 also permits a localized
wave with negative amplitude propagating in the opposite direction.
To find travelling waves with a constant speed vc, we define s = X−vcτ
and integrate once to obtain

(
dφ

ds

)2

= 2
vc

γ
φ− αω0

γ
φ2 + C1, (13)

where C1 is the constant of integration. Various solutions of
Equation (13) can be obtained depending on the value of the constant
C1. In this paper we focus our attention on the localized structure.
Setting C1 to zero, it is worth noting that Equation (13) is very similar
to the equation obtained for the Rosenau-Hyman case [1]:

(
dφ

dτ

)2

=
2v

n(n + 1)
φ3−n − 2

n(n + m)
φm−n+2. (14)
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Thus, we see that with m = n = 2, the equation for finding the solution
is identical in form, with only differing coefficients. Therefore we expect
to find similar solutions to Equation (13). Considering the variable
change, φ = 2(vc/αω0)u2, Equation (13) takes the simple form:

(
du

ds

)2

=
αω0

4γ

(
1− u2

)
, (15)

which admits a solitary wave with a compact support

u(s) =
{

cos(kcs) |s| ≤ π/2kc

0, |s| > π/2kc,
(16)

with width parameter

kc =
√

αω0

4γ
, (17)

provided that αγ > 0. By using original variables, the solitary wave’s
solution of the NDB Equation (10) is then given by:

φ(X, τ) =
{

A0cos2[kc (x− vcτ)], | (x− vcτ) | ≤ π/2kc

0, | (x− vcτ) | > π/2kc,
(18)

with the speed proportional to the amplitude A0:

vc =
αω0

2
A0. (19)

This dependence of the wave’s speed on its amplitude and the non-
dependence of the width to the speed are in full agreement with the
scaling of solutions described by Equation (10). This result is also in
accordance with the original result by Rosenau and Hyman [1] and
those obtained by Cooper et al. [38], and Rus and Villatoro [33]. From
Equations (17) and (19), it appears that the pulse’s characteristic
parameters are functions of the nonlinear coefficient of the system, that
is α and γ. In addition, the fact that the width parameter is inversely
proportional to γ clearly shows that the existence of the compact
solution (18) is closely connected to the existence of the nonlinear
diffusion in the network resulting from the NLR. The dependence of
the diffusivity D on the gradient ∂φ/∂X reduces smoothing at edges
of the wave and is then responsible for the formation a compact wave.
Similar results have also been obtained by Comte and Marquié [22]
in the reaction-diffusion equation modeling the propagation of fluxons
(kink with compact support) in a NLTL where the compactification of
kinks originates from the nonlinear diffusion process.

Before ending this section, it is useful to make a comparison
between parameters of the compacton of the well-known K(2, 2)
equation and those of the compact solitary wave described by the
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nonlinear diffusive Burgers’ Equation (10). Let us mention that, we
have no intention to compare two quite different physical phenomena
but to compare the width and speed of the pulse, resulting from each
of these phenomena, which are important characteristics for signal
processing. For this purpose, it is convenient to rewrite Equation (10)
in the following form:

∂φ

∂τ
+ (αω0/2)

∂φ2

∂X
+ σ

∂3φ2

∂X3
+ νφ

∂3φ

∂X3
= 0, (20)

where σ = γ/6 and ν = −γ/3. Equation (20) with arbitrary
coefficients is an extension of the K(2, 2) equation and reduces to
the K(2, 2) equation when ν = 0. It admits the same cos2-shape
as a compact solution, that is, φ = A0 cos2[k(x − vt)] with the
corresponding pulse parameters: k2 = αω0/4(ν+8σ) for the width and
v = 12σA0k

2 for the speed. Taking ν = 0, these parameters reduce
to the K(2, 2) compacton parameters, that is, k2 ≡ k2

RH = αω0/(32σ)
and v ≡ vRH = 3αω0A0/8. If ν < 0 the pulse parameter k is then
enhanced leading to the increase of the speed v while the resulting pulse
width which is inversely proportional to k is lowered. Accordingly, the
compact pulse of the NDB Equation (20) for which ν = −γ/3 < 0
is more narrow and moves faster than the Rosenau-Hyman K(2, 2)
compactons.

