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Abstract—We derive an expression for the torque exerted on an
electric/magnetic dipole moving in an electromagnetic field, which
contains two new velocity-dependent terms that to our knowledge were
not reported before. A physical meaning of various torque components
is discussed in terms of Lorentz force law and hidden momentum
contribution.

1. INTRODUCTION

It is well known that the torque exerted on a resting small dipole is
determined by the expression

T0 = p0 ×E0 + µ0 ×B0, (1)

where p0, µ0 are the proper electric and magnetic dipole moments,
and E0, B0 are the electric and magnetic fields, correspondingly, in
the rest frame of the dipole. Eq. (1) allows us to write the motion
equation of spin s in a constant (or slowly varied) electromagnetic
field for a particle with mass m, Landé factor g and vanishing electric
dipole moment p0 in the form

ds
dt

=
ge

2mc
s×B0

to be valid in the proper particle’s frame. A relativistic generalization
of this equation yields the BMT equation [1], which also includes the
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Thomas precession [2]. At the same time, the approach used in the
derivation of BMT equation (the introduction of spin four-vector with
the vanishing time component in the proper frame of particle [1, 3])
occurs convenient to determine the motion of particle’s spin in its
proper frame in terms of the external electromagnetic (EM) field
measured in a laboratory. Thus, this approach does not allow us to
determine explicitly the torque on a moving dipole via the interaction
of its electric p and magnetic µ dipole moments with an external EM
field, when all these quantities are defined in a laboratory frame.

One of the possible ways to derive the torque on a moving dipole
is to use Eq. (1) and to carry out the Lorentz transformation for the
torque from the rest frame of the dipole to the laboratory frame (where
the dipole is moving), expressing simultaneously the EM fields E0, B0

of Eq. (1) via fields E, B measured in a laboratory. However, we
remind that the transformation of torque components is guided by
the corresponding torque four-tensor [4], and one can check that its
application does not allow obtaining an explicit analytical expression
for the torque in the laboratory frame.

Surprisingly enough, the problem of determination of torque
exerted on an electric/magnetic dipole moving in an EM field was not
solved to the moment in a full extent, and considered only fragmentary
(see, e.g., Refs. [3, 4, 6–11]). The latter fact determines the goal of the
present paper: to derive explicitly an expression for torque experienced
by a moving dipole in an external EM field, to determine the physical
meaning of various torque components in the approximation of a small
dipole and to clarify the limits on application of the obtained equation.

In Section 2, we present the general expression for the torque
exerted on a bunch of charged particles in an arbitrary EM field,
summing up the contributions due to the Lorentz force and the force
component, emerging due to hidden momentum. Then we achieve a
compact representation for this torque in the case of small dipole. In
Section 3, we verify the correctness of the obtained expression with a
number of model physical problems, and in Section 4, we present the
conclusion.

2. TORQUE EXERTED ON A MOVING BUNCH OF
CHARGES

The total torque on an electric/magnetic dipole can be presented in
the form

T =
∫

V

(r× ftotal) dV , (2)
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where f total is the total force density, r the position vector of any point
inside the dipole, and V the volume of dipole.

We mention that, as for the total force on a dipole (see, e.g., [11]),
the force density f total should be presented as the sum

ftotal = fL + fh, (3)

where fL is the density of Lorentz force

fL = ρtotalE +
1
c
jtotal ×B (4)

(see, e.g., Refs. [3, 5]), and fh is the density of force due to hidden
momentum contribution, whose physical meaning will be discussed
below. Here ρtotal, jtotal are the total charge density and current
density, correspondingly.

Hereinafter we consider the case, when the free charges are absent,
so that for a material medium we have the known relationships [3, 6]:

ρ = −∇ ·P, (5)

J =
∂P
∂t

+∇×M, (6)

where M, P are respectively the magnetization and polarization of
medium.

