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Abstract—This paper presented a novel unconditional stable FDTD
(US-FDTD) algorithm for solving the transient response of uniform or
nonuniform multiconductor transmission line with arbitrary coupling
status. Analytical proof of unconditional stability and detailed analysis
of numerical dispersion are presented. The precise split-time-step
scheme has been introduced to eliminate the restriction of the Courant-
Friedrich-Levy (CFL) condition. Compared to the conventional US-
FDTD methods, the proposed approach generally achieves lower phase
velocity error for coarse temporal resolution. So larger time scales
can be chosen for the transient simulation to achieve accurate results
efficiently. Several examples of coupled uniform and nonuniform lines
are presented to demonstrate the accuracy, stability, and efficiency of
the proposed model.

1. INTRODUCTION

The increasing quest for higher signal speed and smaller feature sizes
in electronic circuits have made transmission line system a dominant
factor in determining circuit performance and reliability in very large
scale integration designs [1]. To ensure the required quality of signal
delivery, accurate and efficient transient simulations are required
during the design process.

Many approaches have thus far been proposed for the multicon-
ductor transmission line (MTL) transient analysis. The most general
method is related to the quasi-TEM model. An important feature of
the model is its formulation simplicity and its relative low computation
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cost when compared to the full-wave numerical algorithms [2], such
as time-domain integral equation (TDIE) [3, 4], the Crank-Nicolson
finite-difference time-domain (CN-FDTD) approach [5], or finite ele-
ment method [6]. The transmission line equations based on quasi-TEM
model can be formulated in both frequency- and time-domains. As a
result, the transient analysis is divided primarily into two parts: one is
the frequency-domain transform method. The general approaches like
the inverse Fast Fourier Transform [7], the numerical inverse Laplace
transform [8], etc., can be used in most cases. However, these methods
require special attention to avoid aliasing errors as described in [9].
As to the direct time-domain methods, it is an easiest way to han-
dle transient problem of transmission lines. The related literature is
vast [10–13]. The largest advantage of time-domain models is that it
can achieve the broadband responses in frequency band with one single
round of simulation.

The 1D finite-difference time-domain (FDTD) based on Yee’s
method [14], hereafter designated as “the traditional FDTD method”
has been accepted extensively as one of the most popular and effective
time-domain method for solving transient MTL problems. However,
the discretization grid with an adequate temporal resolution must be
chosen for the Courant-Friedrich-Levy (CFL) stability condition [15],
which leads to expensive simulation cost. In an attempt to improve
the FDTD computation efficiency, two main alternatives have been
proposed: the first one is to incorporate an implicit difference
scheme into the basic algorithm [16], and the second one is to use
a semidiscrete model based on a time-step integration method [17, 18].
Both approaches can eliminate the CFL limitations. Nevertheless, for
the former methods the numerical oscillations triggered by the rapid
change in the voltage excitation will increase dramatically with larger
time-step size. And the latter involves complicated matrix operation,
requires huge computation memory.

Prompted by the above mentioned reasons, a novel FDTD method
is developed in this paper which is combined with the precise split-
time-step scheme for the transient analysis of MTL. And it is shown
that the method is unconditionally stable. With this new approach,
the numerical accuracy can be improved by increasing the number
of sub-time-step. Therefore, it greatly enhances the computational
efficiency due to the reduction of the overall time steps. Numerical
results address that the presented method can increase the time step
dramatically than that in the original unconditional stable FDTD.
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2. DEVELOPMENT OF THE UNCONDITIONAL
STABLE FDTD METHOD

This section presents the proposed methodology in detail. It
begins with a brief review of the formulations for the nonuniform
multiconductor transmission lines. The proposed unconditional stable
technology is then described, the numerical stability and dispersion of
the algorithm has been analyzed in the subsection.