4. COMPACTLY-SUPPORTED SIGNAL VOLTAGE

4.1. Approximated Expression

In this subsection, we derive the approximate analytical expression of
the signal voltage, solution of the circuit Equation (4). By combining
Equations (7), (18) and (19), the analytical expressions are obtained
as follows:

Vn(t) =
{

Vmcos2[kc (n− vgt)], | (n− vgt) | ≤ π/2kc

0, | (n− vgt) | > π/2kc.
(21)

with

vg = ω0

(
1 + α

Vm

2

)
. (22)

This expression describes the approximated analytical expression of
the compactly supported signal voltage with the amplitude Vm = εA0,
valid only for large width, that is, for kc ¿ 1, where kc is well defined
by Equation (17). However, in contrast to this width parameter, the
velocity of the compact signal is now defined by Equation (22) with a
new relationship between compact pulse’s amplitude and width. This
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modification of the speed-amplitude relationship of the compact signal
may have some consequences on the behavior of compact electrical
voltage pulses on the network. For example, since α and Vm are
both the small parameters, the speed of the compact electrical voltage
pulses will be almost constant in practice for different amplitudes, in
contrast to the pulse solution (16) where its speed is proportional to
the amplitude.

4.2. Exact Solution

We derive here an exact solution, of the set of differential Equation (4),
valid not only for pulse signal voltages with a large width but also
for pulse signals with small width. For this purpose, on the basis
of the result of the preceding section, we use expression (21) as a
trial function where in this case kc and vg are the unknown constants
to be determined. Here, our goal consists in demonstrating the
accuracy of the approximation performed in the preceding section to
obtain an analytical solution in the continuum limit. By inserting
the above expression in the set of discrete differential Equation (4),
after evaluating the terms Vn±1(t), Vn(t)2 and Vn±1(t)2, the system of
equations verified by the wave parameters are obtained as follows:

ω2
0[1− cos (2kc)]− 2k2

cv
2
g(1− αVm) = 0, (23)

and
αkcvg − γ sin (2kc) [1− cos (2kc)] = 0. (24)

Before solving these two coupled equations, let us mention that the
constant kc is the width parameter of the wave while the full width
is strictly limited to Lc = π/kc. However, since the formation of this
compact structure requires participation of at least three cells, the
minimum value of the width is then Lc = 2 leading to the maximum
value of the width parameter kmax = π/2. For this particular case, that
is kc = kmax, the wave centered at site n0 covers the sites n0 − 1, n0

and n0 + 1 where n0± 1 are edges of the compact wave, and admits as
velocity vs = 0 provided that ω0 = 0. This means that the existence of
this static compact wave is possible only if the linear dispersion in the
network is absent, that is, when the linear inductor L is suppressed
in the NLTL illustrated in Figure 1. Similar results have also been
obtained by Comte and Marquié [22] where they determined the static
compact-like kink in an RC electrical reaction diffusion chain.

When ω0 6= 0, Equations (23) and (24) admit the following
solution:

vg =
ω0√

1− αVm

sin (kc)
kc

, (25)
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and
2 sin (kc) sin (2kc) =

αω0

γ
√

1− αVm
. (26)

with 0 < kc < π/2. Expression (21) with speed and width given
by Equations (25) and (26), respectively, describes discrete solitary
waves with the compact support solution of circuit Equation (4). Thus,
the compact solitary wave has a definite velocity when its amplitude
and width are given. However, in contrast to compacton properties
where the width is independent of the amplitude, from Equations (25)
and (26), it appears first that, the width of the discrete compact
solitary wave is amplitude dependent due to the intrinsic discrete
character of the network. This dependence may become negligible
if the amplitude of the signal voltage and the strength of the standard
nonlinearity α are both small compared to 1. Next, in the limit of small
width parameter (kc → 0) and signal amplitude Vm, these compact
solitary wave parameters (25)–(26) reduce to Equations (17) and (22)
which are results previously obtained in the continuum limit. Thus,
three remarks can be made:

• Firstly, the NDB Equation (10) may adequately describe the
dynamics of a compact pulse with large width in the network only
for small amplitude voltage and in the mobile reference frame.

• Next, the discrete nature of the system associated to the presence
of a linear dispersion may modify the relationship between the
compact wave amplitude, speed and width.