Next problem is to find an expression for the force density fh,
based on the known equation for the force on a magnetic dipole, caused
by time variation of hidden momentum [12–14]

Fh = −1
c

d

dt
(µ×E) , (7)

where all quantities in Eq. (7) are evaluated in a laboratory frame. As
known, the force contribution (7) is required for the system “material
medium plus EM field” to maintain the balance of momenta, as for the
first time was pointed out in Ref. [12]. Hence we can conjecture the
force density due to variation of hidden momentum in the form:

fh = −1
c

∂

∂t
(M×E) . (8)

We point out that the use of partial time derivative in Eq. (8) instead of
total time derivative in Eq. (7) is related to the fact (usually omitting
in the literature) that the measurement of magnetization (polarization)
is carried out at a point fixed in a laboratory, whereas the measurement
of magnetic (electric) dipole moment of a moving bunch of charges is
carried out for a volume V co-moving to this bunch. Further, using the
operator equality ∂

∂t = d
dt − (v · ∇) (where v stands for velocity), and

taking into account that the volume integral
∫
V

(v · ∇)(M×E)dV via
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the Gauss theorem can be transformed onto a surface integral (where
M disappears), we obtain that∫

V

fhdV = −1
c

d

dt
(µ×E) = Fh.

Thus, combining Eqs. (3)–(6), (8) we derive the total force density
in the form:

ftotal = − (∇ ·P)E + (∇×M)×B +
1
c

∂P
∂t

×B− 1
c

∂

∂t
(M×E) . (9)

Further substituting Eq. (9) into Eq. (2), we derive the expression
for total torque exerted on an electric/magnetic dipole in an external
electromagnetic field:

Ttotal =
∫

V

dV

[
r×

(
−(∇·P)E+(∇×M)×B+

1
c

∂P
∂t
×B−1

c

∂

∂t
(M×E)

)]
. (10)

In order to clarify the physical meaning of the torque (10) and
its components, let us simplify Eq. (10) for a small dipole. This
approximation implies, first of all, that the spatial variation of electric
and magnetic fields at the location of the dipole can be practically
ignored. This statement is expressed in the form of inequalities [15]

∂Ei

∂rj
∆rj ¿ Ei,

∂Bi

∂rj
∆rj ¿ Bi (i, j = 1 . . . 3), (11)

where ∆rj is the typical size of the dipole along the dimension j. We
can add that in the evaluation of the electric/magnetic fields generated
by the dipole, it is additionally adopted that distance r between a
dipole and a point of observation is much larger than ∆rj , i.e., r À ∆rj

at all j. However, we stress that for our purpose the requirement (11)
is the most important, and its implementation may happen for a dipole
of macroscopic size, if the electric and magnetic field slow enough vary
in space; of course, for elementary particles processed in the classical
way, the inequalities (11) are always fulfilled.

Next, we have to notice that in the evaluation of the torque
contributions of Eq. (10) for small dipole, we can take the fields
E(r), B(r) to be constant within the volume of such a dipole, because
any terms, which include partial spatial derivatives of the electric
and magnetic field become negligible, when the inequalities (11) are
adopted†. Thus, in the subsequent integrals over the volume of dipole,
† We notice that the approximation of constant fields cannot be adopted in calculation of
force acting on a small dipole, because some of the force components are vanishing at E(r),
B(r)= constant, and we have to involve the terms, containing their spatial derivatives (see,
e.g., [5, 15]).
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the fields E(r) and B(r) are taken to be constant. At the same time,
when the motion of dipoles is considered, the variation of electric
and magnetic fields along a trajectory of a moving dipole, in general,
cannot be ignored, so that the approximation of static field becomes
inapplicable.

