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Abstract—This paper presents a new approach to the electromagnetic
inverse scattering formulation of the permittivity profile estimation.
The proposed approach is particularly effective for the cases where
unknown objects are made of a finite number of homogeneous regions.
This approach prevents the need for the Born approximation initial
guess and updating the internal total electric field iteratively. The
solution to the inverse source problem and scattering problem is
not unique. To address the non-uniqueness issue, we have defined
the non-radiating objective functions. By minimizing this objective
function and applying some constraints, we have been able to obtain
a unique permittivity profile. The simulation results indicate that
the low-contrast and high-contrast permittivity profiles are accurately
estimated by the proposed method. The distinguishing feature
of the proposed approach is that by including the non-radiating
part of the equivalent source, the unknown permittivity profile
becomes the solution to a minimization problem, which is much
less computationally intensive as compared to existing methods using
iterative field calculation over the entire domain, when applied to
large (in terms of wavelength) objects. The high performance of the
proposed method for noisy measured data has also been verified.

1. INTRODUCTION

Electromagnetic inverse scattering is one of the most promising
techniques for medical imaging applications particularly where the
existing medical imaging techniques are unreliable. Tooth interior
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imaging is an example [11]. MRI scanners are not appropriate for
dental tomography because they are too expensive and not good
at imaging teeth. In comparison with MRI, CT scanner is an
obvious choice for dental radiology [14], but high required dose of
ionizing radiation to one’s head is an important concern [32]. Three-
dimensional terahertz pulse imaging is another approach, which has
its own challenges and difficulties [15], particularly for the large
size tooth samples [11]. Three-dimensional terahertz continuous
wave imaging [15] and pulse imaging [28] have been used for very
low contrast objects. However, since these image reconstruction
approaches are based on filter back projection (the scattered field or
beam diffraction is ignored), the approaches can not be applied to
the high-contrast objects or low-contrast objects, particularly with the
large size one. The relative permittivities of tooth enamel and dentine
have been measured by using THz spectroscopy in [2] and have been
reported as 9.35 and 6.60, respectively.

Conventional dielectric profile estimation methods use Born
approximation at a preliminary stage to solve the inverse scattering
problem iteratively. The Born approximation initial guess has
frequently been used to linearize the electromagnetic inverse scattering
problem [8, 15, 16, 20, 33–35]. This is a good initial estimate for the field
inside a low-contrast scatterer as long as the scatterer size is a fraction
of a wavelength [15]. This initial guess eases the formulation of the
inverse scattering problem. However, the Born approximation initial
guess was found in [15] to be a problematic assumption for a large size
object (large in terms of wavelength).

In this paper, our focus is on the frequency domain inverse scat-
tering algorithm. The existing methods for solving the electromagnetic
inverse scattering problem in the frequency domain can be categorized
under two main approaches: radiating and non-radiating.

The radiating approach takes into consideration only the radiating
part of the total volume equivalent current source (VECS) and
linearizes the electromagnetic inverse scattering problem. The
radiating VECS is also known as the minimum energy solution [29, 30].
In a typical radiating approach, the electromagnetic inverse scattering
systems are linearized by iteratively solving for the internal total
electric field using the invertible part of the electromagnetic scattering
Green’s function. The resulting linear equation can be solved for
the radiating part of VECS by means of the pseudo-inverse, mean
square error [22, 27, 31], singular value decomposition (SVD) [25],
regularization, statistical [1, 5], or Fourier (holography) [37] based
approaches. Initializing the internal total electric field with the
incident field in the first iteration transforms the forward scattering
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problem into a linear equation [8, 15, 16, 33–35]. In the next
iterations, the permittivity and total electric field are estimated
iteratively. Iteration continues until either the scattered field
estimation error or contrast factor estimation error drops below a
certain threshold [8, 9, 12, 15, 16, 33]. The threshold must first be set
heuristically [8, 9, 12, 23, 33]. The permittivity profile of an object
(scatterer) cannot be estimated with the radiating VECS alone.
Signal-subspace optimization techniques are reported for permittivity
profile estimation by extending the radiating objective function and
minimizing the noise effects [6, 7, 24].