• Finally, when γ = 0, the set of differential Equation (4) admits,
in the continuum limit, the well-known KdV sech2-type pulse
soliton [2]. Accordingly, Equation (4) appears as a discrete
nonlinear equation for the NLTL exhibiting a compact-version of
the KdV pulse soliton. However, as we shall see in the numerical
simulations of the line, this discrete solution of the compact pulse
could not propagate stably until its width is large enough to
annihilate the discreteness effects of the network.

5. DISSIPATIVE EFFECTS OF THE NETWORK

In real physical systems, dissipative effects coexist together with
nonlinear and dispersive effects and may play some role in a wave
generation and its propagation. Among many effects of dissipation
on the wave motion, we focus our attention on the decrease of the
amplitude of the wave. In the network under consideration, this
dissipation results from electrical elements such as the linear inductor
L. It may also be introduced by the use of the real diode to describe
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the NLR instead of the quadratic one. These dissipation effects may be
adequately described by the first term of the NLR, that is aδVn with
a > 0. From Kirchhoff’s laws, it is then straightforward to observe
that the propagation of the signal voltage in the network is governed
by the following system of equations:

d2Vn

dt2
+

(
ω2

0 + g
d

dt

)
(2Vn − Vn−1 − Vn+1)

= α
d2V 2

n

dt2
− γ

d

dt

[
(Vn − Vn+1)

2 − (Vn−1 − Vn)2
]

(27)

for n = 1, 2, . . . , N−1 and where g = a/C0. Let us mention that, since
the dissipation term is usually a small perturbation, its contribution
is often neglected. Hence, we assume that this term is weak and is
of the order of ε2, where ε is a small parameter, that is, g ≡ ε2λ.
Under this condition, using the standard continuum approximation at
one order higher than the nonlinear extended KdV-type Equation (10),
associated with the reductive perturbation method (7), Equation (27)
leads to the following equation for φ:

∂φ

∂τ
+ (αω0/2)

∂φ2

∂X
+ γ

∂φ

∂X

∂2φ

∂X2
= εR[φ], (28)

with

R[φ] =
λ

2
∂2φ

∂X2
, (29)

where R[φ] can be viewed as the perturbation on the compact pulse
motion. In order to derive the quantitative effects of this perturbation
on the pulse parameters, we use an approach based on the multiple
time scale expansion [39]. Although this approach has proved to be
particularly convenient for studying the time dependent perturbations
on standard soliton motion, our analysis shows that it can be also
satisfactorily applied to nonlinear evolution equations that admit
solitons with compact shape.

Firstly, the independent variable is transformed into several
variables by τm = εmτ , m = 0, 1, 2, . . . where each τm is an order
of ε smaller than the previous time. At the same time, φ and R[φ] are
expanded in an asymptotic series:

φ = φ0 + εφ1 + . . . R[φ] = R0[φ0] + εR1[φ0, φ1] + . . . (30)

Next, substituting Equation (30) into Equations (28) and (29), and
equating the coefficients of each power of ε, we obtain the following
equations: At order ε0:

∂φ0

∂τ0
+ (αω0/2)

∂φ2
0

∂X
+ γ

∂φ0

∂X

∂2φ0

∂X2
= 0, (31)
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and at order ε1:
L̂(φ1) = R(0)[φ0]− ∂φ0

∂τ1
, (32)

where L̂ is a linear differential operator defined by

L̂ =
∂

∂τ0
+ αω0

(
φ0

∂

∂X
+

∂φ0

∂X

)
+ γ

(
∂φ0

∂X

∂2

∂X2
+

∂2φ0

∂X2

∂

∂X

)
. (33)

and the adjoint operator of L̂ is given by:

L̂∗(ρ) ≡
(

∂

∂τ0
+ αω0φ0

∂

∂X
+ γ

∂φ0

∂X

∂2

∂X2

)
ρ = 0, (34)

where ρ(X, τ0, τ1) =
∫ X
−∞ ϕ(ζ)dζ and where ϕ is one of the solutions

of L̂. Multiplying (32) by ρ and integrating with respect to X, we
obtain after having taken into account Equation (34) and the boundary
conditions limX−→±∞ φβ = 0 and limX−→±∞ ∂µφβ/∂Xµ = 0 with
β = 0, 1 and µ = 1, 2:

