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Abstract—Due to the increasing number of applications in
engineering design and optimization, more and more attention has been
paid to full-wave simulations based on computational electromagnetics.
In particular, the finite-element method (FEM) is well suited for
problems involving inhomogeneous and arbitrary shaped objects.
Unfortunately, solving large-scale electromagnetic problems with FEM
may be time consuming. A numerical scheme, called the dual-primal
finite element tearing and interconnecting method (FETI-DPEM2),
distinguishes itself through the partioning on the computation domain
into non-overlapping subdomains where incomplete solutions of the
electrical field are evaluated independently. Next, all the subdomains
are “glued” together using a modified Robin-type transmission
condition along each common internal interface, apart from the corner
points where a simple Neumann-type boundary condition is imposed.
We propose an extension of the FETI-DPEM2 method where we
impose a Robin type boundary conditions at each interface point, even
at the corner points. We have implemented this Extended FETI-
DPEM2 method in a bidimensional configuration while computing
the field scattered by a set of heterogeneous, eventually anistropic,
scatterers. The results presented here will assert the efficiency of the
proposed method with respect to the classical FETI-DPEM2 method,
whatever the mesh partition is arbitrary defined.

1. INTRODUCTION

The finite element method applied to the resolution of time harmonic
electromagnetic wave scattering has become very popular over the past
decades. Among the different techniques, the resolution of the weak
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form of the Helmholtz equation has shown its potential and versatility
for handling a large range of configurations (complex media, periodic
structures, anisotropic media . . . [1–8]).

In this method, the unknown of interest (the electric or magnetic
field) is expanded onto a set of ad-hoc basis functions, classically P1
Lagrange basis functions in 2D or edge basis functions in 3D. Then, a
linear system is defined by projecting the Helmholtz equation onto the
same set of test functions, as proposed in the Galerkin method. The
efficiency of the method mainly depends on the ability of inverting
the associated global sparse linear system. This type of problem is
strongly dimension dependent and, if in 2D, the use of direct solvers
like [9–12] is obvious (a typical scattering problem with 106 unknowns
is solved in few dozen of seconds on a classical PC), the resolution of
the linear system arising from the discretization of 3D configurations
with a direct solver is much more tricky, time and memory consuming.

A lot of efforts have been devoted to the development of iterative
methods such as multi-grid methods [13], but the problem is still
open (for a review see for example [14]). Among the different
schemes proposed in order to solve large scale models and preserve
the versatility of the method, one can cite the Domain Decomposition
Method (DDM) and its different evolutions [15–18].

Related FETI (Finite Element Tearing and Interconnecting)
method also seems very robust when one is dealing with arbitrary mesh
partitions. The general principle of FETI methods is first to divide
the entire computational domain into non-overlapping subdomains. In
each of these subdomains, a direct solver is employed for factorizing the
matrix arising from the discretization of the Helmholtz equation with
which we are concerned. The different adjacent subdomains are then
glued at their common interfaces thanks to Lagrange multipliers. The
global interface problem is then solved using an iterative algorithm.
Finally the solution of the interface problem serves as the right-hand-
side of each local problem. This method has been applied in many
domains like mechanics [19, 20], acoustic wave propagation [21–23],
and in electromagnetism [24–32]. For example, related DDM methods
have been developed for simulating the interactions of photonic crystals
with electromagnetic waves [33, 34].

Equipping each interface with two Lagrange multipliers is
equivalent to imposing a Robin type boundary condition at the
interface between each sub-problem. This avoids the appearing of
spurious solutions. This boundary condition can also be seen as a
crude approximation of a transparency operator and many efforts
have been done for optimizing the coefficients arising in this boundary
condition, but only when the interfaces between subdomains are
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plane [23, 30, 31, 35].
In addition, in order to further improve the convergence of the

iterative process and the scalability of the method, one can notice
the existence of two techniques: the first one uses the plane wave
spectrum operator [21], the second one uses dual-primal techniques
which can be seen as coarse grid corrections [22, 26, 28, 36]. In this last
method, the corner nodes in 2D or the corner edges in 3D (we denote
by “corner” the geometrical entities which belong to more than two
subdomains) are extracted from each subdomain and are globally and
uniquely numbered.

