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Abstract—We propose an automatic and accurate technique for
classifying normal and abnormal magnetic resonance (MR) images of
human brain. Ripplet transform Type-I (RT), an efficient multiscale
geometric analysis (MGA) tool for digital images, is used to represent
the salient features of the brain MR images. The dimensionality of the
image representative feature vector is reduced by principal component
analysis (PCA). A computationally less expensive support vector
machine (SVM), called least square-SVM (LS-SVM) is used to classify
the brain MR images. Extensive experiments were carried out to
evaluate the performance of the proposed system. Two benchmark MR,
image datasets and a new larger dataset were used in the experiments,
consisting 66, 160 and 255 images, respectively. The generalization
capability of the proposed technique is enhanced by 5 x 5 cross
validation procedure. For all the datasets used in the experiments, the
proposed system shows high classification accuracies (on an average
> 99%). Experimental results and performance comparisons with
state-of-the-art techniques, show that the proposed scheme is efficient
in brain MR image classification.

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a low-risk, fast, non-invasive
imaging technique with no ionizing radiation hazard. MRI provides
high quality and high contrast images of anatomical structures as well
as functional images of different organs [1]. Soft tissue structures
(heart, lungs, liver, brain and other organs) are clearer and more
detailed with MRI than other medical imaging modalities. The non-
invasive nature of MRI together with its rich information provision,
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makes MRI the widely used method for diagnosis and treatment
planning [2-4]. Various researchers are not only trying to improve
the MR image quality, but also seeking novel methods for easier and
quicker inference from the images [5-7]. In recent years, MRI has
emerged as one of the popular choice to study the human brain [8-
10]. MRI can detect a variety of conditions of the brain such
as cysts, tumors, bleeding, swelling, developmental and structural
abnormalities, infections, inflammatory conditions, or problems with
the blood vessels, etc.. It can determine whether a shunt is working or
not, and detect damage to the brain caused by an injury or a stroke.

However, because of the huge amount of imaging data, the existing
manual methods of analysis and interpretation of brain images are
tedious, time consuming, costly and subject to fatigue of human
observer. This necessitates the requirement of developing automated
diagnosis tools to draw quicker and easier inferences from the MR
images. These automated systems can be of great help for the
medical personnel in diagnosis, prognosis, pre-surgical and post-
surgical procedures, etc. [11,12]. One of the most distinguishable
feature of a normal human brain is the symmetry, which is obvious
in the axial and the coronal brain magnetic resonance (MR) images.
Whereas, asymmetry in an axial MR brain image strongly indicates
abnormality/disorder [11,13]. This symmetry-asymmetry can be
modelled by various image and signal processing techniques, which
can be used to classify the normal and abnormal brain MR images [6].

In recent years, various approaches of brain MR image
classification have been proposed by different researchers. Chaplot et
al. have achieved 94% and 98% accuracies through classifiers based
on self-organizing map (SOM) and support vector machine (SVM),
respectively. They have used discrete wavelet transform (DWT) for
feature extraction [13]. In [14], Maitra and Chatterjee have shown
that Slantlet transform can be combined with supervised classification
(back-propagation neural network (BPNN)) technique to achieve 100%
classification accuracy. Principal component analysis (PCA) is used
to reduce the dimension of the feature vector obtained through DW'T
in [15] by El-Dahshan et al. They have achieved 97% and 98% success-
rates through feed-forward BPNN and k-nearest neighbor (kNN)
classifiers, respectively. Recently, Zhang et al. have proposed several
advanced techniques for brain MR image classification with high
classification accuracies [12,16-18]. In all the proposed techniques,
they have used DWT for feature extraction, PCA for feature dimension
reduction and different classifiers with various weight optimization
schemes (forward neural network (FNN) + scaled chaotic artificial
bee colony (SCABC) in [12], FNN + adaptive chaotic particle swarm
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optimization (ACPSO) in [16], BPNN + scaled conjugate gradient
(SCG) in [17], kernel SVM (KSVM) with different kernels: linear
(LIN), homogeneous polynomial (HPOL), inhomogeneous polynomial
(IPOL) and Gaussian radial basis (GRB) in [18]) for segregating the
normal and abnormal MR images.