∂

∂τ0

∫ +π/2kc

−π/2kc

ρφ1dη =
∫ +π/2kc

−π/2kc

ρ

{
R(0)[φ0]− ∂φ0

∂τ1

}
dη, (35)

which is the evolution equation for φ1. Since ρ depends on X and
τ0 only through the combination X − vcτ0, the τ0 dependence of the
integrand on the right-hand side vanishes by the space integration and
consequently, the perturbation φ1 behaves secularly in τ0. In order
to eliminate this secularity, one requires that the integral on the right
hand side of Equation (35) must be zero; leading to the non secular
conditions: ∫ +π/2kc

−π/2kc

ρi

{
R(0)[φ0]− ∂φ0

∂τ1

}
dη, i = 1, 2, (36)

where

ρ1(X, τ0, τ1) =
∫ X

−∞

∂φ0

∂ξ
dζ, ρ2(X, τ0, τ1) =

∫ X

−∞

∂φ0

∂ã
dζ. (37)

The function φ0 is the solution of the unperturbed Equation (31), that
is,

φ0(η) =
{

ãcos2 (kcη) , | (η) | ≤ π/2kc

0, | (η) | > π/2kc.
(38)

with η = X− ξ. By combining Equations (36)–(38), the system of two
differential equations governing the modulation of compact solitary
wave parameters is obtained as follows:{

∂ã
∂τ1

+ 2
3λkcã = 0,

1
3

π
kc

∂ã
∂τ1

+ 3
8 ã ∂ξ

∂τ1
= 0,

(39)
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and which admits the solution:

ã(τ1) = A0 exp
[
−2

3
λk2

cτ1

]
, ξ(τ1) =

16
27

πλkcτ1 + ξ0, (40)

where A0 and ξ0 = vcτ0 are the parameters of the unperturbed compact
pulse. Finally, with the above expressions, the compact-like signal
voltage which takes into account the dissipation of the network is given
by:

Vn(t)=
{

Vm exp
[−2

3gk2
c t

]
cos2 [kc (n− vςt)] , | (n− vςt) |≤π/2kc

0, | (n− vςt) |>π/2kc.
(41)

where vς/ω0 = (1 + αVm
2 ) + δv/ω0 is the compact pulse’s speed

along the network, the parameter δv/ω0 = (16/27)πgk2
c/ω0 being the

small constant speed shift induced by the dissipation of the network.
Similarly, the amplitude decays exponentially with time with the
decreasing rate proportional to the square of the pulse width. This
result is qualitatively in full agreement with the results previously
obtained by Rosenau and Pikovsky [13] and recently by Rus and
Villatoro [40] by means of conserved quantities of the K(2, 2) equation.
However, the fact that the speed of the compact pulse experiences
a constant shift is in contrast with their results since, they pointed
out that, the perturbation can cause a damping and deceleration or a
growth and acceleration, of compact pulse solitary waves.

6. NUMERICAL RESULTS AND SIMULATIONS

In this section, we present the details and the results of numerical
integrations performed both on the exact discrete equations governing
wave propagation along the NLTL (4) as well as on the NDB-
type Equation (10) describing the dynamics, in the moving frame of
reference, of small-amplitude waves in the network. The numerical
values for each electrical component of the NLTL are listed in
Table 1: The nonlinear capacitance which, as an example, is
taken as an accumulation-mode: Metal-Oxide Semiconductor Varactor
(MOSVAR) [18] with a dc-bias voltage Vb = 1.5V. The coefficient b
characterizing the NLR is given in Table 1.

6.1. Nonlinear Diffusive Burgers’ Equation: Pulse
Compactons

To perform numerical integrations of the NDB Equation (10), the
fourth-order Adams-Bashforth-Moulton predictor corrector method
in time and the finite difference method in space are used. Finite
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Table 1. Parameters of numerical integrations of the dimensionless
NDB-type Equation (42) plotted in Figure 4, and those of the discrete
circuit’s Equation (4) of the NLTL plotted in Figures 5, 6 and 7.