In the work presented here, we propose an extension of these dual-
primal techniques by enforcing a Robin-type boundary condition (with
two Lagrange multipliers) not only on the edges related to the internal
interfaces but also to the ones related to the corner nodes. Indeed,
in the methods already proposed, only one Lagrange multiplier was
applied to these corner nodes, yielding a local Neumann boundary
condition.

We will demonstrate in the following that the proposed extension
more efficiently simulates the scattering from two-dimensional objects
made of either isotropic or anisotropic materials. We have focus our
attention so far on two-dimensional configurations as it allows easiest
comparisons between different methods.

The paper is organized as follows. Section 2 describes the
considered electromagnetic scattering configuration. In particular, a
total field formulation and a scattered field formulation are detailed.
In Section 3, following the notations used in [28], we present our
novel approach and derive the linear system obtained for the various
interfaces unknowns, either the corner nodes or the inner interface
nodes. In Section 4, we present numerical results obtained for
2D scattering problems with anisotropic materials such as Perfectly
Matched Layer (PML) boundary conditions. Comparisons with the
results obtained with the already existing FETI-DPEM2 method [28]
are displayed. We will also show that our method can handle arbitrary
mesh partitions. Conclusions follow.

2. FINITE ELEMENT FORMULATION OF THE
ELECTROMAGNETIC PROBLEM

We consider an electromagnetic scattering problem, where a known
incident electromagnetic wave is impinging on an inhomogeneous
target. The incident field, Einc(~r), is the field that would exist in
the bounded computational domain, denoted as Ω, when no scatterers
exist. We will only consider here a two-dimensional configuration
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with a s-polarized field and a time dependency in exp(−jωt). In this
framework, the incident field satisfies the following Helmholtz equation

div
(

1
µinc

r

gradEinc

)
+ k2

0ε
inc
r Einc = −jk0Z0J, in Ω (1)

where k0 corresponds to the vacuum wave-number and Z0 to its
intrinsic impedance, µinc

r = µinc
r (~r) (resp. εinc

r = εinc
r (~r)) corresponds

to the relative permeability (resp. permittivity) of the embedding
medium. The incident field originates in the current distribution J(~r).

In the presence of inhomogeneities, the field is perturbed and is
now denoted as the total field, Etot, which satisfies a similar Helmholtz
equation

div
(

1
µtot

r

gradEtot

)
+ k2

0ε
tot
r Etot = −jk0Z0J, in Ω (2)

where the relative permeability µtot
r (~r) and permittivity εtot

r (~r) only
differ from µinc(~r) and εinc(~r) where the inhomogeneities are located.

From the linearity of Maxwell’s equations, the total field can be
decomposed into the incident field Einc and a scattered field Esc which
also satisfies a Helmholtz equation

div
(

1
µtot

r

gradEsc

)
+ k2

0ε
tot
r Esc = Jsc in Ω (3)

where the induced currents are defined as

Jsc = −div
([

1
µtot

r

− 1
µinc

r

]
gradEinc

)
− k2

0

[
εtot
r − εinc

r

]
Einc (4)

As the currents J and Jsc are referring to sources which are only
located within the bounded domain Ω, we impose that the fields Etot,
Einc and Esc satisfies a Sommerfeld radiation boundary condition on
the external boundary ∂Ω of Ω. To ensure numerically that the
computed fields satisfy this type of behavior, we have surrounded
the external boundary of Ω with a cartesian Perfect Matched Layer
(here a uni-axial media). Moreover, this type of material gives us the
opportunity to test the proposed method against 2D anisotropic media.

3. FINITE ELEMENT TEARING AND INTERCONNEC-
TING METHOD AND PROPOSED EXTENSION OF THE
METHOD

This section is devoted to a thorough explanation of the proposed FETI
method. Firstly, we explain how the various parameters (sub-domains,
fields values, interface and corner nodes, . . .) are defined. Secondly, as
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our approach is an evolution of the FETI-DPEM2 method [27, 28], we
recall the main idea of this method. We have deliberately followed the
notations proposed in [27, 28]. Finally, we detail how we can extend
this method in order to impose more flexible Robin-type boundary
conditions everywhere, that is, on the edges related to the internal
interfaces as well as the ones related to the corner points.

3.1. Geometrical Feature Extractions

We assume that the domain Ω is divided into a set of Ns non-
overlapping domains:

Ω =
Ns⋃

i=1

Ωi, Ωi ∩ Ωj = ∅, ∀i 6= j (5)

where the index i denotes the subdomain number. For a given
subdomain Ωi, the indices of all its adjacent subdomains are called
neighbor(i). The internal boundary of the subdomain Ωi is denoted as
Γi. The internal boundary between two subdomains Ωi and Ωj , with
j ∈ neighbor(i), is denoted as Γij .