Most of the existing brain MR image classification systems suffer
from several shortcomings:

(i) These systems are based on DWT or variants of DWT, which
has several problems: limited directionality, non-supportiveness
to anisotropy, etc.. Therefore, DWT cannot capture the subtle
and intrinsic details of the brain MR images, which are required
for segregating normal and abnormal cases.

(ii) Although, most of the state-of-the-art schemes utilize PCA for
feature reduction to achieve computational efficiency. Because
of the DWT 4 PCA combination, the dimension of the reduced
feature vector is still comparatively high.

(iii) Moreover, most of these schemes use neural network with complex
weight optimization techniques, which leads to high computational
complexity.

(iv) Furthermore, most of the existing techniques lack the general-
ization capability, as these systems work well on small particular
dataset, but, fail to work efficiently for different datasets of various
sizes with varying classes of diseases.

In general, most of the existing MR brain image classification
systems consist of three different phases: feature extraction, feature
reduction and classification. The proposed technique consists of similar
process blocks.

The main motivation of this work is to develop an automatic MR
brain image classification system with less computational complexity
and high classification accuracy. The other motivation is to make the
technique general so that it can work equally efficiently for different
brain MR datasets, consisting varying number of diseases classes. The
main advantages of the proposed scheme can be listed as follows:

(i) A fully automatic and accurate system for MR brain image
classification.

(ii) The proposed scheme is based on RT, which is superior than
DWT. RT has superior localization capability in both spatial and
frequency domain. Moreover, RT can capture 2D singularities
along different curves in any direction, because of the general
scaling with arbitrary degree and support, and thus providing
better image representation.
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(iii) Applying PCA on the coefficients of RT decomposed image, the
feature vector dimension reduces to only 9 (much less than used
by the existing schemes) which results in computational efficiency.

(iv) The use of LS-SVM further reduces the computational cost by
avoiding solving quadratic programming problem, and

(v) The proposed system is more effective than the state-of-the-art
techniques: it works efficiently on datasets with different sizes
and consisting abnormal brain MR images from more number of
disease classes.

All these above mentioned advantages make the proposed technique
an effective and accurate system for MR brain image classification.

The rest of the paper is organized as follows. Theoretical
backgrounds of RT, feature reduction and LS-SVM is described in
Section 2, Section 3 and Section 4, respectively. Section 5, presents
the proposed system. Experimental results and comparisons are given
in Section 6 and we draw conclusion in Section 7.

2. RIPPLET TRANSFORM TYPE-I (RT)

DWT and its variants were used extensively by various researchers
for feature extraction in MR brain image classification [12-18]. But
the problem with DWT is that it is inherently non-supportive to
directionality and anisotropy. To address these problems, Jun
Xu etal. proposed a new MGA-tool called RT [19]. RT is a higher
dimensional generalization of the Curvelet Transform (CVT), capable
of representing images or 2D signals at different scales and different
directions. To achieve anisotropic directionality, CV'T uses a parabolic
scaling law [20]. From the perspective of micro-local analysis, the
anisotropic property of CVT guarantees resolving 2D singularities
along C? curves. Whereas, RT provides a new tight frame with sparse
representation for images with discontinuities along C? curves [19].

There are two questions regarding the scaling law used in CVT:
1) Is the parabolic scaling law optimal for all types of boundaries? and
if not, 2) What scaling law will be optimal? To address these questions,
Jun Xu et al. intended to generalize the scaling law, which resulted in
RT. RT generalizes CVT by adding two parameters, i.e., support c
and degree d. CVT is just a special case of RT with ¢ =1 and d = 2.
The anisotropy capability of representing singularities along arbitrarily
shaped curves of RT, is due to these new parameters ¢ and d.