Equations Parameters Symbols
Numerical

values

NDB-type

Equation (42)

Spatial grid point N 1024

Length of interval L 400

Integration time step ∆T 0.0011

Pulse Amplitude A0 0.04

Pulse Width kc 0.5

Circuit

Equation (4)

Dissipation coefficient a 3.8681× 10−7 Ω−1

Diffusive nonlinearity coefficient b 7.4809× 10−6 AV−2

Inductance L 0.8H

Capacitance C0 1 pF

Standard nonlinearity coefficient α 0.25V−1

Integration time step h 0.001

Pulse signal width Lc 32.5 cells

Pulse signal amplitude Vm 0.1V

difference method is implemented in the computer by means of the
gradient function of the MATLAB toolbox. To take care with the scale
of the studied phenomena, Equation (10) is rewritten in the following
dimensionless form:

∂φ

∂T
+

∂

∂z

(
φ2

)
+

∂

∂z

[(
∂φ

∂z

)2
]

= 0, (42)

where T = (αω0/2)
√

αω0/γτ and z =
√

αω0/γX are the dimensionless
variables and which admits the following compact solitary wave
solution:

φ = A0 cos2[(z − z0 − veT )/2], ve = A0. (43)

For this solution, the exact value of the conserved quantity I1 =
πA0. The problem (42) is solved on the interval −L/2 ≤ z ≤ L/2
with L and N are listed in Table 1 and initial conditions given by
Equation (43). As is well known, the nonlinear KdV and its extension
are numerically difficult to solve due to the presence of higher order
dispersion terms. The problem becomes even more difficult when the
nonlinear dispersion or nonlinear diffusion-like terms are present. To
overcome this difficulty, the integration time step ∆T is chosen so that
∆T = χ(∆z)3 where χ is a constant. This constraint improves the
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stability of the numerical scheme. In the simulation, the coefficient
χ = 0.0185 is also chosen so that aliasing errors which could dominate
the numerical integration of the NDB equation are minimized. In
addition, in order to gain insight into the accuracy of the numerical
method and because of the lack of the quadractic conserved quantity
for this system, the conserved quantity I1 is calculated and compared
with the exact value. In our simulations, the integration time step
and the length ∆z are chosen to preserve this conserved quantity to
an accuracy better than 104 over a complete run. Figure 2 shows the
result of this simulation where the compact pulse initially located at
z0 = −200 experiences a uniform propagation without a noticeable
change of its form and with velocity ve = 0.05 which is in agreement
with the analytical prediction. This numerical experiment confirms the
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Figure 2. Propagation of compact pulse solitary wave starting with
the center at z0 = −200, with amplitude A0 = 0.05 and width
parameter kc = 0.5, simulated on the nonlinear diffusive Burgers
Equation (42). The top panel (a) shows the waveforms at given
dimensionless times of propagation: T0, 2T0, 3T0 and 4T0, respectively,
with T0 = 2000, while the bottom panel (b) shows the same profile in
logarithm scale. This behavior confirms the uniform propagation of
the compact solitary wave with reduced velocity ve = A0 = 0.05, as
predicted by the analytical result.
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fact that expression (43) is a strong solution of the NDB Equation (10).
In order to check the properties of this compact pulse solitary

wave, the simulations are performed with two and three compact
pulses with different amplitudes and located at different positions,
each of them described by Equation (43). Figure 3 firstly shows the
collision between two compact pulses with different amplitude and
next, the propagation of three pulses in the same direction leading
finally to their collision. Since the taller one moves faster than the
shorter one, it catches up and collides with the shorter one and then
moves away from it as time increases. As outlined by Rosenau and
Hyman [1], these numerical simulations show also that the point
where compactons collide is marked by the creation of very small
compact wave (amplitude ∼ 10−3) and which very slowly evolves
into compacton-anticompacton pairs. Some other experiments are
done, notably the head-on collision between a compact pulse and an
anticompact pulse and the results indicate that the compact pulse
survives through collisions.

(a) (b)

Figure 3. Propagation and head-on collision between (a) two and
(b) three compact solitary waves. Initially theses wave are localized at
positions z = −200 and z = 100 for the first case and for the second
case at the positions z = −200, −150 and −125. In this later case,
pulses have different amplitudes A0 = 0.1, 0.05 and 0.03 propagating
in the same direction. The waves maintain their shape after collision.