Thus, we apply Eq. (10) to a small electric/magnetic dipole,
moving at the velocity v in the external electric E and magnetic B
fields of a laboratory frame. In such a derivation, we assume that the
electric p =

∫
V

PdV and magnetic µ =
∫
V

MdV dipole moments of such

dipole are the constant values in its rest frame. With these limitations
we obtain for the first term in integrand of Eq. (10)

−
∫

V

r× (∇ ·P)EdV = p×E, (12)

which describes the contribution to torque due to Coulomb interaction.
Eq. (12) can be directly proven in components. For example for the
z-component we have:

−Ey

∫

V

x

(
∂Px

∂x
+

∂Py

∂y
+

∂Pz

∂z

)
dV +Ex

∫

V

y

(
∂Px

∂x
+

∂Py

∂y
+

∂Pz

∂z

)
dV

=−Ey

∫

V

(
∂ (xPx)

∂x
− Px +

∂ (xPy)
∂y

+
∂ (xPz)

∂z

)
dV

+Ex

∫

V

(
∂ (yPx)

∂x
+

∂ (yPy)
∂y

− Py +
∂ (yPz)

∂z

)
dV

= pxEy − pyEx = (p×E)z

Here we have taken into account that the integration of the terms
∂(riPj)/∂rl (i, j, l = 1 . . . 3) over the volume of the dipole gives the
value of Pj on its surface, which is equal to zero.

Next, we evaluate the torque component due to interaction of
magnetization currents of a dipole with a magnetic field (second term
in the integrand of Eq. (10)). Using the vector identities a×b = −b×a
and a × (∇× b) = ∇(a · b) − b × (∇× a) − (a · ∇)b − (b · ∇)a, this
term can be presented in the form:∫

V

r× ((∇×M)×B) dV = −
∫

V

r× (B× (∇×M)) dV

=−
∫

V

r× (∇ (B ·M)− (B · ∇)M− (M · ∇)B−M× (∇×B)) dV
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=
∫

V

[r× (B · ∇)M] dV . (13)

Here, we have taken into account that the integral
∫
V

[r×∇(B ·M)]dV

can be transformed to the surface integral, where the magnetization
M is vanishing; also we notice that in the adopted approximation (B
≈ constant), the terms (M · ∇)B and M×(∇×B) are vanishing, too.
Integrating by parts the remaining integral in Eq. (13), we obtain:

∫

V

[r× (B · ∇)M] dV = µ×B, (14)

We again prove this equality in components. For example, for the
z-component we have:

M2z =
∫

V

[
x

(
Bx

∂My

∂x
+ By

∂My

∂y
+ Bz

∂My

∂z

)

−y

(
Bx

∂Mx

∂x
+ By

∂Mx

∂y
+ Bz

∂Mx

∂z

)]
dV

=
∫

V

[(
Bx

∂ (xMy)
∂x

−BxMy + By
∂ (xMy)

∂y
+ Bz

∂ (xMy)
∂z

)

−
(

Bx
∂ (yMx)

∂x
+ By

∂ (yMx)
∂y

−ByMx + Bz
∂ (yMx)

∂z

)]
dV

= µxBy − µyBx = (µ×B)z

Further, we evaluate the term responsible for the interaction of
polarization currents of a dipole with a magnetic field (third term in
the integrand of Eq. (10)). Here we notice that due to the adopted
constancy of proper electric dipole moment, we get ∂P/∂t = 0
in the rest frame of a dipole. However, for a moving dipole the
stationary distribution of its charges yields dP/dt = 0, and hence
∂P/∂t = −(v · ∇)P. With the latter equality we derive:

−1
c

∫

V

r× ((v · ∇)P×B) dV

=−1
c

∫

V

r× ((v · ∇) (P×B)) dV =
1
c
v × (p×B) . (15)

(Here we used the equality (v · ∇)P × B = (v · ∇)(P×B), which
reflects the adopted constancy of B within the volume of small dipole).
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For example, let us demonstrate the validity of Eq. (15) for the y-
component:∫

V

[z ((v · ∇) (P×B)x)− x ((v · ∇) (P×B)z)] dV

=
∫

V

[
z

(
vx

∂ (P×B)x

∂x
+ vy

∂ (P×B)x

∂y
+ vz

∂ (P×B)x

∂z

)