The second approach includes the non-radiating VECS confined
within the boundary of a scatterer. This approach involves
the null space of the Green’s function matrix of the scattering
problems [4, 10, 17–19, 26, 29]. The internal scattered field inside
an object is unmeasurable, and the non-radiating VECS cannot be
obtained by using the invertible part of the Green’s function operator in
the aforementioned linearized iterative schemes. To our knowledge, no
approach based on the non-radiating part of the VECS for permittivity
profile reconstruction has so far been proposed.

In this paper, we propose an alternative approach based on a new
non-radiating objective function for permittivity profile estimation of
an unknown scatterer. We assume that an unknown scatterer consists
of many homogenous regions whose boundaries are known a priori.
It should be emphasized that our goal is to estimate the permittivity
profile of unknown scatterers, but not the non-radiating VECS.

2. STATEMENT OF THE PROBLEM AND SUMMARY
OF THE PROPOSED APPROACH

Figure 1 shows the electromagnetic inverse scattering system (EMISS).
EMISS includes scatterers, a transmitter antenna, and multiple
observation points (antenna array, R’s). We assume that the unknown
scatterer, v2, is located inside the EMISS region, v1. Generated by the
impressed or known source, ~Jim, the total electric fields are measured at
the observation points within v1 in the presence of the scatterer. The
unknown scatterer consists of many homogenous regions surrounded
with a background medium.

The proposed approach estimates the permittivity profile using
the data collected at observation points within v1. The proposed
method is summarized as follows:
(i) Measuring the incident electric fields at observation points in

EMISS in the absence of any scatterers,
(ii) Illuminating the scatterer by the incident field,
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Figure 1. The EMISS configuration under consideration.

(iii) Measuring the total electric fields at the observation points,
(iv) Estimating the permittivity profile by minimizing an objective

function including both radiating and non-radiating parts of the
equivalent source respectively.

The focus of this paper is the detailed formulation of the fourth
step of the above procedure, which is explained in the next two
sections. Scattered field generated by the radiating part of the VECS is
explained in Section 3. The new minimization (optimization) problem
including non-radiating source, which is the essential part of the
proposed method is presented in Section 4. The effectiveness of the
proposed method is tested against both low-contrast and high contrast
objects by conducting simulations. Section 5 presents the simulation
results, and Section 6 concludes the paper.

3. RADIATING VECS AND “RADIATING” CONTRAST
FACTOR

In this section, the radiating VECS and the radiating contrast factor
are obtained by solving the forward scattering equation for the total
electric fields measured at observation points. For a medium with a
homogenous magnetic permeability profile, the total electric field in
EMISS satisfies the complex vector wave equation:

∇×∇× ~Etot − ω2µ0ε0 ~Etot = −jωµ ~Jtot, (1)
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where
~Etot = ~Einc + ~Escat, (2)
~Jtot = ~Jim + ~Jeq, ~Jeq = jωε0κr

~Etot, (3)

and ~Etot, ~Escat, ~Einc, ~Jtot, ~Jim, ~Jeq, ω, ε0, and µ0 are the total electric
field, scattered electric field, incident electric field, total electric current
density (total current source), impressed current source, VECS, the
angular frequency, free space permittivity, and free space permeability,
respectively. The incident field is generated by ~Jim in the absence of
any scattering object. The scattered field is generated by the VECS in
a homogeneous medium. As shown in (3), the VECS is proportional
to the contrast factor, κr,

κr(~r) = εr(~r)− 1, (4)

and the total electric field, where εr is the relative permittivity. The
scattered electric field can be obtained [21] as follows:

~Escat (~r) = −jωµ

∫ (
1 +

1
k2
∇∇·

)
Ga

(
~r, ~r ′

)
~Jeq

(
~r ′

)
dv′, (5)

where k is the wave number (ω
√

µε), and Ga(~r, ~r ′) is the magnetic
vector potential Green’s function,

Ga

(
~r, ~r ′

)
=

H
(2)
0 (k|~r − ~r ′|)

4j
, (6)

where ~r and ~r ′ are the position vectors that locate the observation
point and the source point, respectively, as shown in Figure 1.
Equation (4) indicates that the contrast factor is non-zero within the
scatterer and is zero for a homogenous background. The scattered
electric field Equation (5) can be discretized by dividing v2 into the
q number of elements. Using the Method of Moments (MOM), the
scattered electric field Equation (5) can be written for the p number
of observation points in a matrix form as follows:

Escat = GeJeq, (7)

where Escat is the p×1 single column matrix, and Jeq is the q×1 total
VECS single column matrix, and is defined as,

Jeq = jωε0κrEtot, (8)

Etot is the q×1 single column matrix whose nth element is the average
total electric field at the nth discretized element of v2; κr is a q × q
diagonal matrix whose nth diagonal element is the average contrast
factor at the nth element of v2; Ge is the p × q Green’s function
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matrix wherein the mth row and nth column element of the electric
field Green’s function matrix, Ge mn, for two-dimensional TMz case,
is:

Ge mn = −jωµ

∫
Ga

(
~r, ~r′

)
fn(~r′)dv′, (9)

fn(~r′) is the nth basis function in the expansion of Jeq. The pulse basis
function is defined as,

fn

(
~r′

)
=

{
1 ~r′ ∈ vn

2
0 otherwise . (10)

Equation (7) is referred to as the forward scattering equation. The
Green’s function matrix is ill-conditioned [3, 13] and rank deficient.
The singular values of the Green’s function matrix are first calculated
by employing singular value decomposition. The singular values below
a certain threshold are eliminated to improve the condition number of
the Green’s function matrix. The threshold can be calculated once for
an EMISS at the calibration stage. The Green’s function matrix in
its now improved condition is used to solve (7) for Jeq. The VECS is
written as,

Jeq = JRA
eq + JNR

eq , (11)

where JRA
eq (radiating VECS) is the radiating part of the equivalent

source, whereas JNR
eq (non-radiating VECS) is the remaining part of

the equivalent source, which does not generate any field outside the
scatterer. The inverse solution of Equation (7) yields only the radiating
VECS.

Here, we assume that the relative contrast factor can be
represented as,

κr = κRA
r + κNR

r , (12)

where κRA
r is the relative radiating contrast factor, and κNR

r is the
relative non-radiating contrast factor. Subdivided into m′ number
of homogenous subregions, the contrast factor of an inhomogeneous
region is defined as a q × q block diagonal matrix as follows,

κr =




κ1
r 0 . . . 0

0 κ2
r . . . 0

...
...

. . .
...

0 0 . . . κm′
r


 , κt

r = κt
rIt where t = 1, 2, . . . ,m′,(13)

It is the qt×qt identity matrix; m′ is the number of homogenous clusters
within a scatterer; qt is the number of elements in the tth subregion
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of v2; the sum of all the qt’s, (t = 1, 2, . . . , m′) is the total elements,
q, considered for the contrast factor estimation; κt

r is a scalar that
represents the tth subregion’s contrast factor.

The radiating contrast factor is entirely based on the radiating
portion of the VECS, and for each point, is defined as,

κRA h
r = JRA h

eq /
(
jωε0E

int RA h
tot

)
, where h = 1, 2, . . . , q (14)

where JRA h
eq and Eint RA h

tot are the corresponding radiating VECS and
total electric field at a point denoted by h. The radiating internal total
electric field, Eint RA

tot is now defined by

Eint RA
tot = Einc + Gint

e JRA
eq . (15)

The Green’s function matrix, Gint
e , is evaluated for the observation

points inside the scatterer. Note that the radiating contrast factor
estimated above is one of the two parts of the contrast factor (12). To
find the contrast factor or permittivity profile, we need to obtain the
non-radiating part, which will be described in the next section.

4. NON-RADIATING VECS, NON-RADIATING
CONTRAST FACTOR, AND THE OBJECTIVE
FUNCTION

The non-radiating part of VECS cannot be obtained by solving the
forward scattering equation directly, as the non-radiating part of VECS
generates zero electric field outside a scatterer. The radiating VECS
rigorously reproduces the external scattering field but fails to provide
the correct internal scattered field via the forward scattering equations
inside an object, particularly when the scatterer has a high contrast
factor. Hence,

Eext
scat = Gext

e JRA
eq , (16)

Eint
scat 6= Gint

e JRA
eq , (17)

where Eext
scat, Eint

scat, Gext
e , and Gint

e are the external scattered field,
internal scattered field, external electric field Green’s function matrix,
and internal electric field Green’s function matrix, respectively. The
non-radiating part of the VECS does not generate any fields outside
the scatterer,

0 = Gext
e JNR

eq . (18)