Now, taking as initial conditions for the numerical simulations of
the NDB Equation (10), a compact wave-packet with a width two times
larger than that of the exact compact pulse solitary wave described by
Equation (17), as presented in Figure 4, the solution decomposes into
many compact pulses with the taller one far from the shorter one.
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Figure 4. Propagation of a compact wave. (a) Initially the width of
the wave-packet is two times larger than that of the exact compact
wave (43), i.e., k = kc/2 = 0.25; subplots (b) and (c) show the
decomposition of this wave-packet at given dimensionless times of
propagation: T0 = 4875 and 2T0, respectively.

This result is in full agreement with the result previously obtained
by Rosenau and Hyman [1]. However, it is early to make a strong
conclusion on the possibility of this compact pulse (18), solution of the
NDB-type Equation (10), exhibiting all the relevant properties of the
K(2, 2) compactons.

6.2. Electrical Pulse Compacton

To check whether the NDB Equation (10), which is an approximation
of the exact discrete equation, is a fairly accurate description of signal
dynamics along the network, we perform numerical integrations of the
exact discrete Equation (4) with different initial conditions. The fourth
order Runge-Kutta scheme in time is used with normalized integration
time step h = ω0∆t = 0.001 corresponding to the sample period
Ts = 8.94 ns. In addition, in order to avoid signal reflection at the
end of the line and also to run experiments with sufficiently large time,
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the number of cells of the network is taken between 103 and 11× 103

and varies from one experiment to another. To observe the propagation
of signal voltages we use, as initial condition, the following compactly-
supported signal voltage of amplitude Vm:

Vn(t) = Vmcos2[kc (n− vgt)], for | (n− vgt) | ≤ π/2kc (44)
and Vn(t) = 0 otherwise, predicted by Equation (21). The
corresponding pulse width is Lc = π/kc, corresponding to the temporal
compact wave width τs = Lc/vs = 28.7µs. As shown in Figure 5 the
initial electrical pulse propagates with the same amplitude, without
distortion of shape, and with constant velocity 1132 cells/ms which
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Figure 5. Stable and uniform propagation of the compactly-supported
signal voltage along the lumped nonlinear electrical transmission line.
The network parameters and those of the initial compact pulse signal
are given in Table 1. The top panel (a) shows the waveforms at
given dimensionless times of propagation: ω0t = 250, 450, 650 and
900, respectively, while the bottom panel (b) shows this profile in
logarithm scale. This behavior confirms the uniform propagation of
a compact solitary wave with reduced velocity vs/ω0 = 1.012, that is,
vs = 1132 cells/ms, as predicted by the analytical result.
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corresponds to the analytical predicted value. Because of the smallness
of the width parameter kc, this compact wave may be viewed as the
continuum solitary wave with compact support propagating along the
continuum medium, the NLTL. However, when the compact wave
width Lc is close to 1, one observes that the corresponding compact
wave disintegrates into oscillatory waves during its propagation along
the network. This means that discrete NLTL may not exhibit stable
traveling compact waves. This result is also in agrement with the result
previously obtained by Kevrekidis et al. [8] when analyzing traveling
compactons in discrete models using the quantization condition.

To check another property devoted to compactons, we have also
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Figure 6. Propagation along the non dissipative NLTL of the compact
electrical pulse signal. (a) Initially the width of this signal voltage
centered at cell 100 is two times larger than that of the exact compact
signal exhibited by this network (17), i.e., L = 2Lc; subplots (b),
(c) and (d) show its decomposition at given dimensionless times of
propagation: ω0t0 = 2575, 2ω0t0 and 4ω0t0, respectively.
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performed numerical integrations of the exact Equation (4) with initial
conditions given by (44), but with pulse width two times larger than
the exact compact pulse signal voltage, that is, L = 65 cells. As
presented in Figure 6, the disintegration of this wide compact pulse
signal voltage into a set of compact pulse signals of different amplitudes
moving with the corresponding velocity is observed after long time
dynamics in the network. However, in contrast to the behaviour of
pulse compacton of the NDB equation, the number of compactons
resulting from the disintegration is very high. Similar results have
been obtained by Rosenau and Pikovsky [13] in the discrete nonlinear
dispersive models without linear dispersion, and with an additional
feature, not observed here; the birth of kovatons which are a compact
formation of glued together kink-antikink pairs that may assume an
arbitrary width. Accordingly, this great number of compact pulses
may result from the discrete nature of the system.

