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Abstract—In this paper, a novel interactive multiple model
particle filter (IMMPF) is developed after a Bayesian estimator for
maneuvering target tracking in clutter is derived theoretically. In
this new algorithm, base state estimation and modal state estimation
are completely separated to control the number of particles in
each maneuvering mode. Only continuous-valued particles are used
to numerically implement the procedure of Bayesian base state
estimation, whereas modal state is estimated analytically without
dependence on the number of particles. Density mixing is performed
by aggregation of the total particles and mixing associated weights.
To prevent the exponentially growing number of particles with the
time, a resampling step is included following the interaction step.
Through MC simulations, the new IMMPF has been tested and shown
to provide reliable performance improvements with different sample
sizes and under various clutter conditions.

1. INTRODUCTION

Tracking maneuvering target, which might switch among multiple
operating regimes, is usually a difficult Bayesian inference problem and
has attracted significant attention in the signal processing community
for many years [1–5]. The so-called multiple model (MM) approaches
have been shown to be highly effective in many situations, among
which especially the interacting multiple model (IMM) algorithm [6]
has become almost the standard approach to maneuvering target
tracking. IMM algorithm assumes a stochastic hybrid Markov system
that behaves according to a finite number of switching models to

Received 1 November 2012, Accepted 19 December 2012, Scheduled 25 December 2012
* Corresponding author: Jiantao Wang (wangjiantaonudt@126.com).



178 Wang et al.

characterize the targets motion modes. At every sampling time, several
parallel corresponding elemental filters run and interact with each
other. The output of IMM contains a continuous-valued “base state”
and a discrete “modal state” that indicates in which mode the target
is. When the nonlinearities are involved in the assumed motion models
and/or measurement equation, extended Kalman Filter (EKF) and its
variants, which rely on linearization of the nonlinear equations, can
be used as the elemental filters in the IMM algorithm. However, if
the system nonlinearities are severe, EKF and accordingly EKF-based
IMM algorithms often give unreliable estimates.

Only since 1990s has the sampling importance resampling
(SIR) based particle filter (PF) won proper recognition with
the computational power being adequate for its implementation.
Nowadays various PFs are widely applied to the problems involving
highly nonlinearities and/or non-Gaussianity that are difficult for the
conventional Kalman filter. In the Bayesian framework, the posterior
density of the target state provides a complete statistical description of
the state. However, an analytical expression for the posterior density
is available only for some restricted situations. PF is a recursive
numerical implementation of the exact Bayesian filtering scheme where
the posterior distribution of the state is represented by a set of random
samples with associated weights. It has been demonstrated that the
standard PF has the ability to directly estimate the state of the
stochastic hybrid Markov system through the utilization of the random
sampled augmented hybrid particles that consist of both the base
state and modal state in [7–9], where it was termed as multiple model
PF (MMPF). The major drawback of straightforwardly applying the
standard PF to maneuvering target tracking lies in that there is no
control over the number of particles in a certain motion mode. More
precisely, in such MMPF with hybrid particles, the number of particles
in a specific mode is directly proportional to the model probability, and
therefore low model probability might result in too few corresponding
particles to accurately capture the true model-conditioned density
of the target state. A brute-force approach to alleviate this sample
degeneracy is to simply increase the total number of particles, which
will lead to unnecessary large number of particles in the modes with
high model probabilities and unreasonable increase in computational
load. Other intelligent ways of dealing with this problem are to control
or fix the number of particles in each mode just as the IMMPF do [10].
It must be mentioned that IMMPF is not the abbreviation for the
simple combination of IMM and PF, i.e., IMM filter with PF as
elemental filters. Essentially it is a PF for stochastic hybrid MM system
with an mixing/interaction step at the beginning of each estimation
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cycle. It was argued in [11] that the interaction step is exactly the
same special feature of IMM estimator and the optimal estimator and
can be seen as the main reason for the success of IMM estimator.
The IMMPF algorithm was first proposed in [10] where instead of a
resampling step, a Gaussian sum density was used to fit the particle
cloud and approximate the true model-conditioned posterior density
of the state in order to implement the density mixing. This approach
introduces additional approximations and needs a mixture reduction
algorithm, which leads to increased computational complexity. To
obtain a computationally cheaper PF for stochastic hybrid system,
the mixing step was replaced by direct sampling from a weighted
sum of distributions and posterior mode probabilities were calculated
in an approximate form in [12]. In [13], an interaction resampling
step was used to mix the model-conditioned densities. In that work,
though mode switching is performed analytically, posterior model
probabilities are estimated using the updated weights for base state.
Therefore the model probabilities are not memorized in each estimation
cycle. Note that the clutter issue was not addressed in the previous
works [10, 12, 13].