The solutions to Equation (18) form the null space of the
electromagnetic Green’s function operator. Therefore, the VECS
from (11) is non-unique.
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The internal scattered field can be expressed in terms of the
radiating and non-radiating parts of the total VECS within the
scatterer:

Eint
scat = Gint

e

(
JRA

eq + JNR
eq

)
. (19)

The total internal scattered field, Eint
scat, can be decomposed into

two parts, namely, the radiating internal scattered field, Eint RA
scat , and

the non-radiating internal scattered field, Eint NR
scat ,

Eint
scat = Eint RA

scat + Eint NR
scat , (20)

where

Eint NR
scat = Gint

e JNR
eq . (21)

Equations (2) and (3) can then be rewritten as follows by
considering (11), (12), (20), and boundary information:

Eint
tot = Einc + Eint RA

scat + Eint NR
scat ,

Jeq = jωε0
(
κRA

r + κNR
r

) (
Einc + Eint RA

scat + Eint NR
scat

)
.

(22)

The radiating VECS formulation can be written in a matrix form
based on (14),

JRA
eq = jωε0κ

RA
r

(
Eint RA

tot

)
. (23)

The non-radiating VECS can be obtained by replacing the VECS
and the radiating VECS from (22) and (23), respectively, into (11):

JNR
eq = jωε0

((
κRA

r + κNR
r

)
Eint NR

scat + κNR
r Eint RA

tot

)
, (24)

where based on (15),

Eint RA
tot = Einc + Eint RA

scat . (25)

The non-radiating VECS given by (24) contains two unknowns,
namely the non-radiating contrast factor, κNR

r , and non-radiating
internal scattered field, Eint NR

tot . Using (21) and (24), the non-
radiating internal scattered field can be expressed in terms of the non-
radiating contrast factor :

Eint NR
scat = jωε0QGint

e κNR
r Eint RA

tot , (26)

where Q is

Q =
(
I− jωε0Gint

e

(
κRA

r + κNR
r

))−1
, (27)

and Equation (24) can now be rewritten, as

JNR
eq = jωε0

(
κRA

r +κNR
r

)(
jωε0QGint

e κNR
r +jωε0κr

NR
)
Eint RA

tot . (28)
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Equations (18), (12), and (28) should be solved simultaneously to
determine the non-radiating contrast factor and the contrast factor.
For this purpose, rather than trying to solve (18) directly, we seek for
the contrast factors that minimize the non-radiating objective function,
RNR(.), which is defined as the `2-Norm of the external scattered field
due to the non-radiating VECS. Thus, the optimum answer to the
permittivity profile estimation is the contrast factor minimizing the
non-radiating objective function and is expressed as follows:

κ∗r = arg
n′

min
i=1

(
RNR

(
JNR i

eq

))
, (29)

where

JNR i
eq = jωε0κ

i
r

(
jωε0QiGint

e + jωε0
) (

κi
r − κr

RA
)
Eint RA

tot , (30)

Qi =
(
I− jωε0Gint

e κi
r

)−1
, (31)

κi
r and κRA i

r are the diagonal contrast factor matrix and the diagonal
radiating contrast factor matrix for the ith test permittivity set,
respectively. The contrast factor of an inhomogeneous region is defined
as follows:

κi
r =




κi 1
r 0 . . . 0
0 κi 2

r . . . 0
...

...
. . .

...
0 0 . . . κi m′

r


 ,

κi t
r = κi t

r It, where
{

t = 1, 2, . . . , m′
i = 1, 2, . . . , n′ , (32)

where It is the qt × qt identity matrix; qt is the number of elements in
the tth subregion of v2; κi t

r is a scalar that represents tth subregion’s
contrast factor from the ith test permittivity set. Equation (29) in
conjunction with (30) can be considered as the accurate formulation
for estimating the contrast factor. The simulation results confirm that
a unique contrast factor can be obtained by using Equation (29) in
conjunction with (30).

The proposed objective function based on the non-radiating VECS
includes a single unknown, the total contrast factor, while the radiating
objective function linearized by applying the Born approximation
initial guess includes two unknowns, the total contrast factor and the
internal total electric field. To perform permittivity profile estimation,
the search space dimension for the proposed approach is (n′), whereas
the search space dimension for the Born iterative approach is (2× n′).
Therefore, the search complexity for the proposed approach is half
that of the Born iterative approach. An interesting aspect of the



166 Shahir et al.

above proposed approach is that it can provide a unique contrast factor
that is not affected by the non-uniqueness of the non-radiating VECS
problem.