−x

(
vx

∂ (P×B)z

∂x
+ vy

∂ (P×B)z

∂y
+ vz

∂ (P×B)z

∂z

)]
dV

=
∫

V

(
vx

∂[z(P×B)x]
∂x

+vy
∂[z (P×B)x]

∂y
+vz

∂[z(P×B)x]
∂z

−vz (P×B)x

)
dV

−
∫

V

(
vx

∂[x(P×B)z]
∂x

−vx(P×B)z+vy
∂(x(P×B)z)

∂y
+vz

∂(x(P×B)z)
∂z

)
dV

=
∫

V

[(vx (P×B)z − vz (P×B)x)] dV = − [v × (p×B)]y .

Here we again take into account that the volume integrals, where the
functions of spatial coordinates are subjected to differentiation, can be
transformed to the surface integrals, where polarization P is vanishing.

Finally, addressing to the last term of integrand of Eq. (10) (the
hidden momentum contribution), and taking into account that for
stationary magnetization ∂

∂t(M×E) = −(v · ∇)(M×E), we obtain
by analogy with Eq. (15):

Th=−1
c

∫

V

(
r× ∂

∂t
(M×E)

)
dV

=
1
c

∫

V

(r× (v · ∇) (M×E)) dV = −1
c
v × (µ×E) . (16)

Finally, substituting Eqs. (12), (14)–(16) into Eq. (10), we derive
the expression for total torque exerted on a small dipole in an EM field:

Ttotal = p×E + µ×B +
1
c
v × (p×B)− 1

c
v × (µ×E) , (17)

where all quantities are evaluated in a laboratory frame.
The first and second terms in rhs of Eq. (17) look similar to

corresponding terms of Eq. (1), though now they include the electric
p and magnetic µ dipole moments of a moving dipole. The third term
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is responsible for the interaction of polarization currents of a dipole
with the magnetic field, while the fourth term stands for the hidden
momentum contribution to the torque on a dipole. To our recollection,
the two last terms in Eq. (17) (presented separately by the rhs of
Eqs. (15) and (16), correspondingly) seems were not reported before.

Further, we notice that in experiments, the directly measured
values of any bunch of charges are the proper electric p0 and magnetic
µ0 dipole moments. However, this fact does not create any difficulties
in comparison of Eq. (17) with experimental results, since the dipole
moments p, µ of the moving dipole are directly related with p0, µ0

measured in a laboratory for the same dipole at rest via the known
relativistic transformations [6, 16]

p = p0 − (γ − 1)
γv2

(p0 · v)v +
v × µ0

c
, (18a)

µ = µ0 − (γ − 1)
γv2

(µ0 · v)v +
p0 × v

c
, (18b)

where γ = (1− v2/c2)−1/2 is the Lorentz factor. The last term in rhs
of Eq. (18a) describes the known effect of relativistic polarization of
a moving magnetic dipole, while the last term in rhs of Eq. (18b) is
responsible for the development of the magnetic dipole moment by the
moving electric dipole. One can add that the second terms in the rhs
of both of these equations take into account the scale contraction effect
along the velocity v of the moving dipole. Thus all of the mentioned
relativistic effects are accounted for, by the first and second terms of
rhs of Eq. (17).

Next, it is worth to mention the results of Ref. [10], where Namias
considered the torque on an electric dipole (p0 6= 0, µ0 = 0) and
torque on a magnetic dipole (p0 = 0, µ0 6= 0) separately. Applying
the electric-charge model and magnetic-charge model, he subsequently
derived the expressions for torque as follows (in Gaussian units):

Tp = p×E +
1
c
p× (v ×B) (p0 6= 0, µ0 = 0), (19a)

and

Tµ = µ×B− 1
c
µ× (v ×E) (p0 = 0, µ0 6= 0). (19b)