In order to take into account dissipation effects on the propagation
of compact pulse signal voltages given by (44), we have also integrated
numerically the discrete Equation (4) with a (see Table 1). The stable
propagation of the initial compact signal is observed, but with the
decrease of its amplitude, as illustrated in Figure 7(a). When the initial
pulse is considered with width larger than the exact compact pulse (17),
the numerical experiment shows that this arbitrary data propagates
without any disintegration as in the non-dissipation model. However,
the amplitude of the pulse reduces less compared to that of the exact
compact-pulse signal voltage with the same initial amplitude [see
Figure 7(b)]. This means that, the decreasing rate of the amplitude,
due to dissipation effects, is a decreasing function of the pulse width.
This result is in accordance with the analytical predictions of section 5
[see Equation (41)]. Thus, dissipation effects on the amplitude of the
compact pulse signal voltage may be minimized by the widening of the
compact pulse.

Beside these results, Figure 7 shows also that the compact pulse
signal voltage, under dissipation, widens as the amplitude decreases,
in contradiction to the analytical results of Section 5 where it is shown
that the amplitude of the compacton decreases but without changing
its width. In addition, this wave packet maintains their form (no
disintegration) in the considered time of experimentation. Since the
rate of amplitude damping in both NDB compactons and the KdV
solitons are similar, one can intuitively interpret this behavior as a
transformation of a NDB compacton into a KdV soliton during its
propagation. However, on the basis of the numerical experiments
performed on the non-dissipative NLTL, [see Figures 5 and 6], it is clear
that the undamped compact signal voltage keeps its form unchanged
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Figure 7. Decrease of the amplitude of the compact signal voltage due
to the dissipation in the network. (a) Exact compactly supported signal
voltage described by Equation (21). (b) Arbitrary compact signal
voltage with width two times larger than that of the exact compact
signal voltage, i.e., L = 2Lc. The amplitude of this arbitrary compact
signal decreases less compared to that of the exact compact pulse. The
initial compact signal is located at cell n0 = 50 while the subplots (2),
(3) and (4) show the waveform at dimensionless time ω0t0 = 1215,
2ω0t0 and 4ω0t0, respectively.

and bears some compacton properties, observed in discrete nonlinear
dispersive models without linear dispersion, such as the disintegration
of compact pulse into a set of compact pulse with different amplitudes
which are not observed in the Toda lattice modelling the dynamics
of discrete KdV solitons. In addition, experiments on KdV solitons
performed in the NLTL under consideration, not presented here,
exhibit an unstable behaviour until the nonlinear resistance parameter
γ is taken equal to zero. This means that the presence of the
nonlinear diffusive term in the network destabilizes the KdV soliton.
Nevertheless, effects of the linear dispersion and dissipation on the
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compact structures are still an outstanding problem and deserve to be
carefully examined. The work on this issue is now under consideration.

6.3. Implementation and Simulations

The NLTL under consideration has been implemented and simulated
by means of the Pspice software using realistic components for circuit
simulations. In fact, the following characteristic parameters of the line
are considered: the line polarization voltage Vb = 1.5 V and L = 0.8H
for the inductor. The nonlinear capacitor in the shunt branch is
the BAS32 diode, a European diode with C0 = 1 pF and associated
resistance R = 0.84Ω. As for the NLR which is responsible for the
compactification of the signal, we consider the BAY 80’s diode model
with Is = 10.64 nA. These values of the NLTL components permit a

(a)

(b)
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(c)

Figure 8. Results of simulations of the NLTL by means of the PSPICE
professional. compact-like pulse signals at three different cells of the
NLTL: (a) Input signal, (b) cell 60 and (c) cell 100. The amplitude of
the signal at cell 60 is smaller than that of the input signal due to the
dissipation effects induced by the losses of the NLTL. The numerical
values of the circuit element are given in Section 6. Note that the
signal voltage Vn(t) varies from 1.5 V to a maximum value due to the
polarization voltage Vb = 1.5V applied to each cell of the line.

pulse signal with compact shape and temporal width τ = 29.6µs which
is related to the spatial width Ls through the expression Ls = vcτ
with vc = 1132 cells/ms the pulse’s speed. Figure 8 shows a train of
compact pulse signal voltages at given cells of the NLTL. It is obvious
that the compact pulse voltages propagate without distortion of shape.
However the amplitude decreases due to dissipation effects induced by
the losses of the NLTL. This simulation evidences the fact that the
NLTL under consideration is a good medium for the propagation of
pulse signal voltages with compact shape. Nevertheless it important
to mention that for these simulations the input signal voltage must be
carefully chosen so that it shape matches the theoretical compact pulse
described by Equations (25) and (26) [see [41] for more informations].