2.1. Discretization of Transmission Line Equations

Considering a coupled lossy nonuniform multiconductor transmission
line system, the nonuniform transmission line equations in time domain
with per-unit-length parameter matrices L(x), C(x), R(x) and G(x)
can conveniently be expressed as the matrix form [11],

dX
dt

= MX (1)

where the voltage-current vector X and the differential operator matrix
M are given by

X =
[
V
I

]
, M =

[−C−1 ·G −C−1 ∂
∂x

−L−1 ∂
∂x −L−1 ·R

]
(2)

By using ODEs theory and denoting the time step size as ∆t, a
recursive solution of (1) is obtained

Xn+1 = exp(M∆t)Xn (3)

where superscript n of X denotes its value at n∆t, and the exponential
matrix exp(Mt) can be solved by using the precise split-time-step
scheme [19], i.e.,

exp(M∆t) = [exp(M∆t/N)]N (4)

where N is the number of sub-time-step. It can be selected suitably
to reduce the numerical dispersion error when the time step is large.
Therefore, for the interval of sub-time-step ∆t/N , the 2nd order
Padé approximation [20] can be used to approximate the exponential
operator exp(M∆t/N)), and combined with (3) yield,

Xn+1 =

(
U + M∆t

2N

U− M∆t
2N

)N

Xn (5)

where U is the identity matrix. Noted that, when N > 1, the rational
function in (5) is tended to the higher order Padé approximation.
Namely, the precision of the numerical results could be improved
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by increasing the number of sub-time-step. Then a similar splitting
technique [21] is applied for implementing (5) with the aim of reducing
the computational complexity. Here (5) is divided into N sub-
equations, from n to n + 1, one time step is divided into N sub-steps
accordingly. Considering n + k−1

N → n + k
N , where k = 1, 2, . . . , N , the

sub-equation is given by(
U− M∆t

2N

)
Xn+ k

N =
(
U +

M∆t

2N

)
Xn+ k−1

N (6)

Assume that the line is divided into Nx segments with equal length
∆x. Let n + k/N denote (n + k/N)∆t and m denote the points
at m∆x, (m + 0.5)∆x for superscripts V and I, respectively. The
spatial derivatives of voltage and current points are approximated by
the second-order central differences. Then, the update formulations
for the k’th sub-step, after some manipulations, can be expressed as

−∆t2

∆x2
AV

m ·AI
m−1 ·V

n+ k
N

m−1 −
∆t2

∆x2
AV

m ·AI
m ·Vn+ k

N
m+1

+
(
U +

(
AV

m ·AI
m + AV

m ·AI
m−1

) ∆t2

∆x2

)
·Vn+ k

N
m

=
∆t2

∆x2
BV

m ·AI
m ·Vn+ k−1

N
m − ∆t

∆x
AV

m ·
(
I
n+ k−1

N
m − I

n+ k−1
N

m−1

)

−∆t

∆x
AV

m ·
(
BI

m ·AI
m · In+ k−1

N
m +BI

m−1 ·AI
m−1 · I

n+ k−1
N

m−1

)

+
∆t2

∆x2
AV

m ·AI
m

(
V

n+ k−1
N

m+1 −V
n+ k−1

N
m

)

−∆t2

∆x2
AV

m ·AI
m−1

(
V

n+ k−1
N

m −V
n+ k−1

N
m−1

)

m = 1, 2, . . . , Nx − 1. (7a)

I
n+ k

N
m =−∆t

∆x
AI

m ·
(
V

n+ k−1
N

m+1 −V
n+ k−1

N
m

)

+BI
m ·AI

m · In+ k−1
N

m − ∆t

∆x
AI

m ·
(
V

n+ k
N

m+1 −V
n+ k

N
m

)

m = 0, 1, . . . , Nx − 1. (7b)
where

AV
m = (2NCm + Gm∆t)−1, BV

m = (2NCm −Gm∆t)

AI
m = (2NLm + Rm∆t)−1, BI

m = (2NLm −Rm∆t)
Next, considering that the line is terminated by linear loads Rs,

Rl and excited by a voltage source Vs, the boundary condition can be
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derived as(
∆x