Thus, Namias did not formulate the general problem, which would
be geared to obtain the torque on a moving compact dipole with p0 6= 0,
µ0 6= 0, where Eq. (17) has been derived. At the same time, to make
a comparison of Eq. (17) with the results of Ref. [10], we can apply
Eq. (17) to the particular cases p0 6= 0, µ0 = 0 and p0 = 0, µ0 6= 0.
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In the former case Eq. (17) reads:

Ttotal = p×E +
1
c

(p0 × v)×B +
1
c
v × (p×B)

− 1
c2

v × ((p0 × v)×E) (p0 6= 0, µ0 = 0), (20a)

where we have used Eq. (18b). Using the Jacobi identity a× (b× c)+
c× (a× b)+b× (c× a) = 0 and the equality a×b = −b×a, we can
present the equation by Namias (19a) in the form more convenient for
further analysis:

Tp = p×E +
1
c

(p× v)×B +
1
c
v × (p×B) . (21a)

We see that, in general, Eq. (21a) disagrees with our Eq. (20a) in the
terms of order (v/c)2 and higher. We add that the physical meaning
of the torque component − 1

c2
v × ((p0 × v)×E), which is absent in

Eq. (21a), is clarified in Section 3, where our Eq. (17) is applied to
various physical situations.

Next, consider the particular case p0 = 0, µ0 6= 0, where Eq. (17)
takes the form

Ttotal = µ×B +
1
c

(v × µ0)×E− 1
c
v × (µ×E)

+
1
c2

v × ((v × µ0)×B) (p0 = 0, µ0 6= 0). (20b)

Here we also have used Eq. (18a). Applying again the Jacobi identity,
we transform the Eq. (19b) by Namias to the form convenient for
comparison with Eq. (20b):

Tµ = µ×B +
1
c

(v × µ)×E− 1
c
v × (µ×E) . (21b)

Now we see that the Namias Eq. (22) coincides with our Eq. (20b)
only to first order in (v/c) and, in general, disagrees with Eq. (20b) in
the terms of order (v/c)2 and higher.

Thus we conclude that the approach by Namias to the derivation
of torque on a moving dipole in the framework of the electric-charge and
magnetic-charge models, correspondingly, is not fully correct, because
the relativistic transformations (18) for the electric and magnetic
dipole moments are not properly accounted for the electric-charge and
magnetic-charge models, when these models are analysed separately.
This can explain the deviation of Namias Eqs. (21a), (21b) from the
respective Eqs. (20a), (20b) in the order (v/c)2 and higher.

In the next section, we apply the newly derived Eq. (17) to
calculation of torque on small electric and magnetic dipoles, paying
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special attention to the contribution of the third and fourth terms of
this equation.

3. TORQUE ON MOVING MAGNETIC AND ELECTRIC
DIPOLES: ILLUSTRATIVE EXAMPLES

In this section, we verity Eq. (17) for some selected problems.
First, we consider the motion of magnetic dipole in a static

constant electric field E for the configuration, when the velocity of
dipole v and vector E are both parallel to the axis x, while the proper
magnetic dipole moment µ0 is parallel to the axis y (Fig. 1(a)).

For this configuration the relativistic polarization

p =
v × µ0

c
(22)

of magnetic dipole emerges, which gives the torque component

Trel = p×E =
1
c

(v × µ0)×E, (23)

and for the case of Fig. 1(a), the torque (23) is directed against the
axis y.

One more torque component stems from the fourth term of
Eq. (17) (hidden momentum contribution), which for parallel vectors

  =0 

  
  

 

 

 

K

T E

E
totaly

x
v

µ
 =0 Ttotalcharged plate

y
x

y

v
z

µ '

(a) (b)

Figure 1. (a) Magnetic dipole µ lying in the positive y-direction
moves at the constant velocity v along the lines of constant electric field
E (the axis x). Such an electric field can be produced by a charged
plate, moving synchronously with the dipole at the same velocity v
along the axis x. (b) Since in the rest frame of the plate and magnetic
dipole the torque on the dipole is equal to zero, it must be also equal to
zero in the frame of observation K, and Eq. (17) confirms this result.
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v and E reads:

Th=−1
c
v×(µ×E)=

1
c
E×(v×µ)+

1
c
µ×(E× v)=−1

c
(v×µ)×E, (24)

where we have used the Jacobi identity. Taking also into account that
for orthogonal vectors µ0, v, and p0 = 0, µ = µ0 (see Eq. (18b)), we
derive that the torque components (23) and (24) mutually cancel each
other, so that the net torque on the magnetic dipole is equal to zero.