7. CONCLUDING REMARKS

In this paper we have introduced and investigated a discrete nonlinear
electrical transmission line (NLTL) with nonlinear intersite resistance
exhibiting pulse signal voltages with compact shape. More precisely,
we have first shown that, shunting the linear inductor in each cell of the
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basic LC electrical transmission line by a nonlinear resistance (NLR),
the quadratic diode for example, induces a nonlinear diffusion term in
the circuit equations. In the continuum limit and by making use of the
reductive perturbation method which takes into account fast variations
of the signal voltage with respect to space and time, we have derived
a partial differential equation belonging to the family of nonlinear
diffusive Burgers’ (NDB) equations whose properties are similar to
those of the well known Rosenau-Hyman K(2, 2) equation [1]. This
equation appears as a particular case of the one-dimensional K∗(1, 1)
Cooper-Shepard-Sodano equation as written in Rus and Villatoro [33]
and, as expected, exhibits pulse compacton as an exact analytic
solution with width independent of the amplitude while the speed is
amplitude dependent.

Next, the above study has been completed by the investigation
of losses of circuit components on the compacton propagation where
we have shown that, the Tanaka’s perturbation method [39] can
be also satisfactorily applied to the NDB equation which admits a
solitary wave with compact shape. However, taking into account
the discrete nature of the system associated to a linear dispersion,
the speed-amplitude relationship of the compact signal voltage is
modified since the signal’s speed takes into account the group velocity
of all wave-packets propagating in the system. Accordingly, the
speed of the compact signal voltage may slightly depend on the
amplitude of the wave and then, some compacton properties such as
the decomposition of the initial compact data wider than the exact
compacton pulse into several independent compactons would be only
observed experimentally rather after long time dynamics of the signal.

Finally, these results have been checked by means of numerical
simulations both of the NDB equation and of the NLTL, where some
additional features have been observed, notably the elastic collision
of the compact pulse of the NDB equation which is accompanied
by the birth of compact small oscillations from the impact area and
which evolve into compact pulses of very small amplitudes as pointed
out by Rosenau and Hyman [1], the decomposition of the arbitrary
compact wave into several independent compact pulses on the NDB
equation as well as on the NLTL. As a matter of fact, the obtained
compact wave shares many important properties with the Rosenau
and Hyman compactons. However, although our results on dissipation
effects show some agreements between numerical and analytical results,
these effects as well as those of the linear dispersion on the behavior of
compact structures deserve a particular attention. The work on this
issue is now under consideration.

Before ending this paper, let us mention that the electrical pulse



Progress In Electromagnetics Research B, Vol. 52, 2013 233

signals are primarily utilized for sharp pulse generation, which is
of considerable interest in modern electronics. In ultra-fast time-
domain metrology, the short duration of a pulse directly translates
to a high temporal resolution, and hence, narrow electrical pulses
can be used to sample rapidly varying signals or as probe signals
for high-precision time-domain reflectometry. In addition, periodic
sharp compact pulse trains can be utilized for impulse radar ranging
or in ultra-wideband communication systems [42]. So the emergence of
compact pulse-like signal voltages in NLTLs with interesting properties
(no interactions, compactness and pulse width independent of the
amplitude) can be used in the improvement of practical results
concerning the above systems and the distortionless signal in high-
speed signal processing systems. This work may inspire other
researches on optical compact solitons in optical fibre cables which
are of particular technological significance since the light-wave compact
solitons can carry a large amount of digital information in long-distance
communication. Similarly, since the nonlinear diffusive equation is
usually used to describe contour detection and for nonlinear filtering
of images, it will be very interesting to examine the role of compact
structures for this application.
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