2∆t

[
AV

0

]−1
+R−1

s +
∆t

∆x
AI

0

)
·Vn+ k

N
0 −R−1

s ·Vn+ k
N

s − ∆t

∆x
AI

0 ·V
n+k

N
1

= R−1
s ·Vn+ k−1

N
s +

(
∆x

2∆t
BV

0 −R−1
s − ∆t

∆x
AI

0

)
·Vn+ k−1

N
0

+
∆t

∆x
AI

0 ·V
n+ k−1

N
1 − (

U + BI
0 ·AI

0

) · In+ k−1
N

0 (8a)
(

∆x

2∆t

[
AV

Nx

]−1
+R−1

l +
∆t

∆x
AI

Nx−1

)
·Vn+ k

N
Nx

− ∆t

∆x
AI

Nx−1 ·V
n+ k

N
Nx−1

=
(

∆x

2∆t
BV

Nx
−R−1

l − ∆t

∆x
AI

Nx−1

)
·Vn+ k−1

N
Nx

+
∆t

∆x
AI

Nx−1 ·V
n+ k−1

N
Nx−1 +

(
U + BI

Nx−1 ·AI
Nx−1

) · In+ k−1
N

Nx−1 (8b)

Equations (7a) and (8) are linear systems with a block tridiagonal
coefficient matrix, which can be solved efficiently with special
numerical packages as like the Gauss-Seidel iterative method. The

I
n+ k

N
m in Equation (7b) can be solved directly since it only depends on

the known values after V
n+ k

N
m and V

n+ k
N

m+1 is updated. By repeating
the updated processes, we can obtain the transient analysis values on
all spatial-temporal discrete points.

The above processes include the inverse operation of the coefficient
matrices, e.g., AV

m, AI
m, etc. Because these matrices do not change

with time, the inverse operation only needs to be calculated once
and then to be stored. Hence the simulation time is not significantly
affected by it. On the other hand, the updated Equations (7a) and (8)
involves matrix addition, subtraction and multiplication. All of these
operations increase with the number of sub-time-step N linearly. Thus
the computational load for each time step n∆t is O(N). It means that
choose N reasonably will make the computation more effectively. We
summarize our algorithm in Table 1.

2.2. Numerical Stability and Dispersion Analysis

The general way of analyzing the stability of the FDTD algorithm is
to put a sinusoidal traveling wave into the algorithm and make sure
that the propagation gain is no more than one for all frequencies. By
using the Fourier method, which has been described and applied in
many open literature such as [22, 23], we can analytically prove that
the proposed method is unconditional stable.
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Table 1. Precise split-step 1D-FDTD algorithm.

Compute the coefficient matrices: AV
m, BV

m, AI
m, BI

m

Input = In, Vn; Output = In+1, Vn+1

Begin

Sub-Iteration k:

..for k = 1 : N ;

....Equations 7(a) and (8) ⇒ Vn+ k
N

....Equation 7(b) ⇒ In+ k
N

..end

End

For simplicity, assuming the transmission line to be lossless, the
field components in spectral domain at the nth time step can be
represented as

φn
x = φx0 exp (−jkxm∆x) (9)

where φn
x denotes the instantaneous value of V n

x or In
x . Substitution

of (9) into (5), the following equations can be generated

Xn+1 =

(
U + M′

2N ∆t

U− M′
2N ∆t

)N

Xn = ΛXn (10)

where Λ is the growth matrix and M′ a coefficient matrix related
to spatial frequencies kx, spatial interval, ∆x, the per-unit-length
parameters as inductance L and capacitance C. According to the
matrix theory, the matrix M′ can be decomposed as

M′ = Ydiag(λi)Y−1, i = 1, 2. (11)
Here Y is the eigenvector and λi the eigenvalue of M′, it is easy

to get

λ1,2 = ±j
Wx√
LC

(12)

where Wx = 2 sin(kx∆x/2)
∆x . Substituting (12) into (11) and rearranging

it, the growth matrix Λ can be rewritten as
Λ = Ydiag(ri)Y−1, i = 1, 2. (13)

the two eigenvalues ri of the Λ can be found as

ri =

(
1 + ∆tλi

2N

1− ∆tλi
2N

)N

, i = 1, 2. (14)
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By substituting (12) into (14), the eigenvalue of Λ is

r1,2 =
(
ς ± j

√
1− ς2

)N
(15)

where ς = a/b, the parameters a and b are found to be a = 1− ∆t2W 2
x

4N2LC
,

and b = 1 + ∆t2W 2
x

4N2LC
. It is obvious that the value of Wx corresponding

to the second-order central finite-difference scheme is a real number.
Subsequently, the eigenvalues associated with the proposed method
can be represented as (15). Since |r1,2| = 1, it can be concluded that
the novel FDTD method is unconditionally stable.