We point out that this result for the problem of Fig. 1(a), where
the vectors E, v are collinear to each other, is a single possibility from
the relativistic viewpoint. Indeed, we can suppose that the constant
electric field E along the axis x is created by a large rectangular
homogeneously charged plate, lying in the plane yz (see Fig. 1(b))
and the boundaries of the plate are very far from the magnetic dipole.
What is more, we can admit the case, where the plate moves along
the axis x at the same constant velocity v, like the magnetic dipole.
For such configuration no change of the field occurs with the motion
of place, because B′ ∼ v × E = 0, and E′ = E. Further we observe
that in the rest frame of the plate and dipole, no torque acts on the
dipole due to a resting plate. Therefore, in any other inertial frame,
where both the plate and dipole move along the axis x at any constant
velocity, the torque must be equal to zero, too.

One can add that the problem of Fig. 1(a) is closely related to
the problem considered in [18] on the interaction of point-like charge
q and magnetic dipole µ, which are both rest in some inertial frame
K ′, and the direction of µ is orthogonal to the line joining charge and
dipole. In this frame the mutual force between charge and magnetic
dipole is equal to zero, and no torque is exerted on the dipole by the
resting charge. Then Mansuripur considers the situation, where the
frame K ′ is moving in the laboratory frame K at the constant velocity
v along the line, joining charge and dipole (the axis x in Fig. 1). In
these conditions he shows that the application of Lorentz force law (4)
yields a non-vanishing torque exerted on the moving magnetic dipole
by the moving charge (presented by our Eq. (23), which obviously
represents a non-adequate result, since in the proper frame of charge
and dipole K ′, the torque is equal to zero. On the other hand, when
the Einstein-Laub formula [19, 20] is applied, both the force and the
torque are equal to zero in the frames K ′ and K. Based on this result,
Mansuripur concluded that for material media, the Lorentz force law
must be abandoned in favor of the Einstein-Laub law.

However, he did not take into account the hidden momentum
contribution (24), which recovers the consistency with relativistic
requirements of the Lorentz force approach.

In the next illustrative example, we continue to analyse physical
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implications of Eq. (17), again focusing attention on its last term,
presented separately by Eq. (16), and ask a question as follows: can
we prescribe the hidden momentum to a dipole, where its magnetic
dipole moment has a purely relativistic origin, i.e.,

µ =
1
c

(p0 × v) , (25)

and µ0 = 0?
In order to answer this question, we substitute Eq. (25) into

Eq. (16) and derive:

Th=− 1
c2

v×((p0×v)×E)=
1
c2

v×(E×(p0×v))=
1
c2

v×p0 (E·v) . (26)

This torque component, presented also in the above Eq. (20a), shows
that it is not zero, when the vectors p0, v are not collinear to each
other (otherwise the magnetic dipole moment (25) disappears), and E
has a non-vanishing projection into v. Next we have to check, whether
the torque component (26) is adequate from the physical viewpoint. In
this respect the most interesting case is realized, when the vectors p0,
E are collinear to each other and, for simplicity, B = 0 in the frame of
observation.