In each subdomain, we are splitting the field unknowns in the
following way:

Ei =




Ei
V

Ei
I

Ei
c


 =

[
Ei

r

Ei
c

]
, (6)

where the notations Ei
r denote all the internal (V ) and interface (I)

points belonging to the i-th subdomain except for the corner points
which are denoted by Ei

c. We now introduce several Boolean matrices
to extract the node points of interest. The matrix Di

r extracts from all
the nodes of Ωi the ones which are located on its interface, i.e.,

Di
rE

i
r = Ei

I (7)

The matrices Ti→j
r and Ti→j

c extract the points of Ωi which are also
belonging to Ωj , thus to Γij . These matrices are defined such that

Ti→j
r Ei

I = Ei→j
r and Ti→j

c Ei
c = Ei→j

c (8)

The same type of equation hold for the internal interface Γji and for
the subdomain Ωj .

As continuity conditions must be enforced at each interface, we
introduce a set of dual variables λ, which are also called Lagrange
multipliers. It represents the contribution from the unknown mixed
boundary condition at the edges related to the subdomain interfaces
and the ones related to the corner points. As done in (6), we separate
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the vector λ into its λr and λc parts. Two supplemental Boolean
matrices Qi

λr
and Qi

λc
are introduced such that

Qi
λr

λr = λi
r and Qi

λc
λc = λi

c (9)

where λi
r (resp. λi

c) are associated to the interface (resp. corner) points
of the subdomain Ωi. The set of Lagrange multipliers related to the
internal interface Γij are denoted as λi→j

r and λi→j
c . Similarly as in (8)

we can introduce two Boolean matrices to extract the unknown set of
λi→j from the vector λi, i.e.,

Ti→j
λr

λi
r = λi→j

r and Ti→j
λc

λi
c = λi→j

c (10)

The main specificity of the FETI-DPEM methods relies on the
way the corner points are being handled. Indeed, in these methods,
the main idea is to consider a single global numbering for the corner
points. Thus, a global set of corner points Ec is defined. In order to
facilitate the transition from the numbering in the global set of corner
points to the numbering in the local set of corner points, we introduce
a projection Boolean matrix Qi

Ec
such that

Qi
cEc = Ei

c (11)

With the help of the aforementioned extraction matrices, we can
now rewrite the Helmholtz equation, taking into account the continuity
conditions at the various interfaces.

3.2. FETI-DPEM2 Method

After having constructed an augmented Lagrangian functional
and found its saddle-point thanks to the Karush-Kuhn-Tucker
conditions [21, 24], we must solve the following equation, for each i-
th subdomain,

KiEi = f i − DiT λi (12)

where Ki is a sum of the stiffness matrix, the mass matrix and some
elements related to the boundary conditions.

Following the idea of the FETI-DPEM2 method [27, 28], and the
notations introduced in (6), we can rewrite (12) as follows

[
Ki

rr Ki
rc

Ki
cr Ki

cc

] [
Ei

r

Ei
c

]
=

[
f i

r

f i
c

]
−

[
Di

r
T
λi

r

λi
c

]
(13)

From the first equation in (13), the electric field in the i-th subdomain
can be found as

Ei
r = Ki

rr
−1(f i

r − Di
r
T
λi

r −Ki
rcE

i
c) (14)
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By eliminating Ei
r from the second line of (13), we obtain for Ei

c(
Ki

cc−Ki
crK

i
rr
−1

Ki
rc

)
Ei

c =f i
c−λi

c−Ki
crK

i
rr
−1

f i
r+Ki

crK
i
rr
−1Di

r
T
λi

r (15)

By assembling all the subdomain contributions and summing them
over i, the global corner points related system equation is obtained as
follows

FEcEcEc − FEcλrλr − FEcλcλc = dEc (16)

where

FEcEc =
Ns∑

i=1

[
Qi

c
T
Ki

ccQi
c − (Ki

rcQi
c)

T
Ki

rr
−1(Ki

rcQi
c)

]

