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Abstract—In this paper, we present a method for detecting anti-
tank or anti-personnel landmines buried in the ground. A set of data
generated by a ground penetrating radar is processed to remove the
surface reflection and clutter, yielding signals for possible landmines.
In order to detect landmines in the signals, features are computed
and compared against a database, which contains those of various
landmines. Three features are proposed to use; principal components
from principal component analysis, Fourier coefficients and singular
values from singular value decomposition method, each of which is
chosen to represent each landmine uniquely. Detection is performed
using Mahalanobis distance-based method. Examples show that the
proposed method can effectively detect landmines in various burial
condition.

1. INTRODUCTION

Search and removal of landmines is a serious problem faced by many
countries. Annually more than 20,000 people all over the world are
getting injured or losing their lives because of landmine accidents.
However, the victims are not only restricted to soldiers. Recent heavy
rain with floods and landslides may move landmines to civilian areas,
threatening civilians’ safety [1, 2]. Therefore, safe and efficient removal
of landmines is critical.

Removal of landmines requires detection, which can be done in
various ways [1, 3], and a method to detect without digging the ground
is preferable for a safety reason. Metal detectors can be used for
this purpose [3–5]. However, many landmines are made of plastic
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or may have low metal content, which limits the effectiveness of the
method in practice. To handle such landmines a ground based X-band
scatterometer [6] can be considered. Or radar is another option.

Radar has been successfully employed for detection of various
entities such as breast cancers [7–9], hidden objects or humans [10–
19], moving targets [20–22] and their speed [23, 24] and speech
acquisition [25]. Among various types of radars developed so far,
ground penetrating radars (GPRs) have attracted many researchers
attention. GPRs have been used for various applications such
as [26, 27] and [28], to name a few.

In particular, they are frequently selected for landmine detec-
tion [2, 29–33]. In addition, an attempt to use a metal detector and a
GPR together in the landmine detection has been made [34].

In this paper, detection of a landmine using GPR only is a primary
focus. Landmine detection consists of three steps: reduction of clutter,
feature extraction and decision. When a GPR signal is obtained,
clutter, such as noise in the signal and reflections from the ground
and other objects, needs to be removed to obtain part of the signal for
feature extraction step [30, 35–37].

Features corresponding to a landmine are extracted from the
signal with reduced clutter. Various types of features are proposed
in order to obtain features unique to a landmine. Features can be
extracted in either time or frequency domain [29, 32, 33, 38]. Once
features of a landmine are available, they are compared with those in a
database containing landmine features and the associated information
of various landmines and burial conditions. It is unlikely to have the
perfect match against the features in the database due to uncertainty
involved in the GPR signal. Therefore, a systematic decision algorithm
needs to be employed. For a robust decision, methods such as
hidden Markov models [32, 39], Mahalanobis distance [33] and Support
Vector Machine [40] are studied. Wilson et al. [41] review four
algorithms for landmine detection and discrimination using GPR:
hidden Markov model (HMM) algorithm, geometric feature FOWA
ROCA algorithm, spectral confidence feature algorithm and edge
histogram discrimination algorithm. Their evaluation shows that
among the four methods HMM and edge histogram discrimination
algorithms provide the superior overall performance. They also note
that fusion of more than two different algorithms could enhance the
performance. In relation to this comment, use of multiple features for
landmine detection is addressed in [33, 42].

In this paper, a novel landmine detection algorithm is proposed.
Using devices currently employed in practice, any object in the
ground could be detected. The false alarm rate using the existing
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methods, however, still remains high, which is as problematic as a low
detection rate in the landmine removal. Therefore, the goal of this
work is to lower the false alarm rate by identifying an object in the
signal to be a landmine or not using the proposed method. A new
approach for isolating landmine signals is presented for robust feature
extraction. Moreover, use of multiple features including singular
values from singular value decomposition, Fourier coefficients and
principal components from principal component analysis are proposed
to enhance differentiability of landmines in order to improve the
detection rate. The overall landmine detection process is given as
follows. The GPR data is processed to eliminate clutter in the signal,
yielding signals containing a possible landmine. From the signal,
features based on the three methods are extracted, which are then
compared with those in the database for detection and identification.
For decision, Mahalanobis distance based method is employed for
features in multidimensional space.