For practical tracking problems, data association technique must
be considered to select measurements for use from all validated
measurements that may contain spurious measurements. In this
paper, a novel IMMPF combined with probabilistic data association
(PDA) [14] is developed for maneuvering target tracking in clutter.
To fix the number of particles in each mode, we completely separate
the base state estimation and modal state estimation. Base state
estimation is performed numerically using the continuous-valued base
state particles, whereas modal state is estimated analytically using
the exact Bayesian approach. In our algorithm, mode switching is
independent of the number of particles and associated weights in
each model. However, the model probabilities need be memorized
for Bayesian filtering recursion in the estimation cycle. The rest
of the paper is organized as follows. In Section 2, the recursive
Bayesian estimator is derived for maneuvering target state estimation
in cluttered scenario. In Section 3, we develop a novel PF to implement
the Bayesian estimator in Section 2. Monte Carlo simulation results
are given in Section 4 to validate the proposed algorithm. Section 5
presents some concluding remarks.
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2. BAYESIAN ESTIMATOR FOR MANEUVERING
TARGET TRACKING IN CLUTTER

2.1. Tracking Model

Consider a nonlinear stochastic hybrid MM system described by

xk = fk(xk−1,vk−1,Mk) (1)
zk = hk(xk) + wk (2)

where k is the time index, xk is the nx dimensional base state, Mk,
the modal state, denotes the model in effect during the time interval
(tk−1, tk], zk is the nz dimensional target-originated measurement, the
process noise sequence vk and measurement noise sequence wk are
assumed to be white with known probability density functions (pdf’s).
Without loss of generality, the measurement noise in target tracking
model is usually assumed to be additive Gaussian noise with zero-
mean and covariance matrix Rk, i.e., wk v N(0,Rk), where N(µ,Σ)
denotes the Gaussian distribution with mean µ and covariance Σ. The
two noise sequence, the initial base state x0 and the mode sequence are
independent of each other. The modal state Mk is a Markov chain with
known initial model probabilities and time-homogeneous Markovian
transition probability

Pr {Mk = l |Mk−1 = r} = prl, r, l = 1, . . . , L (3)

where Pr{·|·} denotes a conditional probability, L is the number of
possible models.

In cluttered scenario, instead of a single zk, a set of validated
measurements denoted as Zk = {zk,1, zk,2, . . . , zk,mk

} are usually
obtained from the sensor at the time k, where mk is the number
of validated measurements. The measurement set contains clutter
measurements and, if detected, a target measurement with a
probability of Pg. The probability that the target is detected at each
scan is denoted as Pd. A typical model for clutter measurements
is that they are uniformly spatially distributed within the validation
region and independent across time assuming that the number of them
accords with a Poisson distribution with mean λVk, where λ is the
spatial clutter density and Vk is the volume of validation region.

2.2. Bayesian State Estimation

In the Bayesian approach to above target tracking problem, the goal
is to find a recursive way to compute the conditional pdf p (xk,Mk =
l|Zk), i.e., the posterior distribution of the augmented target state
based on all available measurement history Zk = {Z1,Z2, . . . ,Zk}.



Progress In Electromagnetics Research C, Vol. 35, 2013 181

Before discussing the new algorithm, we would like to review briefly
on the standard approach to apply the PF to our problem. Given
the posterior distribution of the augmented target state yk−1 =
[xk−1; Mk−1] at the previous time k − 1, the posterior distribution at
time k can be predicted via the Chapman-Kolmogorov equation and
then corrected with the current measurements using Bayes’ formula as
follows [9] :

p(yk|Zk−1) =
∫

p(yk|yk−1)p
(
yk−1|Zk−1

)
dyk−1 (4)

p(yk|Zk) =
p (Zk|yk) p

(
yk|Zk−1

)
∫

p (Zk|yk)p
(
yk|Zk−1

)
dyk

(5)

where p(·|·) represents a conditional pdf. Note that the augmented
target state has two components, the continuous valued base state and
the discrete valued modal state. For the problem under consideration,
the transition density of the augmented target state is given by