This situation can be modelled by the following problem (see
Fig. 2(a)). There is a parallel plate charged capacitor with the plates
lying in the plane xz, and its inner electric field E is directed along the
axis y. An electric dipole with the proper moment p0 to be parallel to E
is moving inside the capacitor with the constant velocity v, constituting
the angle α with the axis y. Due to the constancy of electric field, the

  

  

  

     

    

α

    

      

      

      

B  

   

  

  
β

0T
E

total
p

x

y

'

(a) (b)

v

+

vsinα

K 'K

-vsinα

0Ttotal'

'

'p v

+

−−

-vsinα

K '

E'

Figure 2. (a) Electric dipole p moves in the laboratory frame K inside
a parallel plate charged capacitor at the constant velocity v, lying in
the plane xy and constituting the angle α with the axis y. (b) The
same problem, as seen by an observer in the inertial frame K ′.
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force on electric dipole p is equal to zero, while the torque is presented
as the sum of two components:

T = p×E− 1
c
v × (µ×E) = p×E− 1

c2
v × p0 (E · v) , (27)

where Eq. (26) has been used. Here we also take into account that the
electric dipole moment p of the moving dipole is no longer parallel
to the vector E (as it was the case for the vector p0), and has a
non-vanishing component onto the axis x due to transformation (18a),
making the product p×E to be different from zero. From the physical
viewpoint, the change of spatial orientation of p in comparison with
p0 is explained by the scale contraction effect for the dipole along
its velocity v. Indeed, designating the length of the dipole as ∆l, we
obtain that its projection onto the vector v is contracted by

√
1− v2/c2

times (∆l cosα
√

1− v2/c2), whereas its projection onto the orthogonal
direction remains unchanged (∆l sinα). As a result, the entire dipole
experiences a spatial turn at some angle β, which is straightforwardly
calculated to the accuracy c−2:

β ≈ v2

2c2
sinα cosα. (28)

Taking also into account that the second term in rhs of Eq. (27)
can be presented in the form

Th = − 1
c2

v × p0 (E · v) = ẑ
v2

c2
pE sinα cosα,

we obtain the entire torque as

T = −ẑpE sinβ + ẑ
v2

c2
pE sinα cosα, (29)

where ẑ is the unit vector along the axis z.
The existence of both torque components in Eq. (29) can be

understood via the relativistic requirements, if we introduce into
consideration an inertial observer K ′, moving along the axis x with the
constant velocity v sinα in a laboratory frame. In the frame K ′ the
electric dipole p′ moves only along the axis y with the velocity v′ = v′ŷ
(which can be found from the Einetein law of velocity composition);
the capacitor plates move at the velocity −v sinα along the axis x
and generate the electric E′ = E′ŷ and magnetic B′ = −B′ẑ fields,
which can be found via the Lorentz transformation for electromagnetic
fields [3]. The directions of vectors v′, p′, E′, B′, as seen in the
frame K ′, are shown in Fig. 2(b). Here we have taken into account
the Thomas-Wigner rotation of coordinate axes of the proper frame of
electric dipole with respect to the axes of the frame K ′ [3], which yields
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a spatial turn of the vector p′ with respect p0, and the related angle of
rotation coincides with the angle (25) to the accuracy of calculations
c−2. As a result, an observer in K ′ frame fixes the torque component
p′ ×E′, which to the accuracy c−2 coincides with the first term in rhs
of Eq. (29).

In addition, in the frame K ′ the torque on the dipole contains one
more component, described by the third term in rhs of Eq. (17),

T′
B =

1
c
v′ × (

p′ ×B′) =
v′p′B′

c
ẑ. (30)

The correctness of Eq. (30) can be directly verified via the Lorentz
force law, if we imagine the electric dipole as two mechanically bound
charges −q and +q separated by the distance ∆l. Then, according to
the Lorentz force law, the magnetic force on the charge +q (q(v′ ×
B′)/c = −q(v′B′)/c(ŷ × ẑ)) is directed in the negative x-direction,
whereas the magnetic force on the opposite charge (−q(v′ ×B′)/c =
q(v′B′)/c(ŷ × ẑ)) lies in the positive x-direction. Hence the resultant
torque is equal to

TB = ∆l′qv′B′/cẑ = p′v′B′/cẑ,

which coincides with the result (30). Concurrently, we have found that
the third term of Eq. (17), not reported before, does agree with the
Lorentz force law.