For the numerical dispersion analysis [24], assuming that a plane-
wave with an angular frequency ω propagates along the line axis x, we
have

Xn = X exp(jωn∆t) (16)

Substituting (10) into (16), we arrive at

(exp(jω∆t) ·U−Λ)X = 0 (17)

From the determinant operator of the coefficient matrix in
the (17), the dispersion relationship of the proposed method can be
derived. So we have

det (exp(jω∆t) ·U−Λ) = 0 (18)

From Equations (15) and (18), the numerical dispersion relation
can be easily given as

tg2

(
ω

∆t

N

)
=

1− ς2

ς2
(19)

It should be noted that the spatial frequencies kx = k. k denotes
the numerical wave number. For this analysis, the normalized phase
velocity error is calculated as

error =
|ω/c0 − kfinal |

kfinal
× 100% (20)

where kfinal is the final iterative value of k from (19) and c0 the speed
of light in the free space. Figure 1 illustrates the normalized phase
velocity error against the CFLN for different sub-time-step. The CFLN
in the figure is the ratio between the time step taken and the CFL
time step. For this analysis the mode velocity along the line axis is c0,
namely 1/

√
LC = c0 , the operating frequency is chosen at 1 GHz and

the cell size is calculated as

∆x =
λ

50
= 6mm
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Figure 1 shows that the dispersion (normalized phase velocity) error of
the proposed method increases with increasing CFLN. The sub-time-
step in Figure 1 is taken up to 4, just to see the dispersion trend. It can
be found that the dispersion is reduced dramatically by introducing
the precise split-time-step scheme. At CFLN = 10, for N = 4 the
dispersion is approximately 130% better than the proposed algorithm
for N = 1.

3. NUMERICAL EXPERIMENT

In this section, the novel 1D-FDTD-based transmission line solver
with the proposed precise split-time-step scheme is applied to several
numerical examples to verify the algorithm and demonstrate its
performance and applications. As we know, the efficiency of
the algorithm is affected by the performance of the computer,
programming language, grid number and so on [25]. In order to
compare effectively, we develop the algorithms in C-sharp language,
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Figure 1. Normalized phase velocity error versus CFLN.
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Figure 2. Uniform coupled three-conductor transmission line
structure.



Progress In Electromagnetics Research, Vol. 135, 2013 253

and perform on the LG PC with Intel Core(TM)2 (2.5 GHz) processors.
As the first example, we consider a coupled uniform transmission

line system depicted in Figure 2. The per-unit-length parameter
matrices of the MTL are given in [16]. The input signal voltage source
is a 1V rectangular pulse with rise and fall-times of 0.25 ns, a width of
1.5 ns. The maximum mode velocity of the line is 2.1408×108 m/s. For
this simulation, the lines are divided into 40 segments along the length.
Since the traditional FDTD algorithm uses the smallest time-step size,
highly accurate solutions should be achieved. It can be regarded as a
reference. A straightforward approach called “US-FDTD” [16], which
is believed to be more efficient, is adopted here for comparison. It must
be noted that the spatial equations in [16] (Equations (18) and (19))
can be written like (7) and (8) in a matrix form. The special numerical
package has been used for both algorithms (the proposed method and
“US-FDTD”).