p(yk|yk−1) = p(xk|xk−1,Mk)Pr {Mk|Mk−1} (6)

where the state transition density p(xk|xk−1,Mk = l) can be
obtained from the dynamic Equation (1). The measurement likelihood
p(Zk|yk) = p(Zk|xk) in (5) will be given in (17). To numerically
evaluate the Chapman-Kolmogorov-Bayes (CKB) filter recursion
shown in (4) and (5), a SIR procedure with hybrid state particles
drawn from the conditional distribution of the augmented state is
usually used, which results in the dependence of mode probability on
the relative number of particles in that mode.

To avoid using the augmented hybrid particles, the joint posterior
density of base state and modal state p(xk,Mk = l|Zk) can be rewritten
as

p
(
xk,Mk = l|Zk

)
= p

(
xk|Mk = l,Zk

)
Pr

(
Mk = l|Zk

)
. (7)

The model-conditioned posterior pdf p (xk|Mk = l,Zk) of the base
state can be obtained as follows

p(xk|Mk = l,Zk) =
p (Zk|Mk = l,xk)p

(
xk|Mk = l,Zk−1

)
∫

p(Zk|Mk = l,xk)p
(
xk|Mk = l,Zk−1

)
dxk

=
p(Zk|xk)p

(
xk|Mk = l,Zk−1

)

c1
k,l

(8)

where c1
k,l =

∫
p(Zk|Mk = l,xk)p(xk|Mk = l,Zk−1)dxk is the normal-

ization factor and the assumption that sensor measurement model is
independent of the target maneuvering mode is used in the derivation
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of the second equation. The second term in the numerator of the right-
hand side (RHS) of (8) is the prediction of the base state conditioned
on model Mk and is given by

p
(
xk|Mk = l,Zk−1

)

=
∫

p (xk|xk−1,Mk = l)p
(
xk−1|Mk = l,Zk−1

)
dxk−1 (9)

The second term under the above integral can be rewritten, using the
total probability theorem with respect to all the possible models at
time k − 1, as

p
(
xk−1|Mk = l,Zk−1

)
=

L∑

r=1

p(xk−1|Mk−1 = r,Zk−1)µr|l
k−1 (10)

where p (xk−1|Mk−1 = r,Zk−1) is the given model-conditioned
posterior pdf of the base state at the previous time k − 1, µ

r|l
k−1 is

the mixing probability and is given by

µ
r|l
k−1 = Pr

(
Mk−1 = r|Mk = l,Zk−1

)

=
Pr

(
Mk = l|Mk−1 = r,Zk−1

)
Pr

(
Mk−1 = r|Zk−1

)

Pr
(
Mk = l|Zk−1

)

=
1

µl
k|k−1

prlµ
r
k−1|k−1 (11)

where µr
k−1|k−1 = Pr(Mk−1 = r|Zk−1) is the given model probability

at the previous time k − 1, µl
k|k−1 = Pr(Mk = l|Zk−1), given by

µl
k|k−1 =

L∑

r=1

prlµ
r
k−1|k−1, (12)

is the predicted model probability. The first term in the numerator
of the RHS of (8) is the measurement likelihood conditioned on the
base state xk. If the current measurement Zk is available, it can be
rewritten, by expanding it over the association hypotheses, as

p(Zk|xk) =
mk∑

j=0

p(Zk|θk,j ,mk,xk)p(θk,j |mk,xk)

=
mk∑

j=0

p(Zk|θk,j ,mk,xk)p(θk,j |mk) (13)
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where θk,0 denotes the hypothesis that all validated measurements
are due to clutter, θk,j , j = 1, 2, . . . , mk denotes the hypothesis that
measurement zk,j is due to the target with the remaining measurements
due to clutter, p(θk,j |mk) is the prior probability of θk,j conditioned on
the number of measurements. In PDA approach, it was shown in [15]
that

p(θk, j |mk)=





(1− PdPg)γ(mk)[PdPg + (1− PdPg)γ(mk)]−1,
j =0

1
mk

PdPg[PdPg + (1− PdPg)γ(mk)]−1,
j =1, . . . , mk

(14)

where γ(mk) = µF (mk)
µF (mk−1) and µF (mk) is probability mass function

(pmf) for the number of clutter measurements. Substituting the
assumed Poisson pmf with mean λVk into (14) yields

p(θk,j |mk) =

{
(1−PdPg)λVk

(1−PdPg)λVk+mkPdPg
, j = 0

PdPg

(1−PdPg)λVk+mkPdPg
, j = 1, . . . , mk

. (15)