The paper is structured as follows: In Section 2, preprocessing
steps for eliminating the ground effects and clutter are presented. In
Section 3, the three feature extraction methods are proposed along
with the decision scheme using Mahalanobis distance based approach
in Section 4. The proposed methods are tested with examples in
Section 5. Section 6 concludes this paper with suggestions and future
work.

2. PRE-PROCESSING

2.1. GPR Data

A GPR scans the ground and generates data, which contain influences
from the target object as well as the ground of various conditions and
other obstacles. One example of GPR data is given in Fig. 1. The
x-axis is the width (mm) of the scanning area, the y-axis is the depth
(mm) of the ground and the z-axis is the signal strength in voltage.

The GPR system used in this work is Minehound VMR2 from
COBHAM, which is configured as shown in Fig. 2. The antenna is
designed to move horizontally covering the area while maintaining a
certain distance from the ground surface.

2.2. Extraction of Landmine Signals

The GPR data (D) is assumed to consist of three different components:
reflection from the ground (G), reflection from a buried landmine (L)
and clutter (N), which are linearly combined [43]. Therefore, in order
to obtain landmine signals, the signals G and N should be eliminated.
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Figure 1. An example of GPR data.

Figure 2. The GPR system used in the experiment.

Theoretically, the ground effect is removed by subtracting G from D.
Two subtraction steps are proposed for extracting L. The first step is
to subtract average signals for G and N from D. The average of G
can be obtained by averaging the signals of various grounds with no
landmine. The averaged signal is called the reference data. Consider
n ground conditions with no landmine contained. Then there exist n
ground signals Gi +Ni (i = 1, . . . , n). Suppose that E[] is the notation
of average computation. The average of them, S∗, is obtained by

S∗ = E[Gi + Ni] = E[Gi] + E[Ni] = G∗ + N∗. (1)
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Therefore,

D− S∗ = G + L + N− (G∗ + N∗) ,

= L + ∆G + ∆N,

= L + R. (2)

In this computation, R remains to be nonzero since ∆G and ∆N
hardly become zero in general. This process is illustrated in Fig. 3,
where Figs. 3(a), (b) and (c) are the input signal, the signal without
a landmine and the signal after subtraction. The residue signal R in
Fig. 3(c) needs to be minimized in order to obtain L for the downstream
processes, which is performed in the second subtraction step. In
this step, the result of the first subtraction step, (i.e., Fig. 3(c)), is
used as input. The data at each x are squared, and the sum of the
squared values is computed. Among the summation values, the signal
corresponding to the smallest one is selected, which is then subtracted

(a)

(c)

(b)

Figure 3. Illustration of the subtraction process. (a) The input signal,
(b) the signal without an object in the ground and (c) the result of the
subtraction steps.
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from the signals at all x. These two subtraction steps yield a signal
Lu = L + Ru, where Ru is a residue survived the two subtraction
steps. Once Lu is available, Kalman filter method is employed in the y
direction. The residue Ru is treated as clutter, which can be eliminated
by the filter with minimally changing the landmine signal. The signal
Lui at each xi is regarded as a function of time. Namely, the y axis is
the time axis. Under this assumption, Kalman filter can be employed
to reduce Rui to yield L.

2.3. Kalman Filter

Kalman filter is one of the most frequently used methods for signal
processing in various applications and in many cases, it is used for
such as removing noise or clutter [44, 45] and tracking [46–48].

Kalman filter is effective in removing noise or clutter in the GPR
signal, which can be modeled as Gaussian noise. It is considered as
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Figure 4. Illustration of the second clutter reduction, (a) is the
processed signal L+R, (b) is the signal L after the clutter is reduced,
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a predictor-corrector scheme, which predicts states using data in the
previous time, and corrects the prediction based on measurement at the
current time. The process and measurement noise models are assumed
to have normal probability distribution. The residue in the signal can
be effectively reduced using this approach. Fig. 4 shows the result of
the ground and clutter reduction. As shown in the figure, the ground
component is efficiently eliminated without disturbing the landmine
part compared with the input raw data.

The extracted signal L is then normalized to linearly scale the
signal to the range of −100 to 100. Through this normalization, various
factors affecting signal strength such as the ground materials, moisture
levels and the height of the GPR, can be eliminated to make the feature
extraction more reliable.