In Figure 3, the voltage waveforms across the load resistance
versus time are shown. The time scales, time steps, CPU times,
relative errors and memory requirements of the above simulations are
given in Table 2. It can be seen from Figure 3 and Table 2 that the
proposed method and US-FDTD can provide stable results for larger
time scales and both of these algorithms require much less CPU time
compared with the traditional FDTD. The memory requirement of
the novel method is largest. This is because that the computational
load of the proposed approach for each time step is O(N). A large
block tridiagonal coefficient matrix need to be saved. So the memory
cost correspondingly increased. Besides, the CFLN adopted in the
proposed scheme is larger than the existing US-FDTD, whereas the
computation efficiency are not improved evidently. The reason is that
both methods are recursive for ∆t, the US-FDTD algorithm needs
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Figure 3. The output voltage Vout obtained by three FDTD methods
with different CFLN.
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215 loops for CFLN = 4. While the proposed algorithm needs 3× 85
loops, where 3 is the number of sub-time-step. Therefore in the same
conditions, CPU time of the proposed algorithm is almost the same as
the US-FDTD method presented in [16].

However, there is a critical point should be considered in this
problem. The proposed method and conventional US-FDTD are
independent of the time scale; hence, the computation accuracy must
be investigated. Table 2 shows the relative error of the maximum
value of Vout taking the results calculated by traditional FDTD as
the reference solution. Note that the relative error of the proposed
algorithm is 0.756% as compared to 8.788% of the US-FDTD. This
indicates that the proposed scheme can improve the computational
accuracy significantly with the same solution efficiency.

The second example deals with a coupled lossless nonuniform
three-line structure depicted in Figure 4. It is excited with a voltage
source, generating trapezoidal 1-V pulses with 5 ns delay time, 0.5 ns
rise and fall times and 10 ns duration. The line parameters are as
follows [26]:

L(x) =

[
L(x) Lm(x) 0

Lm(x) L(x) Lm(x)
0 Lm(x) L(x)

]

Table 2. Comparisons of results with three FDTD methods for
uniform lines.

Algorithms CFLN
Sub

steps

Total time

steps

Relative

error

CPU

time (s)

Memory

cost (Mb)

Traditional

FDTD
1 - 857 - 1.436 0.562

US-FDTD 4 - 215 8.788% 0.178 0.683

Proposed

method
10 3 85 0.756% 0.183 0.811

50 Ω

50 Ω

50 Ω

50 Ω

50 Ω

50 Ω

50 pFV   (t)s d=0.3 m

B

A

Figure 4. Nonuniform coupled three-conductor transmission line
structure.
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C(x) =

[
C(x) Cm(x) 0
Cm(x) C(x) Cm(x)

0 Cm(x) C(x)

]

where

L(x) = 387 [1 + 0.1 (1 + 0.6 sin (πx + 0.25π))] nH/m
Lm(x) = 0.1 (1 + 0.6 sin (πx + 0.25π))L(x)
C(x) = 104.13/[1− 0.15 (1 + 0.6 sin (πx + 0.25π))] pF/m

Cm(x) = −0.15 (1 + 0.6 sin (πx + 0.25π))C(x)

In the simulation, the nonuniform line is divided into 30 segments
of equal length. The maximum mode velocity of the line is 1.3801 ×
108 m/s. Firstly, the transient analysis of MTL system is performed
with CFLN = 5 and two choices of sub-time step (N = 1 and 3). Again,
the results from traditional FDTD can be regarded as benchmarks to
demonstrate the accuracy of other results. The voltage response at
node A is shown in Figure 5. It is obviously that large discrepancies
are occurred for N = 1. While N = 3, the results of this method is
stable and in good agreement with the benchmarks. Consequently, the
numerical dispersion characteristic of the novel FDTD can be improved
greatly by implementing precise split-step scheme.

Similar to the first example, a comparison with traditional FDTD
and US-FDTD is performed. The voltage waveforms of node B versus
time is depicted as in Figure 6. The time scales, time steps, CPU
times and memory cost are given in Table 3. The required memory
size of the proposed method is 0.983 Mb which is larger than other
methods. As stated before, the number of discretized points and the
split steps increased the memory cost. Table 3 also indicated that
with the time step enlarged, both US-FDTD and proposed method
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can improve the computational efficiency compared to conventional
FDTD. Nonetheless, from Figure 6, although the results of US-FDTD
are stable and even more efficient, huge numerical oscillations can be
observed, which are not tolerable for accurate circuit simulation. On
the other hand, the novel method is able to capture the waveform
propagation along the transmission line quite accurately. It means
that with the same accuracy, much less temporal sampling rate can be
used in the proposed method.