5. SIMULATION RESULTS

In this section, we have evaluated the proposed approach for
permittivity profile estimation by conducting several simulations. The
permittivity profile of an inhomogeneous object can be represented
with a number of homogenous subregions. We have considered a 2-D
problem and a region bounded by a circle with a radius of 10λ/3.
We have chosen 255 observation points, distributed uniformly on
the perimeter of the circle to ensure enough samples to accurately
capture the full scattered electric field. To prevent the inverse
crime scenario [36], the electromagnetic forward scattering problem
is independently simulated using a finite element method (FEM). The
FEM is used to illuminate the object under test with a plane wave and
to collect data (the total electric field) at the observation points. The
collected data generated independently by FEM is used and considered
as the input for permittivity profile estimation. The proposed approach
is verified by its application to two different case studies as explained
below.

In the first case study, we have considered the EMISS geometrical
configuration shown in Figure 2(a). The object under test, v2, includes
two homogenous subregions, v1

2 and v2
2, in a free space background.

The first subregion is a circular cylindrical dielectric one wavelength
in diameter, and its center lies at (0.6λ, 1.8λ). The second subregion
is a rectangular cylindrical dielectric each side one wavelength wide,
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Figure 2. The EMISS representation of the scatterer with (a) two
subregions and (b) three subregions.
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and its center lies at (−0.6λ, −1.8λ). Without loss of generality, the
dielectric scatterers are considered to be lossless and divided into 5810
elements.

To verify the performance of the proposed approach for estimating
the permittivity profile of a low-contrast object, first, the scatterer
whose discretized permittivity profile is shown in Figure 3(a) is
illuminated by a plane wave. The forward scattering is solved
independently once by FEM, and data is collected at the observation
points. The search space can always be restricted to the prior known
range of the dielectric constant of a structure. As an example, if the
approach is applied to a tooth structure, and its relative permittivity
range is known for tooth enamel and dentine, the search space is
bounded within this range (between 1.0 and 10.0). Searching over the
permittivity range enables us to distinguish between the tooth enamel
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Figure 3. The discretized permittivity profile (a) homogenous low-
contrast object, εr = 1.25, (b) homogenous high-contrast object,
εr = 6.00, (c) non-homogenous object, εr 1 = 6.00 and εr 2 = 3.00.
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and dentine subregions in this particular example. Figure 4(a) presents
the proposed objective function based on the non-radiating VECS for
the object with two subregions with the test permittivities ranging
from 1.25 to 9.00 (n′ = 961). The top (x-y) view of the objective
functions is shown in Figure 4(b). The Born iterative method’s
objective function is converted to a linear one by initializing one of the
unknowns, the internal total electric field. However, there is no such
simplification in the proposed objective function, and the objective
function remains non-linear. The non-radiating objective function is
minimal when the estimated permittivity of the two regions is 1.25,
which is the correct value.

Secondly, we investigated the performance of the proposed
objective function for estimating the permittivity profile of a high-
contrast object. As shown in Figure 3(b), the high-contrast scatterer
is illuminated by a plane wave. The non-radiating objective function
for the object with two subregions with the permittivities ranging
from 1.25 to 9.00 (n′ = 961) is presented in Figure 5. As shown in
Figures 5(a) and (b), the non-radiating objective function and the
non-radiating approach enable us to estimate the relative permittivity
of the v1

2 and v2
2 regions as 6.00, which is the correct value.

Next, we investigated the performance of the proposed non-
radiating objective function for estimating the permittivity profile of an
object including two subregions with different permittivity values. The
permittivity profile of the scatterer under test is shown in Figure 3(c).
As illustrated in Figures 6(a) and (b), the non-radiating objective
function has distinctive minima when the relative permittivities of the
v1
2 and v2

2 regions are, respectively, 3.00 and 6.00, which are the correct
values.
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In the second case study, the performance of the proposed
approach is evaluated for the object including more than two
homogenous subregions. In this case, we considered the EMISS
geometrical configuration of Figure 2(b). The object under test, v2,
includes three homogenous subregions: v1

2, v2
2, and v3

2 in a free space
background. The first subregion is a circular cylindrical dielectric with
a diameter of one wavelength centered at (0.6λ, 1.8λ). The second
subregion is a rectangular cylindrical dielectric with one wavelength
side centered at (1.5λ,−1.5λ). The third subregion is a rectangular
cylindrical dielectric with a half wavelength width and a wavelength
length centered at (−1.8λ, 0). The dielectric scatterers are considered
to be lossless and are subdivided into 5046 elements.