FEcλr =
Ns∑

i=1

(
Di

rK
i
rr
−1

Ki
rcQi

c

)T
Qi

λr

FEcλc =
Ns∑

i=1

Qi
c
TQi

λc

dEc =
Ns∑

i=1

(Qi
c
T
f i

c −Qi
c
T
Ki

rc
T
Ki

rr
−1

f i
r)

We must now apply the boundary conditions between each
subdomain. For each internal interface Γij , we have

λi→j + λj→i = − (
Wi→j + Wj→i

)
Ej→i ∀Γij (17)

where W i→j enables to code quantities related to the projections of
Ei→j on basis functions of Γij . Following the notations introduced
in (6), we can rewrite (17) as

[
λi→j

r

λi→j
c

]
+

[
λj→i

r

λj→i
c

]
= −

[
M i↔j

rr M i↔j
rc

M i↔j
cr M i↔j

cc

] [
Ej→i

r

Ej→i
c

]
∀ Γij (18)

where M i↔j
rr = W i→j

rr + W j→i
rr .

In the FETI-DPEM2 method, described in [26, 27], the authors
impose that

[
M i↔j

rr M i↔j
rc

M i↔j
cr M i↔j

cc

]
=

[
M i↔j

rr 0
0 0

]
(19)

With this assumption in mind, let us focus on the first equation of (18),
which is

λi→j
r + λj→i

r = −M i↔j
rr Ej→i

r (20)
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This expression is equivalent to applying a Robin-type boundary
condition on the edges of the internal interfaces such as

1
µi

r

∂Ei
r

∂ni
+ αiEi

r = Λi and
1

µj
r

∂Ej
r

∂nj
+ αjEj

r = Λj ∀Γij (21)

We can eliminate Ej→i
r from (20) thanks to (14) and the Boolean

matrices Tj→i
r and Di

r. If we sum now (20) over j and afterwards over
i, we obtain an equation linking λr and Ec, which is

Fλrλrλr − FλrEcEc = dλr (22)
where

Fλrλr = I +
Ns∑

i=1

Qi
λr

T ∑

j∈neighbor(i)

Ti→j
λr

T
(Tj→i

λr
−M i↔j

rr Tj→i
λr

F j
rr )Q

j
λr

FλrEc =
Ns∑

i=1

Qi
λr

T ∑

j∈neighbor(i)

Ti→j
λr

T
(M i↔j

rr Tj→i
λr

F j
rc)

dλr =
Ns∑

i=1

Qi
λr

T ∑

j∈neighbor(i)

Ti→j
λr

T
M i↔j

rr Tj→i
λr

dj
r

and

F i
rr = Di

rK
i
rr
−1Di

r
T (23)

F i
rc = Di

rK
i
rr
−1

Ki
rcQi

c (24)

di
r = Di

rK
i
rr
−1

f i
r (25)

Let us now focus on the second row of (18), which is

λi→j
c + λj→i

c = 0 ∀Γij (26)
Such relation between the Lagrange multipliers is equivalent to
applying a Neumann-type boundary condition on the edges related
to the corner points. It also implies that

FEcλcλc =
Ns∑

i=1

Qi
c
T
λi

c = 0 (27)

Finally, by combining (16) (22) and (27), we end up with the
following set of equations[−Fλrλr FλrEc

FEcλr −FEcEc

] [
λr

Ec

]
= −

[
dλr

dEc

]
(28)

Once λr and Ec are computed, the field can be estimated everywhere
by applying (14).
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3.3. Extension of the FETI-DPEM2 Method

In our approach, we propose to consider a Robin-type boundary
condition for all edges on Γi, i.e., on the corner points as well. Thus,
we will assume for now on that M i↔j

rc = M i↔j
cr = M i↔j

cc 6= 0 in (18) or
equivalently that (19) is no more valid. In that case, (28) is no more
applicable and must be rewritten.

Let us focus on the first line of (18), which is now written with all
the terms,

λi→j
r + λj→i

r = −M i↔j
rr Ej→i

r −M i↔j
rc Ej→i

c (29)

As done previously, we can eliminate Ej→i
r from (29) thanks to (14)

and the Boolean matrices Tj→i
r and Di

r. We can also rewrite Ej→i
c as

Tj→i
c Qi

cEc. We obtain an equation similar to (22), apart from FλrEc

which is replaced by

F̃λrEc =
Ns∑

i=1

Qi
λr

T ∑

j∈neighbor(i)

Ti→j
λr

T
(M i↔j

rr Tj→i
λr

F j
rc −M i↔j

rc Tj→i
c Qj

c)