3. FEATURE EXTRACTION

The extracted signal L is processed for feature extraction. In this
section, three different methods are presented, producing three features
for one landmine: Principal Component Analysis, Singular Value
Decomposition and Fourier transform. The first two methods use data
in the spatial domain, whereas the last one is based on data in the
frequency domain. Therefore, combining the three methods would
provide a way to extract features with enhanced differentiability for
detection compared to using a less number of methods such as [42],
where PCA and FE are considered. Using each feature for one axis,
3D space, called the feature space, is defined, in which a landmine is
mapped to one point.

3.1. Principal Component Analysis (PCA)

PCA extracts patterns of a scattered data set in K-dimension. The
patterns are captured in the eigenvalues and eigenvectors of a K ×K
covariance matrix. A pair of an eigenvector and an eigenvalue shows
how strong a pattern the data point contains in the eigenvector
direction. Therefore, it can be used as a unique feature of each
landmine. PCA has been used for a wide spectrum of applications
such as [49–53]. In this work, it is used for landmine identification.
In order to apply this method, the extracted signal is projected onto
the x-z plane as shown in Fig. 5. Then, the eigenvector along with
its eigenvalue close to the z direction is chosen as a feature since
this eigenvalue shows better differentiability than the eigenvalue in
the other direction.
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3.2. Singular Values Decomposition (SVD)

As a second feature, singular values obtained from the singular value
decomposition method are considered. They are used for analyzing
data such as images by representing them based on characteristic
values. The signal L is represented by a matrix of intensity of a signal
at each position. In order to improve the differentiability of singular
values, a method, called the window scanning, is proposed. Consider
a signal L as shown in Fig. 6. A window restricting the domain of
interest, which is illustrated as a rectangle in the left image of Fig. 6(a),
is applied to L to obtain data focusing on a possible landmine as shown
in the right image of Fig. 6. This process eliminates unnecessary part

Figure 5. The signal projected onto x-z plane. e1 and e2 are the two
eigenvectors.

(a) (b)

Figure 6. Illustration of the window scanning method. The height of
the window is determined to be 334 in this example.
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outside the window, leaving data concentrating on a possible landmine.
The size of the window is automatically determined to be large enough
to contain the signal of a landmine having the largest reflection. The
window is placed in such a way that the centerline of the window
matches the position of the maximum signal strength.

The data inside the window is provided for SVD. Once singular
values are computed, the largest one is chosen as a feature of the
landmine in the data because the largest singular value is robust with
respect to small perturbation to the input signal.

3.3. Discrete Fourier Transform (DFT)

As a third feature, a Fourier coefficient at a certain frequency is
considered. Unlike the previous two methods, which are based on
data in the spatial domain, this approach represents the data in
the frequency domain, which would capture different aspects of the
input signal. Since the input signal is given in discrete form, a
discrete version of Fourier transform is used. Fourier transform is a
fundamental mathematical tool for signal processing and matching
and finds an enormous amount of applications such as radar data
processing [54], polynomial construction [55], design of devices [56],
target recognition [57] and landmine detection [58], to name a few.

In order to apply DFT, a row of signal corresponding to the largest

Figure 7. An example of a signal with the largest strength indicated
as a thick curve in the figure. This signal is provided as input to DFT
for feature extraction.
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Figure 8. Results of DFT for three different landmine signals. The
rectangular area in the left image is depicted in the right.

strength as illustrated in Fig. 7 is selected as input to DFT. Fig. 8 shows
an example of DFT for three different landmines. The frequency range
of the radar used in this work is from 60MHz to 8.06 GHz. Therefore,
the frequency components in that range are dominant in the frequency
domain.

In order to use the Fourier coefficients as features, frequencies
at which the corresponding coefficients do not overlap are chosen as
features. In this work, the frequencies of 0.39 GHz, 0.47 GHz and
0.55GHz are considered depending on the ground condition after
investigating the DFT results for all the landmines and the ground
conditions.

4. DECISION ALGORITHM

Once features are extracted from input signals, they are compared with
those in the database in order to determine whether input features
correspond to a certain landmine and if so what type the landmine
is. For this purpose, a database is constructed to contain features and
information for various landmines, burial depths and burial conditions.
Then, by finding the features similar to input, the most probable
landmine is retrieved. In general, it is almost impossible to have
the perfect match of features due to clutter and disturbances in the
signal. Therefore, a systematic method to search the best one should
be considered in order to improve the detection performance.