We investigated the performance of the proposed non-radiating
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Figure 7. (a) The permittivity profile, εr1 = 6.00, εr2 = 6.00, and
εr3 = 6.00, and (b) the non-radiating objective function.

objective function for estimating the permittivity profile of a high-
contrast object. The high-contrast scatterer’s permittivity profile
under test is shown in Figure 7(a). The non-radiating objective
function for the object with three subregions, with permittivities
ranging from 1.25 to 9.00 (n′ = 729) are presented in Figure 7(b).
The non-radiating objective function is minimal when the relative
permittivity of regions v1

2, v2
2, and v3

2 is 6.00, which is the correct
value.

Then, we investigated the performance of the proposed approach
for estimating the permittivity profile of an object including three
subregions with different permittivity values as shown in Figure 8(a).
The non-radiating objective function for the object with three
subregions is presented in Figure 8(b). The non-radiating objective
function is at minimum when the permittivity profile amplitudes of
regions v1

2, v2
2, and v3

2 are, respectively, 3.00, 5.00 and 8.00, which are
the correct values.

So far, the proposed approach has been verified for the noise free
data. To evaluate the proposed approach performance with the noisy
data, the high-contrast object with the permittivity profile shown in
Figure 3(b) is illuminated with a plane wave, and a white Gaussian
noise is added to the FEM simulation results. The non-radiating
objective function is evaluated by sweeping the relative permittivity
with the 0.25 step size between 1 and 9 for the following signal to
noise ratio (SNR): 60 db, 40 db, 20 db, 10 db, 5 db, 3 db, 2 db, and 1 db.
The results indicate that the minimum values for the non-radiating
objective function occur at the correct relative permittivity (εr = 6)
for the 60 db, 40 db, 20 db, and 10 db SNRs, but it deviates from the
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Figure 8. (a) The permittivity profile, εr1 = 3.00, εr2 = 5.00, and
εr3 = 8.00, and (b) the non-radiating objective function.
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Figure 9. (a) Non-radiating objective function vs. relative
permittivity for different SNR, and (b) permittivity profile estimation
error vs SNR.

true relative permittivity when the SNR drops below 10 db, as shown
in Figure 9(a). Thus, the permittivity profile estimation based on
the proposed approach is also valid for noisy measured data. The
permittivity profile estimation error for the 5 db, 3 db, and 2 db SNRs
is %8, and for the 1 db SNR is %14, as shown in Figure 9(b).

The simulation results indicate that the proposed approach
can be successfully applied to both low-contrast and high-contrast
permittivity profiles of a large object (in terms of wavelength). The
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simulation results illustrate that the proposed approach can correctly
estimate the permittivity profile of the object under test in a noisy
measurement environment.

6. CONCLUSION

A new solution to the permittivity profile estimation problem is
presented for a scatterer whose permittivity profile can be divided into
a number of homogenous clusters. To address the Born approximation
initial guess issue pointed out in [15] for the electromagnetic inverse
scattering problem, we have introduced the non-radiating contrast
factor through which an objective function for permittivity profile
estimation is formulated. The solutions to the inverse source problem
are non-unique. However, our method yields the correct and unique
permittivity profile of an unknown object by minimizing the non-
radiating objective function and applying the boundary information.
The conventional Born’s approximation works well for a low-contrast
object as long as the object size is a fraction of a wavelength.
In contrast, the proposed non-radiating objective function can be
used for both low-contrast and high-contrast permittivity profiles
with even large size objects. The method has been verified by
extensive simulations. The proposed approach has a much smaller
number of unknowns and is therefore computationally more efficient
than the permittivity profile estimation approaches based on Born
approximation. The simulation results also depict that the proposed
approach can accurately estimate the permittivity profile of an object
under test in a noisy environment.
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