Let us now focus on the second equation of (18), which corresponds
now to

λi→j
c + λj→i

c = −M i↔j
cr Ej→i

r −M i↔j
cc Ej→i

c (30)

This relation, unlike the FETI-DPEM2 method, applies the Robin-
type boundary condition on the edges related to the corner points. By
eliminating Ej→i

r and summing this equation over j and afterwards
over i, we obtain a new equation linking λr, λc and Ec

−F̃λcλrλr + F̃λcEcEc + F̃λcλcλc = d̃λc (31)

where

F̃λcλr =
Ns∑

i=1

Qi
λc

T ∑

j∈neighbor(i)

Ti→j
λc

T (
M i↔j

cr Tj→i
r F j

rr

)
Qj

λr

F̃λcEc =
Ns∑

i=1

Qi
λc

T ∑

j∈neighbor(i)

Ti→j
λc

T (
M i↔j

cr Tj→i
r F j

rc −M i↔j
cc Tj→i

c Qj
c

)

F̃λcλc = I +
Ns∑

i=1

Qi
λc

T ∑

j∈neighbor(Ωi)

Ti→j
λc

T
Tj→i

λc
Qj

λc

d̃λc =
Ns∑

i=1

Qi
λc

T ∑

j∈neighbor(i)

Ti→j
λc

T (
M i↔j

cr Tj→i
r dj

r

)
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It also implies that, in our proposed approach,

FEcλcλc =
Ns∑

i=1

Qi
c
T
λi

c 6= 0

Combining (16), the modified (22) and (31) leads us to a completely
new system



−Fλrλr F̃λrEc 0
FEcλr −FEcEc FEcλc

F̃λcλr −F̃λcEc −F̃λcλc




[
λr

Ec

λc

]
= −




dλr

dEc

d̃λc


 (32)

The introduction of the new unknown λc in this system is
computationally reasonable as there are in fact very few corner points
whatever the selected partition. Nevertheless, as shown in the next
session, this parameter has great influence on the accuracy of the
computed fields.

4. NUMERICAL RESULTS

In this section, we compare the field computed thanks to the various
approaches in the framework of a 2D scattering configuration. We
assume that the domain Ω is filled with air. The operating frequency
is 800 MHz. The domain is a square whose size is [8×8]m2 ≈ 21×21λ.
One line source, located at (2.5, 2.5)m radiates a s-polarized wave.
Three square scatterers are positioned inside the domain Ω. All the
scatterers are assumed to be non-magnetic (µr = 1), and they present
a relative permittivity respectively equal to ε1

r = 1.5, ε2
r = 3.0, and

ε3
r = 5.0. The domain is surrounded by a cartesian uni-axial Perfectly

Matched Layer (PML) whose width is 1 m (Figure 1). It must be
noticed here that we have used the scattered field formulation even if
the source is enclosed in the computational domain.

The domain is discretized thanks to a free unstructured mesh
generator GMSH [37]. The global mesh contains 214 429 nodes and
430 510 triangles. This global mesh is inserted into a home-made mesh
partitioner which provides, for each subdomain, the structure of the
local mesh as well as the boundaries and the corner nodes lists between
subdomains. This partitioner intensively uses subroutines provided
by METIS [38]. The factorization of each sub-matrices is performed
thanks to a direct sparse solver [9, 10] and stored during the resolution
of the interface problem. The interface problem uses a crude GMRES
method without any preconditioner.

The scattered field Esc is computed using three different
approaches. In the first one, denoted in the following as FEM, the
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Figure 1. Position of the source in the area filled with air and bounded
with PML with the 3 scatterers inside.

field Esc
1 is computed by solving (3) taking into account the whole

domain, without any partitioning. In the second one, denoted simply
as FETI-DPEM2, the domain is partitioned and the system defined
in (28) is solved to provide Esc

Ns
. In the last one, denoted as FETI-

DPEM2 extended, the partitioning is again employed but this time
the extended system defined in (32) is solved, taking into account the
Lagrange multipliers for the corner points, to provide Esc

Ns,ext. We have
defined a L2-norm error between the various scattered fields,

L2
Ns

=
‖ Esc

Ns
−Esc

1 ‖2

‖ Esc
1 ‖2

and L2
Ns,ext =

‖ Esc
Ns,ext −Esc

1 ‖2

‖ Esc
1 ‖2

For a domain divided into 5 subdomains (Ns = 5), the scattered
field is presented in Figure 2. The L2-norm error between the various
computed fields is such that L2

Ns
= 4.00 10−3 and L2

Ns,ext = 7.88 10−13.
As this error might evolve with Ns, we have solved the same scattering
problem for different number of partitions (see Table 1). Two main
features can be deduced from Table 1. Firstly, our proposed method is
very stable against the number of subdomains. Secondly, the L2-norm
error is always smaller for the extended FETI-DPEM2 approach than
for the classical FETI-DPEM2 approach.