Further taking into account that in the sufficient accuracy of
calculations c−2, v′ ≈ v cosα, B′ ≈ vE sinα/c, p′ ≈ p0, we see that the
torque component (30) fixed in the frame K ′ and resulting from the
third term of Eq. (17), is equal to the second torque component in rhs
of Eq. (29), resulting from the fourth term of Eq. (17), as detremined
in the frame K. We add that for the chosen model of electric dipole
(two mechanically bound charges −q and +q), the origin of this torque
in the laboratory frame K has a non-electromagnetic origin, and is
defined by the mechanical stresses in the moving dipole with their
further transformation to the frame of observation. Here we omit the
corresponding derivation, which is similar to the analysis of mechanical
stresses in moving dipoles, applied in Ref. [11].

4. CONCLUSION

In this paper, we considered the torque exerted on an electric/magnetic
dipole moving in an external EM field. In our approach, we applied
the Lorentz force law (4) and additionally involved the contribution
to total torque, emerging due to hidden momentum of a dipole. In
the framework of this approach, we obtained the general Eq. (10) and
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reduced it to the form (17) for the case of a compact electric/magnetic
dipole and slow spatial variation of the electric E(r) and magnetic B(r)
fields, when both fields can be taken constant within the volume of the
dipole due to the inequalities (11).

Comparing Eq. (17) with other known expressions for the torque
on an electric/magnetic dipole [3, 4, 6–11], we notice that the first and
second terms in rhs of this equation keep the form of the known
components of torque exerted on a resting dipole (compare with
Eq. (1)). However, we stress that, unlike Eq. (1), the electric p
and magnetic µ dipole moments represent the result of relativistic
transformation of corresponding proper moments to the frame of
observation. The third and fourth terms in rhs of Eq. (17), as we
are aware, were not reported to the moment.

The illustrative examples, considered in Section 3, confirm the
validity of Eq. (17). In these examples, we focused our attention
to the analysis of problems, where the third and fourth terms of
this equation explicitly manifest themselves. In particular, in the
illustrative example presented in Fig. 1, we have shown that the torque
contribution (16) due to hidden momentum is strongly required to
provide the consistency of Eq. (17) with repativistic requirements and,
in particular, invalidates the conclusion made in Ref. [18] on the non-
applicability of Lorentz force approach to material media. Further,
analyzing the illustrative example of Fig. 2, we confirmed the validity
of the torque component 1

cv × (p×B) (the third term of Eq. (17)),
and also found that the hidden momentum contribution should be
prescribed to magnetic dipoles of a purely relativistic origin (25).

Discussing the limits of applicability of Eq. (17), we first highlight
the inequalities (11), which allow us to define the typical size of a
dipole in the given EM field, when the approximation of small dipole
is relevant. In these conditions we omit the contributions to torque,
caused by the non-vanishing spatial partial derivatives of EM field.
Besides, we remind that in the derivation of Eq. (17) we supposed
the stationary distribution of charges/currents in the moving dipole.
In general, our approach can be straightforwardly extended to the
case of non-stationary charges/current distributions inside the dipole.
However, this problem falls outside of the scope of the present paper.

Finally, we would like to stress that in this paper we focused our
attention to the derivation of expression for the torque, but not on the
motional equation for magnetic/electric dipole moments in an external
EM field. For the case of a point-like dipole, the motion equation of the
proper magnetic dipole moment µ0 = µ0(t) is described by the BMT
equation, which can be also generalized to the case of non-vanishing
proper electric dipole moment p0 (see, e.g., Ref. [16]). In practical
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applications of elementary particle physics, the motion equation for
particle’s spin in its rest frame (or for related proper magnetic dipole
moment µ0) is the most convenient way. At the same time, we
are confident that in the framework of classical electrodynamics the
obtained Eqs. (10) and (17) derived in a laboratory frame are useful and
allow us to better understand the origin of torque exerted on moving
compact bunches of charges.
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