As digital image processing needs discrete transform instead of
continuous transform, here we describe the discretization of RT [19].
The discretization of continuous RT is based on the discretization of the
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parameters of ripplet functions. The scale parameter a is sampled at
dyadic intervals. The position parameter b and the rotation parameter

0 are sampled at equal-spaced intervals. aj, 5k and 6; substitute a, b
and 6, respectively, and satisfy that aj = 277 by, = [c:270 ey, 279/ 4 Jey) T
and 0, = AL . o=UO=YD) .1 where k = [k, ko]”, and j, k1, k2, [ € Z.
()7 denotes the transpose of a vector. d € R, since any real number
can be approximated by rational numbers, so we can represent d with
d =n/m, n,m # 0 € Z. Usually, we prefer n, m € N and n, m are
both primes. In the frequency domain, the corresponding frequency
response of ripplet function is in the form
1 m+n - 1 rm—n

bi(rw)=——a2e W27 7)V[=-2705" w1 1

() = e FW (27 ) (] ) W
where, W and V are the radial-window and the angular-window,

respectively. These two windows satisfy the following admissibility
conditions:

Z\Wzﬂr =1 (2)

2
’ < Lo-LiGi=1/a)] w—l>

given ¢, d and j. These two windows partition the polar frequency
domain into ‘wedges’. The ‘wedge’ corresponding to the ripplet
function in the frequency domain is

Hj(r,0) = {2]' <|rl < 92J ’9 _ % L9-Lit=1/d)]

l=—00

<3}

The discrete RT of an M x N image f(n1,n2) will be in the form

of
M—-1N-1

Rigu= 2. D J(nima)pz,(m,n2) (5)
n1=0mn2=0
where, Rj i, are the ripplet coefficients.
As a generalized version of CVT, RT is not only capable of
resolving 2D singularities, but it also has some useful properties:

(i) It forms a new tight frame in a function space. Having good
capability of localization in both spatial and frequency domain, it
provides a more efficient and effective representation for images or
2D signals.

(ii) It has general scaling with arbitrary degree and support, which can
capture 2D singularities along different curves in any directions.
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Jun Xu etal. have showed that RT can provide a more effective
representation for images with singularities along smooth curves [19].
It outperforms discrete cosine transform and DWT in nonlinear
approximation, when the number of retained coefficients is small. RT
can achieve roughly 2dB higher PSNR on average than JPEG, and
provide better visual quality than JPEG2000 at low bit-rates, when
applied to image compression. In case of image denoising application,
RT performs better than CVT and DWT. RT produces high quality
fused images, when applied in the medical image fusion domain [21].
All these experiments show that RT based image coding is suitable for
representing texture or edges in images.

3. FEATURE REDUCTION

There are two different feature reduction phases in the proposed
scheme. Here, we briefly describe these phases.

Let, N x N be the size of an brain MR image I, N = 2m, m € Z*.
After applying RT on I, let the size of the decomposed low frequency
subband (LFS) be M x M, M = 2p,p € Z*. Therefore, the first
feature reduction happens for the transition: N x N — M x M, M <
N.

The second feature reduction is achieved using PCA [22]. Let,
Tyar be the total variance of the original feature set, and Sy,q- be the
total variance of the reduced feature set having dimension d, d < M?.
The proper value of d is selected: % = 0.9. Let, PER,.q be the
achieved feature reduction percentage.