In this work, Mahalanobis distance concept is employed for
decision. Features of a landmine correspond to one point in the
feature space, whose x, y and z axes are the second eigenvalues, the
DFT coefficients and the singular values given in terms of energy,
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respectively. The database can be visualized as clustered points in
the feature space as is shown in Fig. 9.

An input signal will be mapped to a point in the feature space.
The closest group to the input point in the statistical sense would be
chosen as the target landmine. Mahalanobis distance method finds
the closest cluster to the input point. It considers the relation between
the standard deviation and the input data, which is used to determine
the similarity of the input cluster to the existing set of clusters. Since
the data patterns in each cluster are considered, Mahalanobis distance
concept is different from Euclidean distance method.

A Mahalanobis distance, Mmax, is determined from a series of
experiments, which indicates the maximum Mahalanobis distance
giving the correct landmine identification. This means that an object
with Mahalanobis distance less than or equal to Mmax is determined
to be a landmine. Therefore, a database needs to be constructed
to contain information on as many landmines as possible in order to
maintain the high detection rate.
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Figure 9. An example of feature plots in 3D space. Three landmines
are considered for the dry sand ground.

Figure 10. The landmines used in the experiments. From the left,
each landmine is KM15, KM16 and KM19, respectively.
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5. EXPERIMENTS

In this work, three landmines: KM15, KM16 and KM19 as shown
in Fig. 10 are used to test the proposed detection method. The
specification of each landmine is summarized in Table 1.

The setup for this experiment is given in Fig. 2. Three ground
materials, sand, gravel and soil, are used with three different moisture
levels, wet, moderate and dry. Landmines are buried in the ground
at 0 cm through 30 cm with 5 cm interval. The radar is positioned at
the height of 6 cm from the ground surface. The robot arm moves
horizontally generating 153× 253 data points.

Figures 9, 11 and 12 show features of the landmines buried in
the sand with dry, moderate and wet moisture levels. It is observed
that each landmine of the same type buried at different depths (from
0 cm to 30 cm) forms clusters in the feature space for each moisture
level. These figures are shown separately for an illustration purpose.
In the database used by the proposed method, one feature space is
constructed containing features for all the landmines buried in all the
ground conditions. The feature space is then used for identification
and classification.

Table 1. Specification of the landmines.

Spec. KM15 KM16 KM19

Size (mm) 333× 150 102× 127 332× 94
Material Metal Metal Plastic
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Figure 11. A feature plot for the sand with moderate moisture level.
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Figure 12. A feature plot for the wet sand.

Table 2. Comparison of detection between Euclidean Distance and
Mahalanobis Distance methods. The unit is %.