This is probably due to the fact that the final values obtained
at each corner points of the domain with the FETI-DPEM2 extended
method have a better agreement than the ones obtained with classical
FETI-DPEM2 method. This is confirmed by the results shown in
Figure 3 in which we have plotted the values of the electric field
obtained by the three methods when the domain Ω is divided into
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(a) (b)

Figure 2. Map of the scattered field when three scatterers (with
ε1
r = 1.5, ε2

r = 3.0, ε3
r = 5.0) are illuminated by a line source (see

Figure 1). A partitioning in Ns = 5 subdomains is used. (a) Amplitude
(lin.). (b) Phase (rad).

Table 1. Relative L2-norm errors when different methods and different
partitioning are used.

Ns FETI-DPEM2 (L2
Ns

) FETI-DPEM2 extended (L2
Ns,ext)

5 4.00 10−3 7.88 10−13

10 2.05 10−2 6.81 10−12

15 3.93 10−2 6.97 10−12

20 5.04 10−2 2.58 10−11

25 7.43 10−2 5.07 10−11

30 8.23 10−2 2.45 10−11

17 partitions yielding 22 corner points. The partitioned geometry is
represented in Figure 4.

Figure 4 is also pointing out the fact that the domain is partitioned
in a non-regular manner. The interfaces Γij are definitely not straight
lines and this might influence the way the transmission boundary
conditions are being applied between each subdomain. Nevertheless,
Table 1 guaranties that numerically, even when Ns increases, the
interface boundary conditions are correctly taken into account. An
other key-parameter in the Robin-type boundary conditions is the
coefficient αi (see (21)). We have thus tested the convergence of the
method with respect to αi. For the same value of the stopping criterion
of the GMRES algorithm, we have noted in Table 2 the value chosen
for αi, the number of iterations of the GMRES algorithm as well as
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Figure 3. Amplitude of the electrical field Esc extracted at the
corner points when different methods are employed. The partition
with Ns = 17 is shown in Figure 4.

Figure 4. Map of the schematic domain, showing the way the
partitioning has been performed for Ns = 17.

Table 2. Number of iterations and relative error of the FETI-DPEM2
extended method when different values of αi are used.

αi/(jk0) Number of iterations Relative error (L2
Ns,ext)

1.0 1 181 1.96 10−11

2.0 1 611 4.49 10−11

average 1 091 8.58 10−12

the L2-norm error obtained with the FETI-DPEM2 extended method.
The value noted as average corresponds to αi

jk0
=
√

µi
rεi

r+
√

µk
rεk

r

2

which is the value suggested in [33]. As one can remark, this value is
also an optimal value in terms of iterations for our proposed method.
Furthermore, this value provides a very stable and precise solution of
the considered problem even with anisotropic medias.
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5. CONCLUSION

In this paper, we have presented the simulation results obtained using
a modified approach of the FETI-DPEM2 method. Indeed, a new
set of Lagrange multipliers have been added in order to handle the
continuity conditions differently at the corner points between the
various subdomains. The numerical results presented here have shown
that the introduction of this new set enables to provide more accurate
results with respect to the classical FETI-DPEM2 method. Moreover,
we have been able to partite and handle internal interfaces which
are not necessarily straight lines without major drawback in terms
of computational accuracy. One possible path of investigation is
to implement not only first-order transmission boundary conditions
but also second-order transmission boundary conditions at the edges
related to the internal interfaces as well as the ones related to the corner
points and to analyze their influences in terms of algorithm complexity
and computational efficiency.

The problem of interest that we analyzed here is based on a
scattered field formulation. We have investigated so far a two-
dimensional configuration and are currently working on the three-
dimensional extension of this problem. There are no restriction
for taking into account scatterers which are made of heterogeneous
structures or even anisotropic materials.
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