N?—-d

4. CLASSIFICATION THROUGH LS-SVM

The main drawback of support vector machine (SVM) is its high
computational complexity for large dimensional datasets. To reduce
the computational burden, the least square version of SVM (LS-SVM)
is adopted as classifier in this paper. Due to equality type constraints
in the formulation, the solution follows from solving a set of linear
equations, instead of quadratic programming for classical SVM’s [23].
Considering a linearly separable binary classification problem:

(zs,y3)7—; and y; = {+1,—1} (7)
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where, x; is an n-dimensional vector and y; is the label of this vector,
LS-SVM can be formulated as the optimization problem:

w,b,e

1 1<
min J(w, b, e) = iw’w + iC E e? (8)
i=1

subject to the equality constraint:
Yi [w/ga(xi) + b] =1—¢ (9)

where, C > 0 is a regularization factor, b a bias term, w the weight
vector, e; the difference between the desired output and the actual
output, and ¢(z;) a mapping function.

The lagrangian for the problem of Eq. (8) is defined as follows:

n
L(w,e;,b,a;) = min J(w, b, e) — Z o {yilw'p(x;) +b] — 1+ ¢} (10)
w,b,e 1
where, «; are Lagrange multipliers. The Karush-Kuhn-Tucker (KKT)
conditions for optimality % =0—-w=> 1", qyip(z); g—é_ =0 —
o = Cegs G5 =0 — YLy aqys = 03 G& = 0 — yi[w'p(wi) +b]—1+e; =
0, is the solution to the following linear system

v oo o) =11 i

where, ¢ = [p(z1)'y1, -, 0(Tn)Ynl, Y = [y1,-- s 9], 1 = [1,...,1],
and o = [aq,..., o).

For a given kernel function K(,) and a new test sample point x,
the LS-SVM classifier is given by

f(z) =sgn [Z oy K (2, i) + b (12)

i=1

5. PROPOSED SYSTEM

The proposed system consists of two phases as shown in the block
diagram of Fig. 1: an offline phase and an online phase. Both the
phases, consist of the following steps: feature extraction based on RT,
feature reduction through PCA and classification by LS-SVM classifier.
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Figure 1. Block diagram of the proposed system.

5.1. Offline Phase

Let, m be the number of training images of size N X N,
N = 2m, m € Z%. The salient steps of the offline (training) phase
are listed next:

Step 1: The training images are decomposed by RT to get the low-
frequency subbands (LFSs) and high-frequency subbands (HFSs).
Only the LFSs (one LFS/image) are used as features. Let, M x M
(M < N) be the size of each LFS, M = 2p, p € Z". A feature
matrix X of size n x M? is constructed by the coefficients of the
LFSs. Each row of X consists of M? coefficients belonging to a
particular LFS, representing feature vector of dimension M? of
that image.

Step 2: The dimension of the feature vectors representing the training
images is reduced by applying PCA on X from M? to d (say),
where d < M?, following the criteria mentioned in Section 3.

Step 3: The set of reduced feature vectors, along with the class
information are used to train a LS-SVM classifier. Cross validation
is used for improving the generalization capability of the system.

5.2. Online Phase

The online phase of the proposed system consists of the following steps:



Progress In Electromagnetics Research, Vol. 137, 2013 9

Step 1: The user (doctors, radiologist, etc.) inputs the brain MR
image of size N x N to be classified. RT is applied on the input
image to get the LFS of size M x M.

Step 2: The dimension of the feature vector representing the input
query image is reduced from M? to d by applying PCA.

Step 3: This reduced feature vector of dimension d is used as input to
the previously trained LS-SVM classifier. The classifier classified
the input query image as normal or abnormal.

6. EXPERIMENTAL RESULTS AND COMPARISONS

Extensive experiments were carried out to evaluate the performance of
the proposed system in brain MR image classification.