Ground 1% 5% 10% 15% 20% 25% 30%

85.71 94.76 85.71 85.71 71.43 47.62 42.86

95.24 95.24 100.00 95.24 95.24 85.71 52.38

100.00 100.00 100.00 89.52 47.62 47.62 38.10

95.24 95.24 94.76 95.24 94.76 85.71 61.90

89.52 85.71 71.43 47.62 23.81 33.33 33.33

95.24 95.24 95.24 85.71 85.71 66.67 66.67

66.67 89.52 95.24 89.52 57.14 47.62 38.10

94.76 85.71 89.52 71.43 66.67 66.67 61.90

33.33 38.10 42.86 38.10 71.43 42.86 33.33

66.67 66.67 61.90 66.67 61.90 61.90 42.86

89.52 89.52 76.19 71.43 71.43 71.43 38.10

89.52 76.19 61.90 61.90 57.14 57.14 61.90

89.52 94.76 95.24 85.71 61.90 52.38 47.62

94.76 85.71 89.52 76.19 71.43 76.19 71.43

33.33 42.86 47.62 33.33 38.10 38.10 38.10

71.43 94.76 85.71 66.67 52.38 52.38 47.62

66.67 66.67 76.19 89.52 71.43 47.62 42.86

94.76 94.76 89.52 89.52 61.90 61.90 71.43

Dry sand

Dry Soil

Dry Gravel

Moderate Sand

Moderate Soil

Moderate Gravel

Damp Sand

Damp Soil

Damp Gravel

Method

EUD

MAD

EUD
MAD

EUD

MAD

EUD

MAD

EUD

MAD

EUD

MAD

EUD

MAD

EUD

MAD

EUD

MAD

In order to simulate the field signals, random Gaussian noise of 1%
to 30% is added to the input. Then features are computed using the
proposed method. These cases are tested with the database in order
to evaluate the performance of the proposed method. For comparison,
Euclidean distance decision method is considered. This method finds
the closest group to the input in terms of Euclidean distance in the
feature space and retrieves corresponding landmine information.

Table 2 summarizes the results of detection for various cases. Here,
EUD and MAD indicate Euclidean and Mahalanobis distance methods,
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respectively. It is noticed that as the noise level grows, the detection
rate decreases. However, Mahalanobis distance detection method
works much superior to Euclidean distance method. In particular at a
high noise level, the rate is mostly over 50%, which demonstrates that
Mahalanobis distance method is robust with respect to noise.

Compared with the method in [42, 58], which uses two features for
identification, it is found that the proposed method outperforms the
previous one in most cases. Especially, the performance gap grows as
the level of noise is increased. For example, the success identification
rate of the proposed method with 30% noise is 61.90% as opposed
to 27.78% of the previous one for the sand ground condition. Such
improvements of the rate of success have been achieved by using the
enhanced clutter reduction methods and using more features in the
decision step.

6. CONCLUSION

In this paper, a novel method for landmine detection is presented.
The procedure consists of data preprocessing, feature extraction and
detection. Data are obtained by using a GPR. They are then processed
in order to reduce unnecessary signals in order to isolate signals for
landmines. Three features based on SVD, DFT and PCA, are extracted
to each signal for landmine detection, which is performed by using
Mahalanobis distance method. The proposed procedure is tested with
three different landmines and various ground conditions.

In this work, three features are proposed for landmine signatures.
Two of them, SVD and PCA, are based on data in the time
domain, whereas DFT captures features in the frequency domain.
Using multiple features is advantageous in the landmine detection
since features extracted by using different methods may reflect
different aspects of the signal, which can be more tolerant against
certain disturbances than the others. This property can improve the
differentiability between landmines in various burial conditions and
enhance the robustness of the detection process.

For decision, Mahalanobis distance method is used in the work.
The method is selected over an HMM based algorithm since it is
simple to implement and applied to the proposed framework in a
straightforward manner, and the features extracted in the process may
not be rigorously treated independent in the probabilistic sense, which
is not a suitable condition for the HMM based method. Even though
such aspects are considered, however, an HMM based algorithm is
worth to try in the proposed framework.

The validation has been performed under the experimental
conditions. With artificial disturbances added to the signal in order to



Progress In Electromagnetics Research, Vol. 134, 2013 469

simulate the real environment, the proposed procedure could identify
correct landmines in most cases. However, it needs to be tested under
the real field conditions for thorough evaluation. Some components
used in the method need to be adjusted and verified in order for the
proposed method to be used for live ammunition. Moreover, if the
ground has a rough surface such as in the real field, or if part of a
landmine is embedded in a rough surface, a reflection pattern from
the ground, which is significantly different from that considered in this
work, would be obtained. For this case, methods such as [59] and [60]
needs to be taken into account in the proposed method. It is expected
that if the proposed method is evaluated and refined through extensive
tests with various landmines and ground conditions, the false alarm
rate could be further reduced.

The thorough validation as well as application of an HMM based
algorithm, are recommended for future work.

ACKNOWLEDGMENT

This work was supported by the Unmanned Technology Research
Center, Defense Acquisition Program Administration, and Agency for
Defense and Development, Daejeon, Korea and by the Basic Research
Project through a grant provided by GIST, 2012.

REFERENCES

1. Robledo, L., M. Carrasco, and D. Mery, “A survey of land mine
detection technology,” Int. J. Remote Sens., Vol. 30, No. 9, 2399–
2410, 2009.

2. Ho, K. C. and P. D. Gader, “A linear prediction land mine
detection algorithm for hand held ground penetrating radar,”
IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 6, 1374–1384,
2002.