The third example deals with a three-coupled uniform transmis-
sion line network system. The transmission structure, as shown in
Figure 7(a) and further referenced as “Block A”, is used as a building
block to construct more complex networks. Block A is terminated by

Table 3. Comparisons of results with three FDTD methods for
nonuniform lines.

Algorithms CFLN
Sub

steps

Total time

steps

CPU

time (s)

Memory

cost (Mb)

Traditional FDTD 1 - 450 1.285 0.324

US-FDTD 3 - 150 0.236 0.328

Proposed method 3 3 150 0.396 0.983

Block  A

d=0.05 m d=0.05 m

15 Ω

15 Ω

15 Ω

2 pF

2 pF

2 pF

0.5 pF 15 Ω

0.5 pF

0.5 pF 15 Ω

Block A Block  A Block  A

outV     (t)

sV

+

-

(a)

(b)
1 n2

Figure 7. Multiconductor transmission line networks. (a) Block A
used as the building block of the MTL networks in (b). (b) Three-
conductor transmission line network constructed using Block As.
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Figure 8. Vout of the transmission line network in Figure 7(b).

linear circuit elements. The cascaded MTL network in Figure 7(b) is
constructed by connecting n Block As. The input voltage source and
per-unit-length parameters of the lines are the same as that in the first
example.

Two simulations are performed on the cascaded network. For both
simulations, the lines are divided into 40 segments, and a comparison
between the results of small time step (CFLN = 1) and those of large
one (CFLN = 10) is depicted. In the first simulation, the number
of blocks, n, is equal to 1. Figure 8 shows that Vout obtained using
the proposed algorithm is in good agreement with those obtained by
traditional FDTD method. However, the CPU time for the novel
approach (N = 2, Nt = 172 time steps) is 0.276 s as compared to
5.675 s of the traditional FDTD method (Nt = 1712 time steps). In
the second simulation, two Block As is chosen. The results are also
depicted in Figure 8. It is obviously that the accuracy of the results
is not changed with the increase of the time step. The CPU time
are 13.298 and 0.687 s for traditional FDTD approach (Nt = 1712
time steps) and proposed approach (N = 2, Nt = 172 time steps),
respectively. For this simulation, the novel unconditional stable FDTD
based on precise split-step scheme is approximately 20 times faster than
the conventional FDTD algorithm.

4. CONCLUSION

A precise split-step unconditional stable FDTD method for the
MTL transient simulation has been developed in this paper. Its
unconditional stability and numerical dispersion relationship have been
demonstrated. By using the precise split-step scheme, larger time
steps can be employed in the transient simulation with slight phase
velocity error. Compared to the conventional unconditional stable
approaches (e.g., [16]), it seems that the more the sub-time-step has
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been selected, the larger the computational resources occupied by the
proposed method. However, the novel method has the lower dispersion
error, a larger time step and a coarser mesh can be used. As a result,
the total number of iterations required by the proposed scheme can be
reduced. The numerical results fully illustrate that the novel method
can significantly improve the simulation efficiency with high accuracy.

As a direct spatial-temporal discretization and simple model, it
seems to be convenient to combine the proposed method with circuit
simulator to solve the transmission line system with nolinear or passive
terminations. However, the implicit difference schemes give some
limitations for the complex circuits analysis. A future extension of
the novel 1D-FDTD method would be to add terms to account for
the MTL with arbitrary loads. On the other hand, the interconnect
systems introduced in this paper are passive networks. Nevertheless,
in some integrated circuits, with the operating frequency increasing
to the millimeter wave range, the transmission line properties of some
active devices, such as MESFET, should be considered [27]. In this
situation, both the active and passive parts are included in the model.
Can we still apply the novel techniques to such problems? This is a
very important issue for future realistic applications.
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