6.1. Experimental Setup

We implemented the proposed technique in MATLAB, and experi-
ments were carried out on a PC with 2.66 GHz CPU and 4 GB RAM.
The decomposition parameter of RT was levels = [1, 2, 4, 4], and
we used ‘9/7" and ‘pkva’ as the pyramid filter and orientation fil-
ter, respectively. Three (3) different MR image datasets were used
in the experiments. All the datasets consist of T2-weighted MR
brain images in axial plane and 256 x 256 in-plane resolution, which
were downloaded from the website of Harvard Medical School (URL:
http://med.harvard.edu/AANLIB/). The first two datasets are bench-
mark datasets, widely used in brain MR image classification problem,
and consist of abnormal images from 7 types of diseases along with
the normal images. The abnormal brain MR images of the benchmark
datasets consist images of the following diseases: glioma, meningioma,
Alzheimer’s disease, Alzheimer’s disease plus visual agnosia, Pick’s dis-
ease, sarcoma and Huntington’s disease. The first benchmark dataset
(Dataset-66) consists of 66 (18 normal and 48 abnormal) brain MR
images. There are in total 160 (20 normal and 140 abnormal) brain
MR images in the second benchmark dataset (Dataset-160). The third
new larger dataset (Dataset-255) consists of 255 (35 normal and 220
abnormal) brain MR images. Abnormal brain MR images of the third
dataset are from 11 types of diseases, among which 7 types of dis-
eases are same as the two benchmark datasets, mentioned before. The
third dataset also consists abnormal images of 4 new types of diseases:
chronic subdural hematoma, cerebral toxoplasmosis, herpes encephali-
tis and multiple sclerosis. Each of the 11 types of diseases’ consists of
20 abnormal brain MR images. Fig. 2, shows samples of the brain MR
images used in the experiments.
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Figure 2. Sample brain MR images: (a) Normal, (b) glioma,
(c) meningioma, (d) sarcoma, (e) Pick’s disease, (f) Huntington’s
disease, (g) Alzheimer’s disease, (h) Alzheimer’s disease with visual
agnosia, (i) chronic subdural hematoma, (j) cerebral toxoplasmosis,
(k) herpes encephalitis, (1) multiple sclerosis.

To make the LS-SVM classifier more reliable and generalize
to independent datasets, 5 x 5-fold and 5 x 6-fold stratified cross
validations (CV) were employed. 5 x 6-fold stratified CV was used
for Dataset-66, and for the other two datasets 5 x 5-fold stratified CV
was carried out. For training of the LS-SVM, we used the Radial
Basis Function (RBF): K (z;,2;) = exp(—y || @ — z; ||?),7 > 0, as
the kernel. There are two tunable parameters while using the RBF
kernel in LS-SVM classifier: C' and . The kernel parameter v controls
the shape of the kernel and regularization parameter C' controls the
tradeoff between margin maximization and error minimization. It is
not known beforehand which values of C' and « are the best for the
classification problem at hand. Hence, various pairs of (C, ) were
tried with over the course of the CV procedure, and the one with the
lowest CV error rate was picked, where C' € [1,10] and v € [1,3].
After finding the best values for the parameters C' and -y, these values
were used to train the LS-SVM model, and the test set was used to
measure the error rate of the classification system. Tables 1-3, show
the settings of the training and the validation images for the datasets
used in the experiments.

To compare the performance of our proposed method with the
state-of-the-art techniques, we implemented several of the existing
schemes. Quantitative evaluation of the proposed system and it’s
performance comparison with other state-of-the-art techniques were
analyzed using the following statistical measures:
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Table 1. Setting of one pass of 6-fold stratified CV for Dataset-66.

Total No. of Images Training (55) Validation (11)
Normal (18) Abnormal (48) Normal Abnormal Normal Abnormal
66 15 40 3 8

Table 2. Setting of one pass of 5-fold stratified CV for Dataset-160.

Total No. of Images Training (128) Validation (32)
Normal (20) Abnormal (140) Normal Abnormal Normal Abnormal
160 16 112 4 28

Table 3. Setting of one pass of 5-fold stratified CV for Dataset-255.

Total No. of Images Training (204) Validation (51)
Normal (35) Abnormal (220) Normal Abnormal Normal Abnormal
255 28 177 7 43

Sensitivity (true positive fraction): is the probability that a
diagnostic test is positive, given that the person has the disease.