Since the clutter measurements are assumed to be uniformly spatially
distributed within the validation region, the first component of the
summation in (13) is given by

p(Zk|θk,j ,mk,xk) =





(1/Vk)mk ,
j = 0

P−1
g (1/Vk)mk−1N(ek,j ;0,Rk),

j = 1, . . . , mk

(16)

where ek,j = zk,j − hk(xk). Substituting (15) and (16) into (13) gives

p(Zk|xk) =
1− PdPg + Pd/λ ·∑mk

j=1 N(ek,j ;0,Rk)
[1− PdPg + mkPdPg/(λVk)]V

mk
k

. (17)

The posterior model probability Pr(Mk = l|Zk) in (7) can be
calculated by

Pr
(
Mk = l|Zk

)

=
p

(
Zk|Mk = l,Zk−1

)
Pr

(
Mk = l|Zk−1

)
∑L

l=1 p
(
Zk|Mk = l,Zk−1

)
Pr

(
Mk = l|Zk−1

)

=
p

(
Zk|Mk = l,Zk−1

)
µl

k|k−1

c2
k

(18)

where c2
k =

∑L
l=1 p(Zk|Mk = l,Zk−1)Pr(Mk = l|Zk−1) is the

normalization factor. The model likelihood p(Zk|Mk = l,Zk−1) in
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(18) can be formulated, also by expanding it over the association
hypotheses, as

p
(
Zk|Mk = l,Zk−1

)

=
mk∑

j=0

p
(
Zk|θk,j ,Mk = l, mk,Zk−1

)
p

(
θk,j |Mk = l, mk,Zk−1

)

=
mk∑

j=0

p
(
Zk|θk,j ,Mk = l, mk,Zk−1

)
p (θk,j |mk). (19)

In view of the assumed uniform distribution for the clutter
measurements, the first term in above summation can be given by

p
(
Zk|θk,j ,Mk = l, mk,Zk−1

)

=
{

(1/Vk)mk , j = 0
P−1

g (1/Vk)mk−1p
(
zk,j |θk,j ,Mk = l,mk,Zk−1

)
, j =1, . . . , mk

(20)

where

p
(
zk,j |θk,j ,Mk = l,mk,Zk−1

)

=
∫

p(zk,j |θk,j ,mk,xk)p
(
xk|Mk = l,Zk−1

)
dxk (21)

Substituting (15), (20) and (21) into (19) yields

p
(
Zk|Mk = l,Zk−1

)

=
Pd

mk
[(1− PdPg)λVk/mk + PdPg]−1V 1−mk

k

[
λ(1− PdPg)

Pd

+
mk∑

j=1

∫
p(zk,j |θk,j ,mk,xk)p(xk|Mk = l,Zk−1)dxk


 (22)

Hereto, both model-conditioned posterior pdf p(xk|Mk = l,Zk) of
the base state and posterior model probability Pr(Mk = l|Zk) can be
computed based on the available information. For output purpose, the
posterior pdf of the base state is given by

p
(
xk|Zk

)
=

L∑

l=1

p
(
xk,Mk = l|Zk

)

=
L∑

l=1

p
(
xk|Mk = l,Zk

)
Pr

(
Mk = l|Zk

)
(23)
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3. PARTICLE FILTERING IMPLEMENTATION

Summarizing the development of previous section, the recursive
equations of Bayesian state estimation can be numerically implemented
as follows.

(i) At the beginning, randomly generate n initial (base state) particles
xi, l

0 with equal weight wi,l
0 = 1/n from each initial model-

conditioned posterior pdf p(x0|M0 = l). Note that the total
number of proposed particles is nL and n should be chosen as
a trade-off between computational load and estimation accuracy.