3. Tran, M. D. J., C. Abeynayake, L. C. Jain, and C. P. Lim,
“An automated decision system for landmine detection and
classification using metal detector signals,” Stud. Comput. Intell.,
Vol. 304, 175–200, 2010.

4. Collins, L., P. Gao, D. Schofield, J. Moulton, L. Makowsky,
D. Reidy, and R. A. Weaver, “Statistical approach to landmine
detection using broadband electromagnetic induction data,” IEEE
Trans. Geosci. Remote Sens., Vol. 40, No. 4, 950–962, 2002.

5. Won, I. J., D. A. Keiswetter, and T. H. Bell, “Electromagnetic
induction spectroscopy for clearing landmines,” IEEE Trans.
Geosci. Remote Sens., Vol. 39, No. 4, 703–709, 2001.



470 Park et al.

6. Tiwari, K. C., D. Singh, and M. K. Arora, “Development of a
model for detection and estimation of depth of shallow buried
non-metallic landmine at microwave x-band frequency,” Progress
In Electromagnetics Research, Vol. 79, 225–250, 2008.

7. Alshehri, S. A., S. Khatun, A. B. Jantan, R. S. A. Raja Abdul-
lah, R. Mahmood, and Z. Awang, “Experimental breast tumor
detection using NN-based UWB imaging,” Progress In Electro-
magnetics Research, Vol. 111, 447–465, 2011.

8. Alshehri, S. A., S. Khatun, A. B. Jantan, R. S. A. Raja Abdullah,
R. Mahmood, and Z. Awang, “3D experimental detection and
discrimination of malignant and benign breast tumor using
NN-based UWB imaging system” Progress In Electromagnetics
Research, Vol. 116, 221–237, 2011.

9. O’Halloran, M., B. McGinley, R. C. Conceicao, F. Morgan,
E. Jones, and M. Glavin, “Spiking Neural Networks for breast
cancer classification in a dielectrically heterogeneous breast,”
Progress In Electromagnetics Research, Vol. 113, 413–428, 2011.

10. Chang, Y.-L., C.-Y. Chiang, and K.-S. Chen, “SAR image
simulation with application to target recognition,” Progress In
Electromagnetics Research, Vol. 119, 35–57, 2011.

11. Jia, Y., L. Kong, and X. Yang, “A novel approach to target
localization through unknown walls for through-the-wall radar
imaging,” Progress In Electromagnetics Research, Vol. 119, 107–
132, 2011.

12. Burgos-Garcia, M., F. Perez-Martines, and J. Gismero Menoyo,
“Radar signature of a helicopter illuminated by a long LFM
signal,” IEEE Trans. Aerosp. Electron. Syst., Vol. 45, 1104–1110,
2009.

13. Davy, M., T. Lepetit, J. de Rosny, C. Prada, and M. Fink,
“Detection and imaging of human beings behind a wall using the
DORT method,” Progress In Electromagnetics Research, Vol. 110,
353–369, 2010.

14. Ray, P. and P. K. Varshney, “Radar target detection framework
based on false discovery rate,” IEEE Trans. Aerosp. Electron.
Syst., Vol. 47, 1277–1292, 2011.

15. Zhang, H., S. Y. Tan, and H. S. Tan, “Experimental study on
a flanged parallel-plate dielectric waveguide probe for detection
of buried inclusions,” Progress In Electromagnetics Research,
Vol. 111, 91–104, 2011.

16. Debes, C., A. M. Zoubir, and M. G. Amin, “Enhanced detection
using target polarization signatures in through-the-wall radar
imaging,” IEEE Trans. Geosci. Remote Sensing, Vol. 50, 1968–



Progress In Electromagnetics Research, Vol. 134, 2013 471

1979, 2012.
17. Mohammadpoor, M., R. S. A. Raja Abdullah, A. Ismail, and

A. F. Abas, “A circular synthetic aperture radar for on-the-
ground object detection,” Progress In Electromagnetics Research,
Vol. 122, 269–292, 2012.

18. Hatam, M., A. Sheikhi, and M. A. Masnadi-Shirazi, “Target
detection in Pulse-train MIMO radars applying ICA algorithms,”
Progress In Electromagnetics Research, Vol. 122, 413–435, 2012.