TP
TP+ FN

Specificity (true negative fraction): is the probability that a
diagnostic test is negative, given that the person does not has
the disease.

Sensitivity = (13)

TN
Accuracy: is the probability that a diagnostic test is correctly
performed.
TP+TN
A = 15
Y = TP Y TN+ FP+ FN (15)
where,

TP (True Positive) — correctly classified positive cases,

TN (True Negative) — correctly classified negative cases,

FP (False Positive) — incorrectly classified negative cases, and
FN (False Negative) — incorrectly classified positive cases.

6.2. Results and Discussions

Several different experiments were carried out to evaluate the
performance of the proposed system in light of feature reduction
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efficiency, classification accuracy, comparisons with other state-of-the-
art schemes and computation complexity analysis.

The proposed system is based on the MGA of the LFS coefficients
obtained by RT decomposition. With the above mentioned RT
decomposition configuration, the size of the LFS is 32 x 32. PCA
is used to reduce the feature vector size to only 9, where these 9
features are the first 9 principal components, preserving ~ 90% of
total variance of the RT decomposed features. This reduced feature
set is only 0.88% and 0.014% of the initial feature set considering
LFS and original image, respectively. Therefore, due to the RT +
PCA combination we have achieved 99% feature reduction. The
systems proposed in [12,16-18] have used 19 principal components
as the image representing feature vector. We have not only achieved

—+—Dataset-66

Sensitivity

-m-Dataset-160

—+—Dataset-255

s 5 0
Number of principal components

Figure 3. Performance evaluation in terms of sensitivity.

-=-Dataset-160

~+-Dataset-255

Specificity

s o 10 1 12
Number of principal components

Figure 4. Performance evaluation in terms of specificity.



Progress In Electromagnetics Research, Vol. 137, 2013 13

——Dataset-66

—m-Dataset-160

Accuracy (%)

—+—Dataset-255

e 5 10
Number of principal components

Figure 5. Performance evaluation in terms of classification accuracy.
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Figure 6. ROC curves of performance evaluation: (a) Dataset-66,
(b) Dataset-160, and (c) Dataset-255.

47.39% feature reduction from the state-of-the-art brain MR image
classification techniques, but also higher performance in terms of
accuracy. To find out the proper number of principal components,
which give the best result, the performance of the proposed system
was experimented with different numbers of principal components (1)—
(19). The graphs of the Figs. 3, 4, and 5, show the performance of the
proposed system in terms of Sensitivity, specificity and classification
accuracy for the three datasets used in the experiments with different
numbers of principal components, respectively. It is clear from the
results given in Figs. 3, 4, and 5, that our proposed system works
efficiently for all the three datasets using only 9 principal components
for image representation. We have achieved the best results for all the
statistical measures used to evaluate the performance of the proposed
system, considering only 9 principal components: Sensitivity (1.00,
1.00, 0.97), specificity (1.00, 1.00, 0.99) and classification accuracy
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Table 4. Performance comparison using the three datasets.

Feature Accuracy (%)
Scheme . )
dimension Dataset-66 Dataset-160 Dataset-255

DWT + SOM [13] 4761 94.00 93.17 91.65
DWT + SVM + LIN [13] 4761 96.15 95.38 94.05
DWT + SVM + POLY [13] 4761 98.00 97.15 96.37
DWT 4+ SVM + RBF [13] 4761 98.00 97.33 96.18
DWT + PCA + FNN [15] 7 97.00 96.98 95.29
DWT + PCA + kNN [15] 7 98.00 97.54 96.79
DWT + PCA + FNN + ACPSO [16] 19 100.00 98.75 97.38
DWT + PCA + BPNN + SCG [17] 19 100.00 98.29 97.14
DWT + PCA + FNN + SCABC [12] 19 100.00 98.93 97.81
DWT + PCA + KSVM + LIN [18] 19 96.01 95.00 94.29
DWT + PCA + KSVM + HPOLY [18] 19 98.34 96.88 95.61
DWT + PCA + KSVM + IPOLY [18] 19 100.00 98.12 97.73
DWT + PCA + KSVM + GRB [18§] 19 100.00 99.38 98.82
Proposed Scheme 9 100.00 100.00 99.39