(ii) For k = 1, 2, . . ., do the following.
(a) Density mixing (Interaction). Compute the mixing probabil-

ities and predicted model probabilities according to Equa-
tions (11) and (12). Then following Equation (10), the mixed
density matched to mode Mk = l can be approximated by

p̂(xk−1|Mk = l,Zk−1) =
L∑

r=1

[
n∑

i=1

wi,r
k−1δ(xk−1 − xi,r

k−1)

]
µ

r|l
k−1

=
n∑

i=1

L∑

r=1

µ
r|l
k−1w

i,r
k−1δ

(
xk−1−xi,r

k−1

)
. (24)

where the notation p̂ denotes the numerical approximation
to the true density p by the corresponding particles,
δ(·) is the Dirac delta distribution, a special case of
Gaussian distribution. Equation (24) indicates clearly that
p̂(xk−1|Mk = l,Zk−1) is an empirical density spanned by
nL particles xm,l

k−1 = xi,r
k−1 with associated weights wm,l

k−1 =

µ
r|l
k−1w

i,r
k−1, where m = 1, 2, . . . , nL.

(b) Resampling. It is observed from (24) that the number of
particles for the model-conditioned density has increased from
n to nL at the end of interaction step. The growth in the
number of particles at each estimation cycle will prevent the
practicability of this filter. A reasonable approach to solve
this issue is to perform resampling of p̂(xk−1|Mk = l,Zk−1).
Consequently, resample n particles x̃i,l

k−1 with associated
weights w̃i,l

k−1 from the empirical density p̂(xk−1|Mk =
l,Zk−1) on the basis of wm,l

k−1. Note that the notation x̃
and w̃ denote the resampled particles and their corresponding
weights.
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(c) Model-conditioned updates. For each maneuvering mode
Mk = l, do the following.
1. Perform the time propagation using the process Equa-

tion (1) and the measurement Equation (2):

x̃i,l
k = fk(x̃

i,l
k−1,v

i,l
k−1,Mk = l) (25)

z̃i,l
k = hk(x̃

i,l
k ) (26)

ẑl
k =

n∑

i=1

w̃i,l
k−1z̃

i,l
k (27)

where vi,l
k−1 is randomly generated according to the

known pdf of process noise, the notation ẑ represents
the weighted average of z̃, i.e., the priori estimate of the
target-originated measurement.

2. Compute the relative likelihood ψi,l
k of each particle

x̃i,l
k based on the validated measurements Zk following

Equation (17):

ψi,l
k = 1− PdPg + Pd/λ ·

mk∑

j=1

N(zk,j − z̃i,l
k ;0,Rk) (28)

3. Generate the model-conditioned posterior particles and
update the weights using sequential importance sampling
(SIS) procedure:

xi,l
k = x̃i,l

k (29)

wi,l
k = ψi,l

k w̃i,l
k−1

/
n∑

t=1

ψt,l
k w̃t,l

k−1 (30)

where the importance density is assumed to be the prior
density p(xk|xk−1,Mk = l) for convenience.

4. Compute the relative model likelihood Λl
k according

to Equation (22) where the density p(zk,j |θk,j ,Mk =
l, mk,Zk−1) is approximated by a continuous Gaussian
mixture distribution instead of a discrete Dirac mixture
distribution (a special case of Gaussian mixture) in order
to obtain its accurate value for a specific zk,j :

Sl
k =

n∑

i=1

w̃i,l
k−1(z̃

i,l
k − ẑl

k)(z̃
i,l
k − ẑl

k)
T + Rk (31)

Λl
k =

λ(1−PdPg)
Pd

+
mk∑

j=1

n∑

i=1

w̃i,l
k−1N(zk,j ; z̃

i,l
k +wi,l

k ,Sl
k) (32)



Progress In Electromagnetics Research C, Vol. 35, 2013 187

where wi,l
k is randomly generated according to the known

pdf of measurement noise.
(d) Model probability updates. According to Equation (18), the

posterior model probability µl
k|k for Mk = l is given by

µl
k|k =

1
c2
k

µl
k|k−1Λ

l
k (33)

(e) Output of the posterior base state estimates. The posterior
density of the base state can be approximated, following
Equation (23), by

p̂
(
xk|Zk

)
=

L∑

l=1

n∑

i=1

wi,l
k δ

(
xk − xi,l

k

)
µl

k|k

=
n∑

i=1

L∑

l=1

µl
k|kw

i,l
k δ

(
xk − xi,l

k

)
(34)

Equation (34) makes clear that now we have nL particles
xm

k = xi,l
k and associated weights wm

k = µl
k|kw

i,l
k that are

distributed according to the density p (xk|Zk). Then we can
compute any desired statistical measure of the density.