19. Wang, Y., Q. Song, T. Jin, Y. Shi, and X.-T. Huang, “Sparse
time-frequency representation based feature extraction method for
landmine discrimination,” Progress In Electromagnetics Research,
Vol. 133, 459–475, 2013.

20. Tian, B., D.-Y. Zhu, and Z.-D. Zhu, “A novel moving target
detection approach for dual-channel SAR system,” Progress In
Electromagnetics Research, Vol. 115, 191–206, 2011.

21. Guan, J., X.-L. Chen, Y. Huang, and Y. He, “Adaptive fractional
Fourier transform-based detection algorithm for moving target in
heavy sea clutter,” IET Radar, Sonar and Navig., Vol. 6, 389–401,
2012.

22. Budillon, A., A. Evangelista, and G. Schirinzi, “GLRT detection
of moving targets via multibaseline along-track interferometric
SAR system,” IEEE Geosci. Remote Sens. Lett., Vol. 9, 348–352,
2012.

23. Mao, X., D.-Y. Zhu, L. Ding, and Z.-D. Zhu, “Comparative study
of RMA and PFA on their responses to moving target,” Progress
In Electromagnetics Research, Vol. 110, 103–124, 2010.

24. Sjogen, T. K., V. T. Vu, M. I. Pettersson, A. Gustavsson, and
L. M. H. Ulander, “Moving target relative speed estimation and
refocusing in synthetic aperture radar images,” IEEE Trans.
Aerosp. Electron. Syst., Vol. 48, 2426–2436, 2012.

25. Li, S., Y. Tian, G. Lu, Y. Zhang, H. J. Xue, J.-Q. Wang, and X.-
J. Jing, “A new kind of non-acoustic speech acquisition method
based on millimeter waveradar,” Progress In Electromagnetics
Research, Vol. 130, 17–40, 2012.

26. Crocco, L., F. Soldovieri, T. Millington, and N. J. Cassidy,
“Bistatic tomographic GPR imaging for incipient pipeline leakage
evaluation,” Progress In Electromagnetics Research, Vol. 101, 307–
321, 2010.

27. Catapano, I., F. Soldovieri, and L. Crocco, “On the feasibility
of the linear sampling method for 3D GPR surveys,” Progress In
Electromagnetics Research, Vol. 118, 185–203, 2011.



472 Park et al.

28. Van den Bosch, I., S. Lambot, M. Acheroy, I. Huynen, and
P. Druyts, “Accurate and efficient modeling of monostatic GPR
signal of dielectric targets buried in stratified media,” Journal of
Electromagnetic Waves and Applications, Vol. 20, No. 3, 283–290,
2006.

29. Zhu, Q. and L. M. Collins, “Application of feature extraction
methods for landmine detection using the Wichmann/Niitek
ground-penetrating radar,” IEEE Trans. Geosci. Remote Sensing,
Vol. 43, No. 1, 81–85, 2005.

30. Van der Merwe, A. and J. Gupta, “A novel signal processing
technique for clutter reduction in GPR measurements of small,
shallow land mines,” IEEE Trans. Geosci. Remote Sensing,
Vol. 38, No. 6, 2627–2637, 2000.

31. Nishimoto, M., S. Ueno, and Y. Kimura, “Feature extraction
from GRP data for identification of landmine-like objects under
rough ground surface,” Journal of Electromagnetic Waves and
Applications, Vol. 20, No. 12, 1577–1586, 2006.

32. Gader, P. D., M. Mystkowski, and Y. Zhao, “Landmine detection
with ground penetrating radar using hidden Markov models,”
IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 6, 1231–1244,
2001.

33. Savelyev, T. G., L. van Kempen, H. Sahli, J. Sachs, and M. Sato,
“Investigation of time-frequency features for GPR landmine
discrimination,” IEEE Trans. Geosci. Remote Sensing, Vol. 45,
No. 1, 118–129, 2007.

34. Ho, K. C., L. M. Collins, L. G. Huettel, and P. D. Gader,
“Discrimination mode processing for EMI and GPR sensors for
hand-held landmine detection,” IEEE Trans. Geosci. Remote
Sensing, Vol. 42, No. 1, 249–263, 2004.

35. Lopera, O., E. C. Slob, N. Milisavljević, and S. Lambot, “Filtering
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