(100%, 100%, 99.39%), for the datasets-66, 160 and 255, respectively.
The classification accuracy of the proposed system is also evaluated
through receiver operating characteristic (ROC) curves, shown in
Fig. 6. The proposed technique correctly classified the MRI images of
Dataset-66 and Dataset-160 with an average area under curve (AUC)
of 100%, with 0% standard deviation. For the Dataset-255 we achieved
AUC of 99.45% (£0.0046%).

We compared the performance of the proposed system with 13
state-of-the-art brain MR image classification schemes. As mentioned
earlier, we implemented all these methods for proper performance
comparison, and the performances of the implemented methods were
evaluated using all the three datasets. The comparison results are
shown in Table 4. The Table 4, also shows the feature vector dimension
for each of the schemes. The schemes described in [13] give the
worst performance results in terms of accuracy. Moreover, these
methods have the highest feature dimension (4761 features/image),
which results in high computational complexity. The dimension (7) of
the feature vector used in [15], is less than our proposed method (9).
But it is obvious from the results of Table 4, that the method described
in [15] is less efficient and general than the proposed scheme, in terms
of classification accuracy. The techniques described in [12, 16-18] show
improved results in brain MR image classification, with lower feature
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vector dimension (19). But, these schemes use various complex weight
optimization techniques, which themselves require high computational
complexity. Whereas, our proposed system only requires feature vector
of dimension 9, with the highest retrieval accuracies.

During time requirement analysis we used all the images of all
the three datasets for computing the overall time requirement of
the proposed scheme. The computation times (except the LS-SVM
training) of all the constituting stages (feature extraction, feature
reduction and classification) of the proposed system was recorded, and
we found out the average values as the time requirement. The feature
extraction, feature reduction and LS-SVM classification average time
requirements for an MRI image of size 256 x 256 are 0.026 seconds,
0.014 seconds and 0.002 seconds, respectively. The overall average
computation time for each MRI image of size 256 x 256 is about 0.042
seconds. Even though, the time requirement for feature extraction
through RT is slightly greater than DW'T, but due to the use of LS-
SVM with only 9 principal components results in lower overall time
requirement. Moreover, with 9 dimensional feature vector for each
training image, the storage cost of stored image feature database is also
reduced. From the above mentioned results and discussions, it is clear
that the proposed system not only performs the best, among all the
mentioned state-of-the-art brain MR image classification techniques,
but also works efficiently with different sizes’ of datasets and various
disease classes.

7. CONCLUSION

The manual process of diagnosis brain MR images has several
problems. This necessitates the requirement for developing diagnostic
tools, which can automatically and accurately classify brain MR
images as normal or abnormal. Even though, there exists several
advanced schemes to achieve this goal. Most of the state-of-the-
art techniques have various shortcomings: based on DWT which can
not capture the subtle and intrinsic details of the brain MR images,
relatively high feature vector dimensionality, use of neural network with
computationally expensive complex weight optimization techniques,
and lack of generalization capability, etc. In this article, we propose
to combine the benefits of MGA of RT, and a computationally less
expensive SVM (LS-SVM) to build a fully automatic and accurate
brain MR image classification system. With this combination, we
not only achieve higher feature reduction, but also acquire superior
performance than the state-of-the-art schemes. Extensive experiments
and comparison show the effectiveness of the proposed system. In
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future, we will investigate the effectiveness of other transforms along
with other supervised and un-supervised classification schemes for
brain MR image classification.
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