4. SIMULATION RESULTS

In this section, we illustrate the performance of the proposed algorithm
by 100 Monte Carlo simulations for a radar tracking scenario with the
target trajectory shown in Fig. 1. Here, an aircraft, starting from the
initial position (20000 m, 20000 m), flies towards the radar at a constant
course with a velocity of (−150 m/s, −150 m/s) for the first 60 s. Then
it performs a 180◦ left turn for course change with a turn rate of 3◦/s.
After the turn, the straight and level flight is continued for another
60 s. The radar, located at (0 m, 0m), provides range, range rate and
bearing measurements for every sampling interval T = 3 s with the
respective standard deviations of the measurement errors σr = 50 m,
σṙ = 5m/s, σb = 2 mrad. The measurement errors of range and range
rate are correlated with correlation coefficient ρ = −0.2. The target
detection probability Pd and gate probability Pg are assumed to be 0.9
and 0.9989, respectively.

For comparison purpose, both our proposed IMMPF algorithm
and the MMPF algorithm described in [9] are used to estimate the
target state in cluttered scenario. In each of the two algorithms,
we employ the systematic resampling approach proposed in [16]
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Figure 1. The target trajectory
and radar position.
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Figure 2. Comparisons of TLP
for different sample sizes.

in the resampling step. The PDA technique is adopted to select
measurements for use in the tracking filters in the experiment. Two
second order WNA models [6] with different noise levels are used to
model the target motion. The one with standard deviation 0.1m/s2
is used to model the uniform motion and the other one with standard
deviation 10 m/s2 for the maneuver. The initial mode probabilities are
assumed to be equal and the Markovian mode transition probability
matrix is set to be

Π =
[

0.98 0.02
0.05 0.95

]
. (35)

Here track loss percentage (TLP) is used to assess the tracking
quality since the TLP measure is more critical than the tracking error
measure from a filter that is successfully following the target from
the practical point of view. A track is considered to be lost if for 10
consecutive scans, the estimated target state falls out of the 5-sigma
region centered around the true target position in the measurement
space [17], that is,

[hk(xk|k)− hk(xk)]TR−1
k [hk(xk|k)− hk(xk)] > 25. (36)

The TLP is measured as the ratio of the number of MC runs for
which the tracks are lost to the number of total MC runs performed.
The performance comparisons of two competitive tracking algorithms
are shown in Fig. 2, Fig. 3 and Fig. 4. In Fig. 2, we vary the
sample size used by the PFs with the fixed spatial clutter density
λ = 2× 10−5 points/(scan·m·m/s·rad), whereas in Fig. 3, we vary the
clutter density with the fixed 1000 particles in total. Obviously our
proposed IMMPF algorithm always outperforms the MMPF algorithm,
especially with a reasonable sample size (e.g., 500–2000 particles) and
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Figure 4. Comparisons of com-
putational complexity per esti-
mation cycle for different sample
sizes.

in moderate cluttered scenarios. However, a brute-force increase in the
total number of particles will contribute to narrow the performance gap
between two PFs gradually.

The computational complexity of each PF, measured by means
of average computational time on a dual-core 2.6 GHz Intel Pentium
processor for per estimation cycle as function of the particle number,
is illustrate in Fig. 4. It should be underlined that the computational
complexity of a PF also depends on its practical implementations
and the choices made in the importance sampling and resampling
procedures. In a sense, Fig. 4 only offers the relative computational
load comparison. Provided the same number of particles are used, the
computational load of the proposed algorithm is reduced as expected
because the modal state is estimated analytically and discrete valued
particles are not needed in its filtering cycle. As the number of particles
increases, the reduction in computational load will steadily grow larger.

5. CONCLUSIONS

We have addressed the problem of maneuvering target tracking with
measurement origin uncertainty in this paper. First, a recursive
Bayesian state estimation approach is described, and then a novel
IMMPF has been proposed to implement it. The new algorithm
overcomes the drawback with the approach of directly applying the
standard PF to maneuvering target tracking by completely separating
base state estimation and modal state estimation. The resampling step
need be performed before the measurement update step to alleviate the
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growing number of the particles inherent to density mixing. Simulation
results have exhibited a significant improvement of the new IMMPF
over the prior algorithms for maneuvering target tracking in clutter.
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